Space To Space Patents (Class 398/124)
  • Patent number: 7203425
    Abstract: An optical, line-of-sight modem. The modem includes a micro-mirror assembly including a micro-mirror and including an actuator for providing rotational movement to the micro-mirror, the micro-mirror being controllable by predetermined control signals. The modem includes a source of electronic data signals, and a source of light having a narrow beam of light directed at the micro-mirror. Means are provided for converting the electronic data signals to optical signals modulating the beam of light. Means are also provided for controlling the micro-mirror so as to maintain the micro-mirror in a predetermined position for data communication.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: April 10, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Keller, Jose Melendez
  • Patent number: 7200334
    Abstract: The invention relates to a system for conveying digital signals inside a space vehicle between a transmitter and a receiver. In the invention, the link between the transmitter and the receiver comprises a first portion made of optical fiber and a second portion in which infrared radiation propagates without guidance. A particular application lies in conveying remote control and telemetry signals within a satellite between a control module and a piece of equipment.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: April 3, 2007
    Assignee: Alcatel
    Inventors: Jean-Didier Gayrard, Michel Sotom, Michel Maignan
  • Patent number: 7167653
    Abstract: An optical transceiver having a transmitter section and a receiver section formed on a substrate to be close to each other is provided, which suppresses the electrical and optical crosstalk between the transmitter section and the receiver section. The transceiver comprises: (a) a substrate; (b) a transmitter section formed on the substrate and including a light-emitting element; (c) a receiver section formed on the substrate to be close to the transmitter section and including a light-receiving element; (d) a conductive first connection member fixed near the substrate; and (e) a transparent second connection member fixed near the first member in such a way as to block the first opening and the second opening of the first member from a front of the first member. The first member has a first opening that allows a first light beam to penetrate the first member and a second opening that allows a second light beam to penetrate the first member.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: January 23, 2007
    Assignee: NEC Corporation
    Inventors: Kazuhiko Kurata, Nobuharu Kami
  • Patent number: 7162159
    Abstract: A method of eliminating the non-linearities associated with the remote feedback sensor, such as a quad position detector, used in a micro-electro-mechanical (MEM) mirror assembly. The incoming beam transmitted from a remote optical wireless link is first polarized, and then a single detector is employed to detect the polarization for the receiver. The single detector eliminates the non-linearity associated with a quad position detector, since the space between the quad detectors is eliminated.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: January 9, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Eric G. Oettinger, Robert E. Jansen
  • Patent number: 7158726
    Abstract: The invention relates to a communications backbone interface between at least three members of a communications network for a space vehicle. In the invention, the interface combines various signals received at inlets, which signals may be analog, digital, and optical, coming from two members, and produces a multiplexed optical signal for delivery to a member of the vehicle, such as a piece of equipment. The invention also provides to a communications terminal interface, a communications network having such interfaces, and an optical fiber harness.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 2, 2007
    Assignee: Alcatel
    Inventors: Jean-Didier Gayrard, Michel Sotom, Michel Maignan
  • Patent number: 7113707
    Abstract: This invention provides a dynamic interconnection system which allows to couple a pair of optical beams carrying modulation information. In accordance with this invention, two optical beams emanate from transceivers at two different locations. Each beam may not see the other beam point of origin (non-line-of-sight link), but both beams can see a third platform that contains the system of the present invention. Each beam incident on the interconnection system is directed into the reverse direction of the other, so that each transceiver will detect the beam which emanated from the other transceiver. The system dynamically compensates for propagation distortions preferably using closed-loop optical devices, while preserving the information encoded on each beam.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: September 26, 2006
    Assignee: HRL Laboratories, LLC
    Inventor: David M. Pepper
  • Patent number: 7103280
    Abstract: A satellite constellation has a plurality of satellites. Each of the satellites has an RF ground link for communicating with a ground station and an optical link for communication with at least one of the plurality of satellites. Each of the satellites has a reconfigurable optical transmitter for sending and receiving data streams. Each reconfigurable optical transmitter has a first optical carrier associated therewith and a reconfigurable optical receiver. The plurality of satellites is arranged to have a first subset of satellites. The first subset of satellites is configured to communicate. The plurality of satellites is reconfigured to have a second subset of satellites having at least one different satellites than that of said first subset. The second subset supercedes the first subset. The second subset of satellites is configured to communicate. Various subset around the globe may form local area networks. The local area networks are preferably optically coupled to form a wide area network.
    Type: Grant
    Filed: June 5, 1999
    Date of Patent: September 5, 2006
    Assignee: The DirecTV Group, Inc.
