Specific Repeater Patents (Class 398/126)
  • Publication number: 20100080566
    Abstract: A free-space optical communications network for allowing a plurality of geographically-distributed users to communicate may include free-space multi-channel relay converters for tracking a plurality of users, and a connection system in communication with each of the plurality of multi-channel relay converters. The connection system may include an internal alignment reference and steering mirrors. Each free-space multi-channel relay converter may be adapted to align with the internal alignment reference. The connection system may be adapted to align the plurality of free-space multi-channel relay converters with one another to allow the plurality of geographically-distributed users to communicate.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 1, 2010
    Applicant: THE BOEING COMPANY
    Inventor: JEFFREY H. HUNT
  • Patent number: 7680419
    Abstract: A repeater is disclosed that transmits an optical signal using wave division multiplexing. The repeater includes a demultiplexing unit that separates plural channels contained in the optical signal, an adjusting unit that adjusts at least optical power of each of the channels according to a control signal, a multiplexing unit that outputs a multiple wavelength signal in which the channels are multiplexed, and a monitoring unit that determines a modulation scheme and a bit rate of the optical signal for each of the channels so as to generate the control signal.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 16, 2010
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida
  • Patent number: 7668503
    Abstract: Disclosed is a secure remote repeater. The secure repeater includes a first remote control signal detector, a remote control signal processor and an emitter. Among other functions, the secure repeater can forward secure remote signals to an electronic device using non-secure commands native to that electronic device. Additionally, the secure remote repeater can filter remote signal chatter.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: February 23, 2010
    Inventors: Robert Wilhelm Schumann, David G Grossman
  • Publication number: 20100028013
    Abstract: Provided are an image processing system and method thereof which communicates with an external image source device, the image processing system including: a display device which receives a modulated remote control signal modulated by a modulation method and demodulates the modulated remote control signal to generate a demodulated remote control signal and transmits the demodulated remote control signal; and a relay device which receives the demodulated remote control signal and modulates the demodulated remote control signal according to the modulation method to output an output remote control signal to the external image source device.
    Type: Application
    Filed: December 3, 2008
    Publication date: February 4, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Seok-woo YONG
  • Patent number: 7639950
    Abstract: A communications system incorporates a transmitter a receiver. The transmitter includes an infrared light emitting diode (LED). The LED output is positive or negative luminescence, i.e. above or below an equilibrium background intensity level respectively, according to the polarity of its bias signal. The receiver contains a lens to focus light from the LED onto a diode detector, from which signals pass to an amplifier, decoder and printer. Output signals from the LED have an average intensity equal to the equilibrium background intensity level and a frequency greater than 100 Hz or byte rate greater than 100 bytes/sec. They are not discernible by conventional thermal infrared imagers with frame rates of 50 Hz or less because integration in such an imager renders them indistinguishable from background.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: December 29, 2009
    Assignee: QinetiQ Limited
    Inventors: Timothy Ashley, Ian Charles Carmichael, Charles Thomas Elliot, David George Gleaves, Neil Thomson Gordon, Ralph Stephenson Hall
  • Patent number: 7577364
    Abstract: An optical wireless local area network using line of sight optical links. The base station and terminal stations are provided with optical transceivers which include a transmitter array and detector array. The transmitter array consists of an array of resonant cavity light emitting diodes integrated using flip-chip technology with a CMOS driver circuit. The driver circuit includes constant bias, current peaking and charge extraction. The driver circuitry is compact and can be confined within a region underlying the corresponding light source. The detector array consists of an array of photo diodes, provided with sense circuitry consisting of a pre-amplifier and post-amplifier. The diodes and sense circuitry are also integrated using a flip-chip technique. The light emitter and the detector may include adaptive optical elements to steer and/or focus the light beams.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: August 18, 2009
    Assignee: Isis Innovation Limited
    Inventors: David John Edwards, Dominic Christopher O'Brien, Grahame Edward Faulkner, David Michael Holburn, Robert Joseph Mears
  • Patent number: 7551856
    Abstract: A method and apparatus for controlling a plurality of infrared devices (ICDs) is provided herein. A remote controller is used to generate an optical signal for controlling a plurality of ICDs. The optical signal generated by the remote controller is converted into an electrical signal by an infrared repeater device. An implementation of such a system includes a rotary mechanical switch to direct the electrical signal generated by the infrared repeater device to a light emitting diode (LED) located near one of the plurality of ICDs. The LED converts the electrical signal into an optical signal and re-transmits the optical signal to the one of the plurality of ICDs. The system allows controlling the plurality of ICDs located in a remote location without having the user commute closer to such ICDs.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: June 23, 2009
    Assignee: The DIRECTV Group, Inc.
