Feedback Control Patents (Class 398/123)
  • Patent number: 11704812
    Abstract: A computer-implemented method for tracking multiple targets includes identifying a plurality of targets based on a plurality of images obtained from an imaging device carried by an unmanned aerial vehicle (UAV) via a carrier, determining a target group comprising one or more targets from the plurality of targets, and controlling at least one of the UAV or the carrier to track the target group.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: July 18, 2023
    Assignee: SZ DJI TECHNOLOGY CO., LTD.
    Inventors: Jie Qian, Hongda Wang, Qifeng Wu
  • Patent number: 11059607
    Abstract: The invention relates to a navigation satellite (10, 10?, 10?), in particular for a medium earth orbit (MEO), having a housing (12) and a navigation antenna (16) connected to the housing (12) for emission of navigation signals in a preferred direction. Furthermore, the navigation satellite (10, 10?, 10?) has an optical communication system (22) for unidirectional or bidirectional signalling having at least one other satellite advancing in the direction of movement and/or having at least one other satellite following in the direction of movement. The navigation satellite (10, 10?, 10?) has a holder (for example as navigation antenna), which is arranged rotatably on the housing (12) about an axis of rotation (17), the optical communication system being (22) arranged on the holder.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: July 13, 2021
    Assignee: Deutsches Zentrum Für Luft-Und Raumfahrt E.V.
    Inventors: Christoph Günther, Christopher Schmidt
  • Patent number: 11012147
    Abstract: A multi-mode communication adapter system comprising: a mobile Earth station including: a flat panel antenna configured to receive a down-link satellite packet, a satellite Rx/Tx, coupled to the flat panel antenna, configured to decode the down-link satellite packet, a storage device, coupled to the satellite Rx/Tx, configured to store satellite data from the down-link satellite packet, an interface module, coupled to the storage device, configured to encode and transfer the satellite data as a cellular communication packet, a WiFi packet, or a combination thereof without accessing a local infrastructure; and a protective cover encloses the mobile Earth station in a protective flap, the protective cover including a cellphone holder configured to secure a smartphone and a hinge between the protective flap and the cellphone holder.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: May 18, 2021
    Assignee: M2SL Corporation
    Inventor: Syngbum Kim
  • Patent number: 10742329
    Abstract: A method, apparatus, and system for facilitating communications with an underwater platform. A radio frequency signal is received at an antenna system connected to an unmanned aerial vehicle. Information is encoded in the radio frequency signal. The information in the radio frequency signal is placed into a laser beam. The transmitting the laser beam from the unmanned aerial vehicle to an underwater platform submerged in a body of water.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: August 11, 2020
    Assignee: The Boeing Company
    Inventor: Nathan D. Hiller
  • Patent number: 9143232
    Abstract: Embodiments provide a first communications device configured to communicate with one or more other communications devices over a wireless optical link. The first communications device may include a first communications structure configured to communicate with a second communications structure via the wireless optical link. The communications device may further include a micro-electro-mechanical systems (MEMS) mirror configured to direct an optical data signal sent over the wireless optical link and a controller configured to move the MEMS mirror based on feedback information to maintain the optical link between the first communications structure and the second communications structure.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: September 22, 2015
    Assignee: Intel Corporation
    Inventor: Sandhiprakash J. Bhide
  • Patent number: 9014553
    Abstract: A satellite test signal reflection apparatus for testing transmitters sending out optical signals, the apparatus includes a plate that is at least partially permeable to optical signals. The plate has a base with a first surface with a residual reflective coating and a second surface. The residual reflective coating is configured to split an optical beam, which penetrates the plate in a first direction from the first surface to the second surface, into a reflective optical beam and a transmitted optical beam.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: April 21, 2015
    Assignee: Tesat-Spacecom GmbH & Co. KG
    Inventor: Andreas Weichert
  • Patent number: 8953946
