Specific Transducer Patents (Class 398/133)
  • Patent number: 10352911
    Abstract: The Invention refers to an airborne ultrasound testing system for a test object (3) containing an ultrasound generator (1; 9) and an ultrasound receiver (2) and a control to control both and a computer assisted test result interface to display an image of the tested test object (3). The ultrasound generator (1) is a resonance-free thermo-acoustic ultrasound generator which does not rely on mechanically deformable or oscillating parts and the ultrasound receiver (2) is a membrane-free and resonance-free optical microphone in an air or gas coupled pulse echo arrangement or in an air or gas coupled transmission mode arrangement. With this testing system, it is possible to test objects with high precision and without liquids and disturbing ringing effects.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: July 16, 2019
    Inventor: Balthasar Fischer
  • Patent number: 9978251
    Abstract: A wireless location-based gas detection system and method includes a gas detector for wirelessly detecting location information associated with a hazardous gas event. The gas detector includes one or more remote gas sensors that monitor for the occurrence of a gas event and wirelessly communicates information with respect to the location of the event in association with time information to a server or location manager. A wireless communication device in association with one or more location anchor points periodically and under event conditions, transmits the location information and the gas concentration level. A location engine calculates an estimated location of the gas detector based on information received from the wireless communication device and provides the location data to the location manager. The location manager records the gas concentration level, the estimated location, and the time information and stores this information within a database.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: May 22, 2018
    Assignee: Honeywell International Inc.
    Inventors: Patrick Gonia, Soumitri Kolavennu
  • Patent number: 9686012
    Abstract: An LED lamp acquires its location information from the outside through its power-line communication section and stores the acquired location information in nonvolatile storage device. A communication control section, which establishes visible light communication, uses visible light to transmit, at a predetermined timing, the location information read from a location information storage area in the nonvolatile storage device.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 20, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Satoshi Inoue
  • Patent number: 9344811
    Abstract: A system for detection of speech related acoustic signals by using laser based detection that includes a mask configured for being worn over a face part of a speaker covering the speaker's mouth, where the mask includes at least one reflective coating covering at least one area of the mask that reflects collimated electromagnetic signals; and a laser microphone configured for detecting vibrations of the reflective coating area for detection of acoustic signals associated with speech of the speaker by using collimated electromagnetic signals. The mask the reflective coating area thereof allow enhancing detection of vibrations resulting from speech carried out by the speaker wearing said mask.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 17, 2016
    Assignee: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal Bakish
  • Patent number: 9014565
    Abstract: An optical microphone includes: a light source; a first polarizer for allowing linearly-polarized light, of light output from the light source, to pass therethrough; a second polarizer for allowing linearly-polarized light having a different polarization plane from the first polarizer to pass therethrough; a sound-receiving section including an acoustic medium having a smaller sound velocity than the air, wherein an acoustic signal propagates through the acoustic medium, the sound-receiving section being arranged so that the linearly-polarized light from the first polarizer passes through the acoustic medium and enters the second polarizer; and a photodetector for converting an intensity of light having passed through the second polarizer to an electric signal, wherein between the first polarizer and the second polarizer, the linearly-polarized light having passed through the first polarizer is given different phase shifts in two orthogonal directions which are each different from a polarization direction.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: April 21, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Ushio Sangawa, Takuya Iwamoto, Yuriko Kaneko, Masahiko Hashimoto
  • Patent number: 8948603
    Abstract: An optical microphone includes: a propagation medium portion; a light source to output a light wave passing through the propagation medium portion across the acoustic wave propagating through the propagation medium portion; a reflecting section to retroreflect the light wave having passed through the propagation medium portion; and a photoelectric conversion section to receive the light wave having been reflected by the reflecting section and passed through the propagation medium portion to output an electric signal. 0th-order, +1st-order and ?1st-order diffracted light waves are respectively produced on outward and return paths, by virtue of a refractive index distribution across the propagation medium portion caused by the propagation of the acoustic wave therethrough. The photoelectric conversion section detects interference light between the +1st-order or ?1st-order diffracted light wave of the outward path and the ?1st-order or +1st-order diffracted light wave of the return path.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: February 3, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takuya Iwamoto, Masahiko Hashimoto, Ushio Sangawa, Yuriko Kaneko
  • Publication number: 20140153930
    Abstract: A device (100) for converting an acoustic signal (102) into an electric signal (104), wherein the device (100) includes an interferometer (106) including two mirrors (108) adapted for reflecting electromagnetic radiation (112) coupled into a space (110) between the mirrors (108). The acoustic signal (102) is to be coupled into the space (110) for influencing the electromagnetic radiation (112) in accordance with this acoustic signal. An electromagnetic radiation detector (112) is adapted for detecting the influenced electromagnetic radiation (112) and for converting the detected influenced electromagnetic radiation (112) into the electric signal (104) being indicative for the acoustic signal (102). An operation point stabilization unit stabilizes an operation point of the device (100).