    Inventors: Stanislav I. Ionov, George C. Valley, Anthony S. Acampora
  • Patent number: 7078726
    Abstract: In one embodiment of the invention, a first absorbing layer is on a substrate and/or a second absorbing layer is on a heat-activated adhesive. If the IR source that supplies IR radiation is present on the substrate-side, then the absorption percentage of the substrate is less than the absorption percentage of the first absorbing layer if present and less than the absorption percentage of the second absorbing layer if present. If the IR source that supplies IR radiation is present on the “encapsulation cover”-side, then the absorption percentage of the encapsulation cover is less than the absorption percentage of the first absorbing layer if present and less than an absorption percentage of the second absorbing layer if present. The substrate and the encapsulation cover have a low thermal conductivity.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: July 18, 2006
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Karl Pichler, Kyle D. Frischknecht
  • Patent number: 7058307
    Abstract: A free-space optical communication apparatus includes a storage unit which stores angle-setting information for the mirror for communicating with each of the plurality of other apparatuses, a mirror driving unit which drives the mirror to an angle corresponding to the stored angle-setting information, an optical detecting unit which, on one occasion for communicating with a specified communication apparatus among the plurality of other apparatuses, detects the incident state of an optical beam sent from the specified apparatus, and a control unit which, based on the detected incident state of the optical beam, determines angle-correcting information for correcting the stored angle-setting information for the specified apparatus, and which, on the next occasion for communicating with the specified apparatus, uses the mirror driving unit to drive the mirror to an angle corresponding to the angle-setting information corrected by the angle-correcting information.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: June 6, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tetsuo Sakanaka
  • Patent number: 6993260
    Abstract: Internal communication signals in a stored program controlled system comprising a plurality of units configured to process signals are provided by a free space optical beam line which is proximal to all of the plurality of units. The free space beam line is configured to contain optically encoded signals which comprises signals transmitted between and/or among the plurality of units. Each unit includes a probe for injecting optically encoded signals in the free space beam line and/or and for receiving optically encoded signals from the free space beam line. Advantageously, there may be a first terminal at a first end of the beam line to configure to transmit and terminate the optically encoded signals and a second terminal unit at the second end of the free space beam line configured to transmit and terminate the optically encoded signals.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 31, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Charles Calvin Byers, Daniel Raymond Hatcher
  • Patent number: 6978093
    Abstract: The present invention provides a method and network for communicating over free space links. The network includes a plurality of buildings, each housing at least one of a residence and a business. Pluralities of free-space optical links are established, where each optical link is defined between two of the buildings, and data is communicated across the plurality of links. Each of the buildings includes a distribution system configured to receive the data communicated across at least one of the links and to distribute the data to an intended recipient. The plurality of optical links are configured to form a network topology providing alternate communication paths for at least two of the plurality of buildings and an external network is coupled with the optical communication network, wherein at least some of the data is communicated between the external network and the optical communication network.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: December 20, 2005
    Assignee: LightPointe Communications, Inc.
    Inventor: Gerald R. Clark
  • Patent number: 6952530
    Abstract: Integrated glass ceramic spacecraft include a plurality of glass ceramic components including molded, tempered, annealed, and patterned glass ceramic components coupled together for forming a support structure or frame or housing through which is communicated optical signals through an optical communications grid and electrical signals through an electrical communications grid, with the optical communications grid and electrical communication grid forming a composite electrooptical communications grid for spacecraft wide intercommunications. The support structure multifunctions as a frame, a housing, a support, a thermal control system, and as part of an electrooptical communications grid while encapsulating a plurality of optical, electronic, electrical, and MEMS devices between which is communicated the electrical and optical signals over the electrooptical communication grid.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: October 4, 2005
    Assignee: The Aerospace Corporation
    Inventors: Henry Helvajian, Siegfried W. Janson
  • Patent number: 6934475
    Abstract: A beacon beam is transmitted from a receiver to a transmitter. The transmitter generates and transmits a conjugate beacon beam back to the receiver, where it is interfered with a local oscillator beam to form a hologram. The hologram is used to configure a spatial light modulator as a diffraction grating. A conjugate communications laser beam containing information is subsequently transmitted to the receiver. The diffraction grating deflects the conjugate communications beam to a fixed and known direction, whereupon it is directed through a spatial filter. Since the direction of the conjugate communications beam is fixed and known, the diameter of the filter aperture can be minimized to accept the communications beam while rejecting almost all of the background light. A high-speed detector directly detects the filtered conjugate communications beam. The detector output is transmitted to a demodulator that extracts the information carried by the communications beam.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: August 23, 2005
    Assignee: The Regents of the University of California
    Inventor: Eddy A. Stappaerts
  • Patent number: 6889010
    Abstract: An optical transmission device configured as a central node, wherein each central node has dedicated pixels for receiving data and transmitting optical data so destination addressing is not required. The network is configured such that transmission on any particular receiver reserved pixels results in data being sent to a predetermined node. In particular, the star topology is configured as a receiver reserved scheme. The device is formed by constructing central node of transmitters and receivers that are attached to a silicon substrate with a processing means, and the optical interface to the transmitters and detectors on the central node establish a one-to-one correspondence with an individual fiber optic cable. The fiber optic cables are reconfigurable to different topologies or interconnections as each fiber optic cable has a known destination on the central node. Various topologies are possible using a star node as the building block.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: May 3, 2005
    Assignee: Altera Corporation
    Inventor: John A. Trezza
  • Patent number: 6842439
    Abstract: A communication system includes a pair free space optical (FSO) terminals. The FSO terminals switch from a first operating mode to a second operating mode wherein the traffic is carried by an ad hoc network. The switching may be based upon a quality of service (QoS) parameter being exceeded. The first operating mode may be the primary operating mode, and the second operating mode may be the back-up operating mode.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: January 11, 2005
    Assignee: Harris Corporation
    Inventor: Michael P. Zeitfuss
  • Patent number: 6839519
    Abstract: A laser crosslink apparatus includes an optical device (212, FIG. 5), a beam splitter (512), an acquisition channel and a tracking and communication channel. The acquisition channel includes a high density optical fiber bundle and an acquisition channel device (510). The optical device (212) receives laser light from a wide field of view, and the beam splitter (512) splits the light into the two channels. The high density optical fiber bundle (204) has one end (206) in a focal plane of the optical device, and another end (208) coupled to the acquisition channel device (510). The acquisition channel device (510) includes an optical receiver array (400, FIG. 4). The location of spot footprints on the optical receiver array determines the direction from which the laser light is received within the wide field of view.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: January 4, 2005
    Assignee: Motorola, Inc.