    Abstract: A free space optical communication system (100) and method including: several optical beam expanders (414) for receiving incoming optical signals from ground sites and neighboring satellites; several optical preamplifiers (412) for preamplifying the received optical signals; one or more optical main amplifiers (404) for amplifying the preamplified optical signals; and an optical switch (408) for directing respective amplified optical signals to respective destinations via a respective optical beam expander. The respective amplified optical signals are inputted to a respective optical beam expander (414) for transmission to said respective destinations, as outgoing optical signals.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: February 10, 2015
    Assignee: Raytheon Company
    Inventors: Gary D. Coleman, C. Thomas Hastings, Jr., Duane Smith, David Filgas
  • Patent number: 8831430
    Abstract: An optical signal correction apparatus includes a power information generation unit that generates power information indicating power of optical main signal in wavelength band according to optical wavelength multiplexed signal, a power information adjusting unit that generates adjusted power information obtained by adjusting the power information according to the number of the optical main signal included in the wavelength band based on optical signal identifying information which identifies the number of the optical main signal in the wavelength band, a correction amount calculation unit that calculates a tilt amount of the optical wavelength multiplexed signal according to the adjusted power information, and a correction amount for correcting a tilt of the optical wavelength multiplexed signal according to a difference between the calculated tilt amount and a target tilt amount, and an optical signal correction unit that corrects the tilt of the optical wavelength multiplexed signal according to the correct
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: September 9, 2014
    Assignee: NEC Corporation
    Inventor: Baku Kikuchi
  • Patent number: 8552836
    Abstract: An alignment system for coupling a component to a vehicle includes at least one sensor target coupled to the component, and a controller assembly configured to transmit a signal towards the sensor target and receive a reflected signal from the sensor target, wherein the controller assembly is configured to output an orientation dataset for the component relative to the vehicle using the reflected signal. The system also includes a processing device communicatively coupled to the controller assembly, wherein the processing device is programmed to translate the orientation dataset and cause a set of component positioning signals based on the orientation dataset to be displayed at a user interface.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: October 8, 2013
    Assignee: The Boeing Company
    Inventors: Joshua R. Pollema, James V. Leonard, Richard E. Meyer, John D. Musgraves, Jr., William J. Ebert
  • Patent number: 8355635
    Abstract: A method for pointing control of a laser communication terminal on a spacecraft may include measuring a line-of-sight (LOS) error of the laser communication terminal. The method may also include estimating a LOS error of the laser communication terminal based on measurements from a spacecraft gyro and a gimbal gyro onboard the spacecraft. The method may further include switching from a LOS error measurement feedback to a LOS error estimate feedback to control pointing of the laser communication terminal during a power fade condition.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: January 15, 2013
    Assignee: The Boeing Company
    Inventors: Ketao Liu, Qinghong W. Wang
  • Patent number: 8275911
    Abstract: A free space laser beam communication system, set forth by way of example and not limitation, advantageously includes a laser beam generator configured to develop a laser beam, a laser beam detector which is not in a line-of-sight of the laser beam generator, and a laser beam redirector within a line-of-sight of the laser beam generator and configured to redirect the laser beam to the laser beam detector. A path of the laser beam can be varied by adjusting a relative position between the laser beam generator and the laser beam detector.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: September 25, 2012
    Assignee: G&H Nevada-Tek
    Inventor: Michael Gough
  • Patent number: 8184981
    Abstract: Combined IR-RF combat identification friend-or-foe (IFF) system for a ground targets, such as dismounted soldiers, vehicles or military platforms comprising IR-RF interrogator mounted on a firearm and IR-RF transponder mounted on a friendly target. RF channel operates in Ka-band providing brief information about friendly targets that could be in attacked area, and if they are, develop alert signal: “Friendly soldiers are in the area”. The interrogator additionally contains RF channel receiving reflected signal that allows recognize armed foe. IR channel of the system prevents friendly fire in the case of direct sighting to a friendly soldier.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: May 22, 2012
    Assignee: Protective Arms Systems Inc.