    Type: Application
    Filed: February 8, 2014
    Publication date: June 5, 2014
    Applicant: XARION Laser Acoustics GmbH
    Inventor: Balthasar Fischer
  • Publication number: 20140119737
    Abstract: A system for detection of speech related acoustic signals by using laser based detection that includes a mask configured for being worn over a face part of a speaker covering the speaker's mouth, where the mask includes at least one reflective coating covering at least one area of the mask that reflects collimated electromagnetic signals; and a laser microphone configured for detecting vibrations of the reflective coating area for detection of acoustic signals associated with speech of the speaker by using collimated electromagnetic signals. The mask the reflective coating area thereof allow enhancing detection of vibrations resulting from speech carried out by the speaker wearing said mask.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: VOCALZOOM SYSTEMS LTD.
    Inventor: Tal BAKISH
  • Publication number: 20140056590
    Abstract: A porous silica material disclosed in the present application is a porous silica material in which a plurality of silica particles are connected to one another three-dimensionally, wherein: a density of the porous silica material is less than 220 kg/m3; a particle diameter of the silica particles is 3.5 nm or more; and the water content of the porous silica material is 8 wt % or less.
    Type: Application
    Filed: June 17, 2013
    Publication date: February 27, 2014
    Inventors: Yuriko KANEKO, Takuya IWAMOTO, Ushio SANGAWA, Masahiko HASHIMOTO, Norihisa MINO
  • Publication number: 20140050489
    Abstract: An optical microphone for detecting an acoustic wave propagating through an environmental fluid by using a light wave, includes: an acoustic wave receiving section having a propagation medium portion through which an acoustic wave propagate and a first support portion for supporting the propagation medium portion; a light source for outputting a light wave so that the light wave passes through the propagation medium portion across the acoustic wave propagating through the propagation medium portion; a light-blocking portion having an edge line for splitting the light wave having passed through the propagation medium portion into a blocked portion and a non-blocked portion; and a photoelectric conversion section for receiving a portion of the light wave having passed through the propagation medium portion which has not been blocked by the light-blocking portion to output an electric signal.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Takuya IWAMOTO, Masahiko HASHIMOTO, Ushio SANGAWA, Yuriko KANEKO
  • Patent number: 8594507
    Abstract: Some embodiments are directed to a photoacoustic sensor. The photoacoustic sensor may comprise: a gas cell with an opening; a light source to generate to radiate a sample gas within the gas cell; an optical microphone to detect the sample gas within the gas cell; and a membrane aligned with the opening of the gas cell to permit sample gas to enter the gas cell. The optical microphone includes a semiconducting laser. The semiconducting laser includes a p-n junction within a cavity of the semiconducting laser. The optical microphone further includes a pressure-sensitive membrane that receives coherent light emitted from the semiconducting laser and directs reflected light back toward the semiconducting laser. During operation of the optical microphone, the pressure-sensitive membrane flexes in response to acoustic pressure waves. The phase of the reflected light is dependent upon a distance of the pressure-sensitive membrane from an aperture of the semiconducting laser.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: November 26, 2013
    Assignee: Honeywell International Inc.
    Inventors: Daniel Youngner, Lisa Lust
  • Publication number: 20130308957
    Abstract: An optical microphone includes: an acousto-optic medium section having a pair of principal surfaces and at least one lateral surface provided therebetween; a restraint section which is in contact with the at least one lateral surface for preventing a shape change of the acousto-optic medium section; and a light emitting section for emitting a light wave so as to propagate through the acousto-optic medium section between the pair of principal surfaces. The pair of principal surfaces are in contact with an environmental fluid through which an acoustic wave to be detected is propagating and are capable of freely vibrating, and an optical path length variation of a light wave propagating through the acousto-optic medium section, which is caused by the acoustic wave that comes into the acousto-optic medium section from at least one of the pair of principal surfaces and propagates through the acousto-optic medium section, is detected.