    Inventors: Norbert Kleiner, Douglas Roy Tomren, Davis Howard Hartman, Keith Vaclav Warble
  • Patent number: 6816682
    Abstract: A satellite constellation has a plurality of network satellites that form a network. A gateway satellite is disposed adjacent to the network. The gateway satellites receive an optical signal from the network and converts the signal to an electrical signal. The gateway satellite has a sorter and a reshaping circuit for reshaping the electrical signal to form a reshaped signal. The electrical signal is converted back to an optical signal corresponding to the reshaped signal. The optical signal corresponding to the reshaped signal has reduced noise in comparison to the input optical signal. The optical signal is then retransmitted to another satellite.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: November 9, 2004
    Assignee: The Directv Group, Inc.
    Inventors: Stanislav I. Ionov, Anthony S. Acampora
  • Patent number: 6804465
    Abstract: This invention describes an optical communications system for optically networking computers and other devices together in a multi-user environment in a cost effective manner. This is accomplished through the use of low power (eye safe intensity) lasers, light emitting diodes, or photo diodes, to connect users in a time shared fashion through an optical multiplexing system (the optical access point) which can direct and manage the networking connection to each user device (user optical transceiver) independently. Both the optical access point and the user optical transceiver are capable of dynamically adjusting a beam to locate and align with each other.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: October 12, 2004
    Assignee: Incucomm, Inc.
    Inventors: John P. Volpi, Steven D. Roermerman
  • Patent number: 6792212
    Abstract: A spacecraft data acquisition system comprises a telemetry and command controller, a payload unit, and a bi-directional interface that couples the telemetry and command controller to the payload unit. The interface is a single bi-directional interface that is used to reduce the complexity of the spacecraft. The transmission of information over the interface has a predetermined protocol so that the telemetry and command controller and payload unit may effectively use the single interface.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: September 14, 2004
    Assignee: The Boeing Company
    Inventors: David W. Lloyd, Alexander Mihich, William D. Lemke
  • Patent number: 6643469
    Abstract: Method for wireless optical communication between a transmitting station and a receiving station, whereby the transmitting station provides a Request-to-Send (RTS) frame to the receiving station to announce the transmission of a data frame, the receiving station provides a Clear-to-Send (CTS) frame to the transmitting station in case of correct reception of the RTS frame, and the transmitting station subsequently sends the data frame to the receiving station. The RTS frame comprises Preamble (PA), Synchronization (SYNC), and Robust Header (RH) fields. The RTS frame further comprises a Source Address/Destination Address field (SA/DA) and a Cyclic Redundancy Check field (CRC). Adjusting the power level of the RTS frame to be different from the nominal transmission power level at which the data frame is sent, and by variable repetition coding within the Robust Header (RH) field of the RTS frame, allows a larger dynamic range of link quality estimation and improved collision avoidance properties.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: November 4, 2003
    Assignee: International Business Machines Corp.
    Inventors: Fritz R. Gfeller, Walter Hirt
  • Patent number: 6616352
    Abstract: A bidirectional optical space transmission system is made up of a pair of optical transmission apparatus. Each optical transmission apparatus comprises a signal generating circuit for generating a pilot signal, a multiplexing section for multiplexing the pilot signal and a main signal to be transmitted, an electrooptic converter section for emitting an optical signal on the basis of the signal produced by the multiplexing process, a light receiving element for receiving an optical signal transmitted from the partner optical transmission apparatus and detecting a pilot signal contained therein, and a demodulation circuit for demodulating the pilot signal detected by the light receiving element. Pilot signals multiplexed with main signals to be transmitted through the bidirectional optical transmission system are subjected to spreading modulation and demodulated for spreading by the demodulation circuit.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: September 9, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Junji Shigeta, Toshihiko Myojo, Yasuhiro Takahashi, Kazuo Moritomo