    Inventors: Gennadii Ivtsenkov, Alexandre Mantsvetov, Evgeny Berik
  • Patent number: 8098992
    Abstract: The present invention relates to a multipurpose infrared apparatus and a display apparatus thereof. The display apparatus includes a display panel and the multipurpose infrared apparatus, wherein the multipurpose infrared apparatus includes an infrared light emitted diode (hereinafter refer to as, IR LED) transmitter, an IR receiver and a microcontroller. The IR LED transmitter is used for transmitting infrared ray. The IR receiver is used for receiving infrared ray. The microcontroller utilizes the Time-Division Multiplexing method to control the IR LED transmitter and receiver to achieve the distance detecting, the remote control signal receiving and an ambient light detecting.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 17, 2012
    Assignee: Generalplus Technology Inc.
    Inventors: Tung-Tsai Liao, Li Sheng Lo, Che-Hui Wang
  • Patent number: 7995926
    Abstract: A scan acquisition technique for acquiring terminals (62, 64) that does not rely on precise alignment between a sensor (66, 70) and a transmitter (68, 72) associated with the terminals (62, 64). The terminals (62, 64) separate uncertainty regions (76, 78) into a plurality of sections (88, 90). Scan beams (82, 84) include encoded information of what section (88, 90) the scan beam (82, 84) is currently scanning. Each terminal (62, 64) will eventually receive the scan beam (82, 84) of the other terminal (62, 64). When it does, it will encode its scan beam (82, 84) with both the outgoing code and the return code for that section (88, 90), so that when it's scan beam (82, 84) is received by the other terminal (62, 64), that terminal (62, 64) will know what scan section (88, 90) the other terminal (62, 64) is located.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: August 9, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Todd L. Mendenhall
  • Patent number: 7970950
    Abstract: A system and method are provided for accelerating data transfer between networked databases. First provided are a plurality of databases coupled by a network. At least one laser unit is coupled to each database. In operation, such laser units are capable of communicating data between the databases via free space by way of a laser beam. This allows data communication at a rate faster than that which the network is capable.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: June 28, 2011
    Assignee: G&H Nevada—Tek
    Inventor: Michael Gough
  • Patent number: 7933266
    Abstract: A signal router, configured to receive information carried by a first signal and transmit the information on a second signal, is described. The signal router, using routing information it gathers, selects the second signal from a number of signals, with the first and the second signals differing in at least one physical characteristic. The signal router operates in a network of a number of such signal routers, and so each one of the signal routers is coupled to at least one of the other signal routers. The routing information is used to create a circuit from a first one of the signal routers to a second one of the signal routers. Once the circuit is created, the information is routed over the circuit. According to one aspect of the present invention, the signals are optical signals.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 26, 2011
    Assignee: Cisco Technology, Inc.
    Inventors: Haig Michael Zadikian, Ali Najib Saleh, John Conlon Adler, Zareh Baghdasarian, Vahid Parsi
  • Patent number: 7885548
    Abstract: Free space optical communication systems, methods, and apparatuses are provided. A free space optical communication system embodiment includes a light source for emitting a light beam toward a receiver, where the light beam includes a signal to be transmitted, an output lens through which the light beam is directed toward the receiver, and an actuator coupled to the light source for moving the light source to adjust the diameter of the light beam.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: February 8, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Ryan L. Nelson, Brian L. Uhlhorn
  • Patent number: 7844183
    Abstract: A system for transmission of information between at least two players in a training area comprises means on a first (1) of said players for encoding light pulses and means for transmitting information in the form of such coded light pulses towards at least one second (2-4) of said players, said second player having means for receiving said light pulses and means for decoding the information thereof. Each of said players is provided with a clock, and the system comprises means for keeping said clocks synchronized. The encoding means and the decoding means are adapted to utilize data of times of transmission and receipt of said light pulses for transmitting information from the first player to the second player.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: November 30, 2010
    Assignee: SAAB AB
    Inventors: Peter Isoz, Alf Axerud
  • Patent number: 7646986
    Abstract: The present invention provides an optical receiving device, in which a portion of an optical signal is deflected for optical axis detection only when the optical axis is misaligned to thereby achieve a high S/N ratio of a received signal. A condensing section 100 condenses a received optical signal. An optical element 110 includes a transmission region 111 and a deflecting region 112, and receives the optical signal, which has been condensed through the condensing section 100. A signal light receiving section 120 receives the transmitted light, which has been transmitted through the transmission region 111. A detection light receiving section 130 receives deflected light, which has been deflected through the deflecting region 112 and performs a photoelectric conversion on the received light to thereby output a detection intensity signal that indicates an intensity of the deflected light.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 12, 2010
    Assignee: Panasonic Corporation
    Inventors: Hideo Yasumoto, Hiroyuki Sasai
  • Patent number: 7643755
    Abstract: A high-speed optical communications cell is integrated at the interior of a two-dimensional imaging array. The combined receiver and imager carries out both photodetection (converting photons to electrons) and circuit functions (e.g. amplifying and integrating the signals from the photodetectors). The high-speed receiver cell comprises a photodetector and a high-speed amplification circuit, providing an electrical output which can follow a rapidly varying optical signal falling on the photodetector. The imaging array comprises an array of photodetectors and readout circuits, providing an electrical representation of the variation of light with position across the receiver surface. The presence of an imaging array surrounding the communications receiver, and in the same plane as it, allows a single optical path to be used for source acquisition and tracking as well as for data reception.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 5, 2010
    Assignee: Noble Peak Vision Corp.