    Type: Application
    Filed: July 25, 2013
    Publication date: November 21, 2013
    Applicant: Panasonic Corporation
    Inventors: Takuya IWAMOTO, Kazuo YOKOYAMA, Masahiko HASHIMOTO, Ushio SANGAWA, Yuriko KANEKO
  • Publication number: 20130230329
    Abstract: An optical microphone includes: a light source; a first polarizer for allowing linearly-polarized light, of light output from the light source, to pass therethrough; a second polarizer for allowing linearly-polarized light having a different polarization plane from the first polarizer to pass therethrough; a sound-receiving section including an acoustic medium having a smaller sound velocity than the air, wherein an acoustic signal propagates through the acoustic medium, the sound-receiving section being arranged so that the linearly-polarized light from the first polarizer passes through the acoustic medium and enters the second polarizer; and a photodetector for converting an intensity of light having passed through the second polarizer to an electric signal, wherein between the first polarizer and the second polarizer, the linearly-polarized light having passed through the first polarizer is given different phase shifts in two orthogonal directions which are each different from a polarization direction.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 5, 2013
    Applicant: Panasonic Corporation
    Inventors: Ushio SANGAWA, Takuya IWAMOTO, Yuriko KANEKO, Masahiko HASHIMOTO
  • Patent number: 8521029
    Abstract: An arrangement of gravity modulator and gravity-modulation receiver where photons or electromagnetic radiation is modulated electronically or mechanically to reach either a solid, liquid or mixed target possibly through or followed by a surrounding medium to produce gravity modulation in the target to effect gravity signaling which is received by a gravity-modulation receiver in or not in physical contact with the target. In the receiver, one or more piezo-electric transducer/s or quartz crystal/s receive the gravity modulation amplified for further signal processing. When not in physical contact with the target, the piezo-electric transducer/s is/are loaded with a resonator mass of natural resonant frequency either equal to, half, one third or one fifth of the frequency of the gravity modulator, the quartz crystal/s is/are gravity biased with a high-density metal piece along one direction of the oscillation mode of the crystal/s with natural resonant frequency similar to the resonator mass.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: August 27, 2013
    Inventor: Anadish Kumar Pal
  • Patent number: 8488973
    Abstract: Method for performing signal processing for an optical microphone. First and second signals corresponding to at least two beams may be generated or received. The first and second signals may be complementary, and may be based on signals provided by one or more photo detectors that receive the at least two beams after the beams return from a sensing structure. The first signal and the second signal may be subtracted to produce a third signal. A position of the sensing structure may be adjusted to cause the third signal to reach a first value, where the adjusting may be performed based on the third signal, and an audio output signal may be provided based on the third signal.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: July 16, 2013
    Assignee: Silicon Audio, Inc.
    Inventors: Brad D. Avenson, Caesar T. Garcia, Neal Allen Hall, Abidin Guclu Onaran
  • Publication number: 20130142519
    Abstract: An optical microphone includes: a propagation medium portion; a light source to output a light wave passing through the propagation medium portion across the acoustic wave propagating through the propagation medium portion; a reflecting section to retroreflect the light wave having passed through the propagation medium portion; and a photoelectric conversion section to receive the light wave having been reflected by the reflecting section and passed through the propagation medium portion to output an electric signal. 0th-order, +1st-order and ?1st-order diffracted light waves are respectively produced on outward and return paths, by virtue of a refractive index distribution across the propagation medium portion caused by the propagation of the acoustic wave therethrough. The photoelectric conversion section detects interference light between the +1st-order or ?1st-order diffracted light wave of the outward path and the ?1st-order or +1st-order diffracted light wave of the return path.
    Type: Application
    Filed: January 29, 2013
    Publication date: June 6, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Panasonic Corporation
  • Patent number: 8422889
    Abstract: Noise may be received through a microphone included in a lighting apparatus. The noise may then be analyzed to determine if a human being may have been the source of the noise, and a message sent over a network alerting other devices that a human-caused noise was detected.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: April 16, 2013
    Assignee: Greenwave Reality, PTE Ltd.