    Inventor: Donald Siu
  • Patent number: 7450852
    Abstract: Described herein are technologies directed towards IR-to-network conversion. With the described technology, a system may convert an infrared (IR) control signal from an IR remote controller into a network-transmittable message package and transmit that package via a communications network, such as the Internet (or a network compatible therewith). The IR control signal is destined for a to-be-controlled audio/visual (AV) device. The transmitted network message packet is received at the location of the to-be-controlled AV device and converted back into its original IR control signal. The signal is transmitted to the AV device; thereby effecting control of that device.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: November 11, 2008
    Assignee: Microsoft Corporation
    Inventor: John C Calhoon
  • Patent number: 7424225
    Abstract: A first node (205) in a network includes a non-optical transceiver (415) and an optical subsystem (410). The non-optical transceiver (415) sends a request message to establish an optical link from the first node (205) to a second node via electrical signals over an electrically transmissive medium. The optical subsystem (410) establishes an optical link between the first node and the second node based on the receipt of the request granted message and transmits data between the first node and the second node via optical signals over the optical link.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: September 9, 2008
    Assignee: BBN Technologies Corp.
    Inventor: Brig Barnum Elliott
  • Publication number: 20080145057
    Abstract: Disclosed are a method and a system for generating switching control signal separating transmission signal on an access point and a mobile communication terminal in an optical repeater employing, for example, a TDD scheme. The method includes the steps of generating a control signal for generating a switching control signal in transmitting data from the AP and transmitting the control information to a remote during an idle time interval, detecting synchronization information on the downlink signal and time-delay information from the control information, delaying a time interval between the synchronization information and a starting point of the downlink signal, generating the switching control signal for the downlink signal according to the transmission time information of the downlink signal, and performing a switching operation according to the switching control signal and setting a downlink path.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 19, 2008
    Inventors: Jae-Hoon Lee, Seong-Taek Hwang, Byung-Jik Kim, Sang-Ho Kim
  • Patent number: 7373085
    Abstract: A communication system employing optical fibers and a high data rate satellite is utilized to provide high-speed Internet access to various geographic regions. In one aspect, a first teleport station is located geographically separated from a first user. The first teleport station is connected through a network access point to the Internet. The second user communicates through a satellite to the first teleport station to access the Internet. The teleport station and the network access point use a long haul optical fiber.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: May 13, 2008
    Assignee: The DIRECTV Group, Inc.
    Inventor: John T. Austin
  • Patent number: 7330661
    Abstract: A method and apparatus for processing a data signal for transmission to a remote device transmits at least two synchronized copies of the data signal, in optical form, in different directions. To that end, the data signal first is synchronized to a clock signal to produce a composite signal. The composite signal then is converted to an optical signal, which is referred to as an “outgoing signal.” A plurality of copies of the outgoing signal then are transmitted. At least two copies of the outgoing signal are transmitted in different directions.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: February 12, 2008
    Assignee: Nortel Networks Limited
    Inventors: Stephen S. Jackson, Jennifer G. Rasimas
  • Patent number: 7307541
    Abstract: An information processing system formed with a relay and light output devices. In the system, an external information receiver receives first external information transmitted from an outside. An external information acquisition unit acquires second external information. A light output controller controls, based on the first and second external information, the light output to be in one or more number of output states, among three or more number of output states. At the relay, an external information receiver receives a sender identifier for identifying sender of the external information, and the external information. A transmission control information memory stores one or more sets of a transmission destination identifier and transmission control information. A transmission destination identifier acquisition unit acquires transmission destination identifier from the transmission control information memory.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: December 11, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takumi Ikeda, Naoaki Yamamoto, Kazuhisa Watanabe, Hiroshi Takase, Tatsuo Yamamoto, Keiichi Koshiba
  • Patent number: 7266301
    Abstract: A repeater unit is provided that includes a receiver module and a controller unit. The receiver module is responsive to an infrared signal. The controller unit is adapted to determine whether a signal based on the infrared signal corresponds to a remote control signal.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: September 4, 2007
    Assignee: Speakercraft, Inc.