    Inventors: Conor S. Rafferty, Clifford Alan King
  • Patent number: 7609972
    Abstract: A technique for acquiring and tracking terminals in a free-space laser communication system involves exchanging beacon laser beams between the terminals to acquire and then track the terminals such that data laser beams exchanged by the terminals for communication are steered based on feedback from detection of the beacon laser beams. The beacon laser beams used for acquisition have a greater beam divergence than those used for tracking. Gimbals provide coarse steering of the data laser beams, and steering mirrors provide fine steering. GPS position data exchanged via an RF link can be used for initial pointing of the beacon laser beams for acquisition. The beacon laser beams can be chopped such that all terminals can use the same beacon wavelength and are distinguished by using different chopping frequencies. By detecting a chopped signal, the position sensor detector can be AC coupled to reduce sensitivity to solar radiation and glint.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: October 27, 2009
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventors: James Cunningham, Dean Grinch, Donald Fisher
  • Patent number: 7593641
    Abstract: A system and method of free-space optical satellite communications includes a ground station and transceiver for transmitting and receiving an optical communications signal. Adaptive optics at the ground station are operative with the transceiver for determining the shape of any distortions in the wavefront of the optical communications signal and compensating at the ground station for the distortions. A satellite includes a transceiver for transmitting and receiving the optical communications signal and includes adaptive optics for determining the shape of any distortions in the waveform of the optical communications signal and compensating at the satellite for the distortions.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: September 22, 2009
    Assignee: Harris Corporation
    Inventor: Edward H. Tegge, Jr.
  • Patent number: 7583899
    Abstract: A space optical transmission apparatus is provided which achieves high-speed simultaneous space optical transmission with respect to a plurality of terminals. In the space optical transmission apparatus, a light receiving section receives an optical signal from a terminal. A control section estimates how much optical axes of a master station and the terminal are deviated from each other, based on the received optical signal. The control section selects one of a plurality of light sources which requires a smallest amount of shift of an optical axis thereof, based on the estimated optical axis deviation amount, so as to communicate with the terminal.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: September 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Hiroyuki Sasai, Tomoaki Ieda, Kazutoshi Hase
  • Patent number: 7486893
    Abstract: The disclosed technology provides a dynamic interconnection system which allows to couple a pair of optical beams carrying modulation information. In accordance with the disclosed technology, two optical beams emanate from transceivers at two different locations. Each beam may not see the other beam point of origin (non-line-of-sight link), but both beams can see a third platform that contains the system of the disclosed technology. Each beam incident on the interconnection system is directed into the reverse direction of the other, so that each transceiver will detect the beam which emanated from the other transceiver. The system dynamically compensates for propagation distortions preferably using closed-loop optical devices, while preserving the information encoded on each beam.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: February 3, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: David M. Pepper, Richard P. Berg
  • Patent number: 7477846
    Abstract: A method that does not rely on signal strength for detecting the presence of a broken optical wireless link. The method controls the packet transfer rate in a manner that minimizes both network overhead and computational requirements. Upon completion of the acquisition process, the control packet transfer rate is significantly reduced, since a high control packet transmission rate is only necessary during the acquisition process in order to expedite the acquisition process. The need for reacquisition is based, for example, on the number of consecutive missing packets, or the rate of missing versus received packets.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: January 13, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Eric G. Oettinger, Karl K. Northrup
  • Patent number: 7450855
    Abstract: There is provided an optical detection apparatus, comprising a light-receiving element, an optical system which forms a spot of light flux on a light-receiving surface of the light-receiving element by externally incident light flux, and an information generating section which generates information with respect to a position of the spot based on the output from the light-receiving element. The optical system includes an optical element array having a plurality of optical element portions, and a plurality of spots formed by the plurality of optical element portions substantially overlap to each other on the light-receiving surface.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: November 11, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ryuji Ohmuro