    Inventor: Karl Jonsson
  • Publication number: 20120321322
    Abstract: Some embodiments relate to an optical microphone according to an example embodiment. The optical microphone includes a semiconducting laser. The semiconducting laser includes a p-n junction within a cavity. The optical microphone further includes an acoustic membrane that receives coherent light emitted from the semiconducting laser and directs reflected light back toward the semiconducting laser. During operation of the optical microphone, the acoustic membrane flexes in response to pressure waves. The phase of the reflected light is dependent upon a distance of the acoustic membrane from the semiconducting laser.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Applicant: Honeywell International Inc.
    Inventors: Lisa Lust, Daniel Youngner, Doug Carlson
  • Patent number: 8335436
    Abstract: An electronic apparatus is provided and includes a light transmitting module configured to convert an electric signal into an optical signal and emit light, a light receiving module configured to receive the light emitted from the light transmitting module and convert the optical signal into an electric signal, and a mover unit configured to cause at least one of the light transmitting module and the light receiving module to carry out linear movement along an optical axis of the light emitted from the light transmitting module and/or rotation about the optical axis.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: December 18, 2012
    Assignee: Sony Corporation
    Inventor: Yuichi Machida
  • Patent number: 8306429
    Abstract: An optical ultrasonic microphone includes an acoustic waveguide that transmits a sound wave received from an opening, an optical acoustic propagation medium that forms at least one portion of a wall face of the acoustic waveguide and an LDV head, and a sound wave proceeding through the acoustic waveguide is received by the optical acoustic propagation medium so that a change in the refractive index caused by the proceeding sound wave inside the optical acoustic propagation medium is generated with high efficiency, and by detecting this as an optical modulation by the LDV head, the optical ultrasonic microphone is allowed to have a very wide band.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Masahiko Hashimoto, Hidetomo Nagahara, Takehiko Suginouchi
  • Patent number: 8301029
    Abstract: An acoustoelectric transducer comprising a laser source A and a light receiver H, wherein a soundfield S is provided by which the propagation velocity of the laser beam may be modulated according to the sound pressure while it traverses the soundfield S.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: October 30, 2012
    Assignee: XARION Laser Acoustics GmbH
    Inventor: Balthasar Fischer
  • Publication number: 20120263478
    Abstract: Provided is a hearing aid system using a wireless optical communications method. The hearing aid system includes: a voice transmitter that converts addresser's voice into an optical signal to then transmit the converted optical signal; and a hearing aid that restores the optical signal received from the voice transmitter into the addresser's voice to then output the restored addresser's voice. Accordingly, the addresser's voice can directly be transmitted to the hard-of-hearing via wireless optical communications, to thereby prevent a voice discriminating power from lowering even in the case that ambient noise of an addresser as well as a listener is big.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 18, 2012
    Inventor: Dong Soo JANG
  • Patent number: 8270639
    Abstract: A thermoacoustic device includes a sound wave generator and an infra-red reflecting element having an infrared reflection coefficient higher than 30 percent. The infra-red reflecting element can be disposed at one side of the sound wave generator to reflect the emitted heat of the sound wave generator.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: September 18, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Chen Feng, Li Qian, Shou-Shan Fan
  • Publication number: 20120230699
    Abstract: A light-based skin contact detector is described, including a boot having an index of refraction less than or equal to another index of refraction associated with skin at a frequency of light, a light emitter and detector coupled to the boot and configured to measure an amount of light energy reflected by an interface of the boot, and a digital signal processor configured to detect a change in the amount of light energy reflected by the interface. Embodiments relate to methods for detecting skin contact by measuring an amount of energy reflected by an interface when a boot is not in contact with skin, measuring another amount of energy reflected by another interface when the boot is in contact with the skin, and detecting a change between the amount of energy and the another amount of energy using a digital signal processor.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 13, 2012
    Applicant: AliphCom
    Inventor: Gregory C. Burnett
  • Patent number: 8259966
    Abstract: An acoustic system includes a sound-electro converting device, a electro-wave converting device, and a sound wave generator. The electro-wave converting device is connected to the sound-electro converting device. The sound wave generator is spaced from the electro-wave converting device and includes a carbon nanotube structure. The sound-electro converting device converts a sound pressure to an electrical signal and transmits the electrical signal to the electro-wave converting device. The electro-wave converting device emits an electromagnetic signal corresponding to the electrical signal and transmits the electromagnetic signal to the carbon nanotube structure. The carbon nanotube structure converts the electromagnetic signal into heat, and the heat transfers to a medium causing a thermoacoustic effect.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 4, 2012