    Inventors: Todd M. Stanchfield, Ernest J. Leggett, Edward A. Mangler
  • Patent number: 7263292
    Abstract: A method and apparatus for controlling a plurality of infrared devices (ICDs) is provided herein. A remote controller is used to generate an optical signal for controlling a plurality of ICDs. The optical signal generated by the remote controller is converted into an electrical signal by an infrared repeater device. An implementation of such a system includes a rotary mechanical switch to direct the electrical signal generated by the infrared repeater device to a light emitting diode (LED) located near one of the plurality of ICDs. The LED converts the electrical signal into an optical signal and re-transmits the optical signal to the one of the plurality of ICDs. The system allows controlling the plurality of ICDs located in a remote location without having the user commute closer to such ICDs.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: August 28, 2007
    Assignee: The DirecTV Group, Inc.
    Inventor: Donald Siu
  • Patent number: 7209663
    Abstract: A repeating apparatus and method using wireless optical transmission is disclosed. The repeating apparatus includes a donor device for transmitting two identical copies of an optical signal by receiving a RF signal from a base station and electro-optic converting the RF signal to an optical signal, and for transmitting a RF signal by receiving two identical copies of the optical signal and optic-electro converting the optical signal to a RF signal; and a coverage device for transmitting a RF signal to a mobile communication terminal by receiving two identical copies of the optical signal from the donor device and optic-electro converting the two identical copies of the optical signal to the RF signal, and transmitting two optical signals to the donor device by receiving the RF signal from the mobile communication terminal and elector-optic converting the RF signal to the optical signal.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 24, 2007
    Assignee: Curitel Communications, Inc.
    Inventor: Jong-Seob Lee
  • Patent number: 7187867
    Abstract: The present invention provides a bilateral communication network system, particularly, a optical wireless communication system communicating information frames via an optical node mounted on a mobile object and a plurality of optical repeaters connected to a wired network, which can prevent transfer performance from deteriorating without increasing frames to be transferred. The optical wireless communication system is constituted as follows. A plurality of the optical repeaters having functions to switch information frames are attached to a ceiling. The optical node bilaterally communicating with the optical repeaters are mounted on a moving object such as a robot, a vehicle or the like. Information frames including address information of the optical node are periodically transmitted from an information processor connected to the optical node via optical wireless communication.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: March 6, 2007
    Assignees: Stanley Electric Co. Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Koji Kawabe, Yoshiki Furukawa, Hiroki Yokoyama, Hiroyuki Oka, Daisuke Uchida, Kazunori Hirosawa, Kazuyoshi Hibiya
  • Patent number: 7113707
    Abstract: This invention provides a dynamic interconnection system which allows to couple a pair of optical beams carrying modulation information. In accordance with this invention, two optical beams emanate from transceivers at two different locations. Each beam may not see the other beam point of origin (non-line-of-sight link), but both beams can see a third platform that contains the system of the present invention. Each beam incident on the interconnection system is directed into the reverse direction of the other, so that each transceiver will detect the beam which emanated from the other transceiver. The system dynamically compensates for propagation distortions preferably using closed-loop optical devices, while preserving the information encoded on each beam.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: September 26, 2006
    Assignee: HRL Laboratories, LLC
    Inventor: David M. Pepper
  • Patent number: 6972661
    Abstract: An anti-interference relay device has a receiving module and a transmitting module. The receiving module modulates a received IR signal from a remote controller and an identification (ID) code of the receiving module to an RF signal and then broadcasts the RF signal. When the RF signal is demodulated by the transmitting module, the demodulated ID code is compared with a preset ID code. If the two ID codes are matched, the demodulated IR signal is allowed to output to control an appliance, otherwise the IR signal is ignored.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: December 6, 2005
    Assignee: Trans Electric Co., Ltd.
    Inventor: Cheng-Si Wang
  • Publication number: 20040051786
    Abstract: Communicating apparatus to be provided between an intermediate line and transmission lines to establish data communications, the intermediate line and the transmission lines having in combination data pass therethrough, the transmission lines including first line and second line, comprises: first receiving means 111 for receiving the data via the first line, second receiving means 121 for receiving the data via the second line, interface means 101 for transmitting via the intermediate line the data received by the first receiving means via the first line and the data received by the second receiving means via the second line, and for receiving the data transmitted by an other communicating apparatus via the intermediate lines, first transmitting means 112 for transmitting via the second line the data transmitted via a first receiving means of the other communicating apparatus, first detecting means 113 for detecting the data transmitted via the second line, first controlling means 114 for controlling the firs
    Type: Application
    Filed: April 28, 2003
    Publication date: March 18, 2004
    Inventors: Kazuyuki Ogawa, Masahiro Muramatsu