  • Patent number: 7406263
    Abstract: In an adaptive optics module, wavefront sensing and data detection are implemented in a single device. For example, an optical-to-electrical converter converts a data-encoded optical beam to an intermediate electrical signal, which contains both the data encoded in the beam and also wavefront information about the beam. The data and wavefront information are later separated, for example by frequency filtering.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 29, 2008
    Assignee: AOptix Technologies
    Inventors: J. Elon Graves, Malcolm J Northcott, J. Christopher Shelton
  • Patent number: 7391975
    Abstract: A technique for synchronizing the servo control systems between two optical wireless links (OWLs) that are in communication with one another. This synchronization allows the alignment in time of the various tasks to be assigned in a desired time period. The synchronization is not intended to synchronize the two OWLs down to the processor clock level, but rather at the servo sampling level, preferably to within a few percent of the servo sampling time. This synchronization may be advantageous in improving processor efficiency and control loop performance, and or improving system calibrations.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 24, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric G. Oettinger, Mark D. Heminger, Todd B. Anderson
  • Patent number: 7343099
    Abstract: A free-space adaptive optical laser communication system having signal transmission and reception channels at all terminals in the communication system, wherein wavefront sensing and wavefront correction mechanisms are employed along signal transmission and reception channels of all terminals in the communication system (i.e. adaptive optics) to improve the condition of the laser beam at the receiver (i.e. reduce the size of the spot a the detector plane). Speckle-to-receiver-aperture tracking mechanisms are employed in the transmission channel of the communication system and laser beam speckle tracking mechanism in the reception channels thereof, so as to achieve a first level of optical signal intensity stabilization at signal detector of each receiving channel.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: March 11, 2008
    Assignee: Metrologic Instruments, Inc.
    Inventors: Allan Wirth, Andrew Jankevics
  • Patent number: 7292789
    Abstract: A communications terminal includes a first aperture configured to receive laser signals from ground laser sources, pick-off mirrors configured to receive laser signals from mobile laser sources, an optical assembly configured to receive the laser communications signals from ground laser sources and mobile laser sources, wherein the optical assembly is configured to focus laser signals onto a common focal plane, and laser receivers located at the focal plane configured to receive laser signals from at least one laser source at a time.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: November 6, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: Larry H. Capots, Robert Sigler, Kenneth Triebes
  • Patent number: 7292788
    Abstract: A laser communications system includes a wide-field sensor, configured to detect a first set of laser communications sources within a first field of view, a narrow-field sensor includes a tracking portion and a control portion configured to receive laser communications from a second set of laser communications sources within a second field of view, wherein the first field of view is larger than the second field of view, and wherein the second set of laser communications sources comprises at least a first source and a second source, and a redirection unit coupled to the narrow-field sensor configured to position the second field of view within the first field of view wherein the first receiving element is positioned in response to the first positioning signal for the first receiving element, and the second receiving element is positioned in response to the first positioning signal for the second receiving element.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: November 6, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: Kenneth J. Triebes, Michael Enoch, Larry H. Capots
  • Patent number: 7289736
    Abstract: An adaptive optics imaging system has an acquisition imaging subsystem to assist in initial acquisition and alignment of the system to a target object. A wavefront sensor in the adaptive optics imaging system is aligned to a reference object in the acquisition imaging subsystem. The target object is also aligned to the reference object. In this way, alignment of the target object with the wavefront sensor is achieved.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: October 30, 2007
    Assignee: AOptix Technologies
    Inventor: J. Elon Graves
  • Patent number: 7286766
    Abstract: A free space optical communication system includes an adaptive optical power regulator. The adaptive optical power regulator adapts to changes in effective loss associated with the free space optical path. In one embodiment the adaptive optical power regulator adapts to scintillation losses. In another embodiment, the adaptive optical power regulator further adapts to changes in atmospheric loss associated with changes in weather.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: October 23, 2007
    Assignee: AOptix Technologies, Inc.
    Inventors: J. Christopher Shelton, Malcolm J. Northcott, Raymond W. Tang
  • Patent number: 7283751
    Abstract: A method and apparatus for compensating for phase fluctuations incurred by an optical beam travelling through free space, especially a turbulent atmosphere. A transmitting station transmits a plurality of uniquely tagged optical beams through free space. The plurality of uniquely tagged optical beams are received at a receiving station, where a parameter of each uniquely tagged optical beam is quantified. Information associated with the quantified parameter for each uniquely tagged optical beam is then sent back to the transmitting station via a wireless feedback link. Using the information, the transmitting station adjusts at least one uniquely tagged optical beam to compensate for phase fluctuations.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: October 16, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: Hans W. Bruesselbach, Monica Minden, Metin S. Mangir, Cris Jones, David M. Pepper
  • Patent number: 7257327
    Abstract: An optical communication system is provided which includes an optical signal transmitter which communicates high bandwidth, high power frequencies. The optical signal transmitter includes a high efficiency/high power optical source such as an optical magnetron or a phased array source of electromagnetic radiation, and a modulator element. The modulator element may be within a resonance cavity of the high efficiency/high power optical source (intra cavity) or external to the cavity (extra cavity). The modulator element serves to modulate output radiation of the high efficiency/high power optical source to produce a modulated high frequency optical signal which may be transmitted through the air. The optical signal transmitter is particularly useful in providing the last mile connection between cable service operators and end users.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: August 14, 2007
    Assignee: Raytheon Company
    Inventor: James G. Small
  • Patent number: 7221874
    Abstract: A modular free space optical (FSO) communications device may include an optical relay (OR) module and a base module. More particularly, the OR module may include an OR housing and at least one OR device carried thereby. Further, the base module may include a base housing and at least one positioner carried thereby for providing relative movement between the base module and the OR module for optical beam aiming. The modular FSO communications device may also include a camera and a remote station interface connected to the at least one positioner for permitting remote optical beam aiming. Furthermore, the remote station interface may also be connected to the camera for permitting remote viewing.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: May 22, 2007
    Assignee: Harris Corporation
    Inventors: Edward Harris Tegge, Jr., Donald M. Ball
  • Patent number: 7215890
    Abstract: A free space optical (FSO) communications device may include a plurality of power supplies having different respective output voltages. The FSO communications device may further include an adaptive optics (AO) module including an AO housing and a deformable mirror carried thereby. The deformable mirror may include an array of actuators each operating based upon a supplied voltage. In addition, a power controller may also be included for selectively driving the array of actuators using a desired one of the power supplies to conserve electrical power.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: May 8, 2007
    Assignee: Harris Corporation
    Inventors: Edward Harris Tegge, Jr., Donald M. Ball
  • Patent number: 7203424
    Abstract: A system and method for use with an optical communication beam of light is disclosed. The system allows the beam of light to operate at an adequate power level that provides a robust optical link while minimizing any safety risk to humans. Such a system includes multiple operating modes which control the power output of the beam of light. In the normal mode, the beam of light operates at a selected power level which provides a desired signal to noise ratio. Once a blocking occurs, the beam of light enters a power reduction mode to prevent harm to the blocking object. An acquisition and recovery mode is then employed to reestablish the blocked communication link.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: April 10, 2007
    Assignee: Kiribati Wireless Ventures LLC
    Inventors: James J. Alwan, Victor Jim Chan, Scott Harris Bloom, Glenn Claude Hoiseth, Scott Platenberg, Raymond Dennis Rogers
  • Patent number: 7203425
    Abstract: An optical, line-of-sight modem. The modem includes a micro-mirror assembly including a micro-mirror and including an actuator for providing rotational movement to the micro-mirror, the micro-mirror being controllable by predetermined control signals. The modem includes a source of electronic data signals, and a source of light having a narrow beam of light directed at the micro-mirror. Means are provided for converting the electronic data signals to optical signals modulating the beam of light. Means are also provided for controlling the micro-mirror so as to maintain the micro-mirror in a predetermined position for data communication.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: April 10, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Keller, Jose Melendez
  • Patent number: 7200334
    Abstract: The invention relates to a system for conveying digital signals inside a space vehicle between a transmitter and a receiver. In the invention, the link between the transmitter and the receiver comprises a first portion made of optical fiber and a second portion in which infrared radiation propagates without guidance. A particular application lies in conveying remote control and telemetry signals within a satellite between a control module and a piece of equipment.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: April 3, 2007
    Assignee: Alcatel
    Inventors: Jean-Didier Gayrard, Michel Sotom, Michel Maignan
  • Patent number: 7174099
    Abstract: Systems and methods for regulating optical power are described. A system for regulating optical power includes a laser driver circuit that receives an enable/disable signal and a data modulator input. The enable/disable signal regulates asynchronous mode operation. The system also includes a laser module including a laser diode emitter and a photodiode detector. The laser module is coupled to the laser driver circuit and receives a laser bias current from the laser driver circuit. The system also includes a switch coupled to the photodiode to receive a signal from the photodiode detector. The system also includes an automatic power control (APC) feedback circuit that receives a signal from the switch and provides a laser bias current feedback signal to the laser driver circuit to compensate for power output changes in the laser diode emitter over time.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: February 6, 2007
    Assignee: Network Appliance, Inc.
    Inventors: Stephen R. Chinn, Philip A. Lee, James K. Roberge
  • Patent number: 7133617
    Abstract: In an optical wireless network, where light beams are transmitted over-the-air, reflections of the transmitted light beams may cause a receiver of an optical wireless device to detect and subsequently lock onto the signal that it transmitted. By doing so, the network is effectively broken. A method and apparatus to detect the reception of reflected signals using minimal additional hardware and data is presented. Should a reflected signal be detected, the receiver is prevented from locking onto the signal, allowing the receiver to detect and subsequently lock onto light beams originating from other optical wireless devices.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: November 7, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Eric Gregory Oettinger, Mark David Heminger
  • Patent number: 7113707
    Abstract: This invention provides a dynamic interconnection system which allows to couple a pair of optical beams carrying modulation information. In accordance with this invention, two optical beams emanate from transceivers at two different locations. Each beam may not see the other beam point of origin (non-line-of-sight link), but both beams can see a third platform that contains the system of the present invention. Each beam incident on the interconnection system is directed into the reverse direction of the other, so that each transceiver will detect the beam which emanated from the other transceiver. The system dynamically compensates for propagation distortions preferably using closed-loop optical devices, while preserving the information encoded on each beam.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: September 26, 2006
    Assignee: HRL Laboratories, LLC
    Inventor: David M. Pepper
  • Patent number: 7103280
    Abstract: A satellite constellation has a plurality of satellites. Each of the satellites has an RF ground link for communicating with a ground station and an optical link for communication with at least one of the plurality of satellites. Each of the satellites has a reconfigurable optical transmitter for sending and receiving data streams. Each reconfigurable optical transmitter has a first optical carrier associated therewith and a reconfigurable optical receiver. The plurality of satellites is arranged to have a first subset of satellites. The first subset of satellites is configured to communicate. The plurality of satellites is reconfigured to have a second subset of satellites having at least one different satellites than that of said first subset. The second subset supercedes the first subset. The second subset of satellites is configured to communicate. Various subset around the globe may form local area networks. The local area networks are preferably optically coupled to form a wide area network.
    Type: Grant
    Filed: June 5, 1999
    Date of Patent: September 5, 2006
    Assignee: The DirecTV Group, Inc.
    Inventors: Stanislav I. Ionov, George C. Valley, Anthony S. Acampora
  • Patent number: 7058307
    Abstract: A free-space optical communication apparatus includes a storage unit which stores angle-setting information for the mirror for communicating with each of the plurality of other apparatuses, a mirror driving unit which drives the mirror to an angle corresponding to the stored angle-setting information, an optical detecting unit which, on one occasion for communicating with a specified communication apparatus among the plurality of other apparatuses, detects the incident state of an optical beam sent from the specified apparatus, and a control unit which, based on the detected incident state of the optical beam, determines angle-correcting information for correcting the stored angle-setting information for the specified apparatus, and which, on the next occasion for communicating with the specified apparatus, uses the mirror driving unit to drive the mirror to an angle corresponding to the angle-setting information corrected by the angle-correcting information.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: June 6, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tetsuo Sakanaka
  • Patent number: 6909850
    Abstract: Lightwaves (1), which carry data signals and beacon light, are used for establishing a connection between a receiver and a transmitter located remote from each other. An acquisition sensor (171) is provided for acquiring the lightwaves (1) in the receiver, which generates acquisition sensor signals (Sc) from the received lightwaves. The lightwaves (1), which are conducted over a telescope (2) and a beam splitter (R4), are fed to the acquisition sensor (171) as well as to a fiber nutator scanning device (5). Besides useful signals (Sa, Sb), an additional signal (Sw, Sm?, Sm) is obtained with the aid of the scanning device (5), which is used for making the acquisition easier.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: June 21, 2005
    Assignee: Contraves Space AG
    Inventors: Edgar Fischer, Andreas Märki
  • Patent number: 6816112
    Abstract: A hybrid optical and millimeter wave beam acquisition and tracking system and method. A host platform includes an INS and a GPS for generating geolocation data, optical and RF receivers, and a common optical/RF aperture. An interface is coupled to the host platform by way of a mechanical gimbal and includes a beamsplitter, an optical gimbal and optical aperture, and an RF aperture. A CPU on the interface includes an optical track error processor for acquiring the optical beam by systematically searching for a focused light spot in a focal plane of the optical receiver, an RF track error processor for outputting gimbal angles of the mechanical gimbal that are derived from the aperture of the RF receiver that are referenced to the inertial navigation system, and a search and track processor that generates an optical gimbal control signal for the optical gimbal and a mechanical gimbal control signal for the mechanical gimbal for tracking the optical and RF beams.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 9, 2004
    Assignee: Lockheed Martin Corporation
    Inventor: Frank Chethik
  • Patent number: 6778779
    Abstract: A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: August 17, 2004
    Assignee: New Mexico State University Technology Transfer Corporation
    Inventors: Thomas M. Shay, David A. Hazzard, Stephen Horan, Jason A. Payne
  • Patent number: 6643469
    Abstract: Method for wireless optical communication between a transmitting station and a receiving station, whereby the transmitting station provides a Request-to-Send (RTS) frame to the receiving station to announce the transmission of a data frame, the receiving station provides a Clear-to-Send (CTS) frame to the transmitting station in case of correct reception of the RTS frame, and the transmitting station subsequently sends the data frame to the receiving station. The RTS frame comprises Preamble (PA), Synchronization (SYNC), and Robust Header (RH) fields. The RTS frame further comprises a Source Address/Destination Address field (SA/DA) and a Cyclic Redundancy Check field (CRC). Adjusting the power level of the RTS frame to be different from the nominal transmission power level at which the data frame is sent, and by variable repetition coding within the Robust Header (RH) field of the RTS frame, allows a larger dynamic range of link quality estimation and improved collision avoidance properties.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: November 4, 2003
    Assignee: International Business Machines Corp.
    Inventors: Fritz R. Gfeller, Walter Hirt