    Assignees: Beijing FUNATE Innovation Technology Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Lin Xiao, Zhuo Chen, Shou-Shan Fan, Chen Feng, Yuan-Chao Yang
  • Patent number: 8073163
    Abstract: A sound wave generator includes a carbon nanotube film. The carbon nanotube film comprises a plurality of carbon nanotubes entangled with each other. At least part of the carbon nanotube film is supported by a supporting element. The carbon nanotube film produces sound by means of the thermoacoustic effect.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: December 6, 2011
    Assignees: Beijing FUNATE Innovation Technology Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Lin Xiao, Zhuo Chen, Chen Feng, Shou-Shan Fan, Yuan-Chao Yang
  • Patent number: 8019100
    Abstract: An apparatus includes a signal device, a power amplifier, and a sound wave generator. The power amplifier is electrically connected to the signal device. The power amplifier outputs an amplified electrical signal to the sound wave generator. The sound wave generator produces sound waves by a thermoacoustic effect. The amplified electrical signal is positive or negative.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 13, 2011
    Assignees: Beijing FUNATE Innovation Technology Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Lin Xiao, Zhuo Chen, Chen Feng, Shou-Shan Fan, Yuan-Chao Yang
  • Publication number: 20110194857
    Abstract: An optical microphone that may include a first substrate with one or more acoustic entry ports and a die over the one or more acoustic entry ports. The die may include a sensing structure for detecting acoustic vibrations received via the acoustic entry port(s) and may form a first cavity between the first substrate and the sensing structure. The microphone may include a light source within the first cavity, which may transmit laser light. The optical microphone may include photo detector(s) within the first cavity. The one or more photodetectors may be configured to receive the laser light after reflection from the sensing diaphragm to measure the acoustic vibrations of the sensing diaphragm. The microphone may also include a circuit and a lid, where the die, light source, photo detectors, and circuit are comprised within the cavity of the microphone. The circuit may perform signal processing signals from the photodetector(s).
    Type: Application
    Filed: February 10, 2011
    Publication date: August 11, 2011
    Inventors: Brad D. Avenson, Caesar T. Garcia, Neal Allen Hall, Abidin Guclu Onaran
  • Patent number: 7676343
    Abstract: A transfer circuit that transmits a signal includes an electrical signal sending section that sends a sending signal, a current to light converting section that converts the sending signal to an optical signal, an optical signal transmitting section that transmits the optical signal, a photo-electric converting circuit that converts the optical signal to an electrical signal, and an electrical signal receiving section that detects a data value of the electrical signal. The photo-electric converting circuit includes a level measuring section that compares the intensity of the electrical signal and a predetermined reference level to detect a data value of the electrical signal, and a measurement controlling section that controls the reference level. The electrical signal receiving section includes a receiving circuit that detects a data value of the electrical signal, and a timing controlling section that controls latch timing at which the receiving circuit detects the data value.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: March 9, 2010
    Assignee: Advantest Corporation
    Inventors: Daisuke Watanabe, Toshiyuki Okayasu
  • Publication number: 20090257753
    Abstract: An acoustoelectric transducer comprising a laser source A and a light receiver H, wherein a soundfield S is provided by which the propagation velocity of the laser beam may be modulated according to the sound pressure while it traverses the soundfield S.
    Type: Application
    Filed: June 26, 2007
    Publication date: October 15, 2009
    Applicant: NXP B.V.
    Inventor: Balthasar Fischer
  • Patent number: 7391976
    Abstract: An optical acoustoelectric transducer having a directivity pattern like a better 8 by receiving by a light-receiving element a reflected fraction of the light from a light-emitting device disposed at the center of a bottom plate that is parallel to a diaphragm, has an opening through which an acoustic wave enters, and is connected to supporting side plates. An optical acoustoelectric transducer having uniform amplitude characteristics in a wide frequency range by mixing by a mixer circuit the outputs of a plurality of optical microphones having diaphragms of mutually different thicknesses so as to make the receiving sensitivity uniform in different frequency ranges. A directional optical acoustoelectric transducer having a small size and wide band characteristics by arranging a plurality of light-emitting devices (LD) and a plurality of light-receiving elements (PD) corresponding to a plurality of diaphragms arranged parallel.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: June 24, 2008
    Assignee: Kabushiki Kaisha Kenwood
    Inventors: Okihiro Kobayashi, Nobuhiro Miyahara, Yutaka Hattori, Hiroshi Miyazawa, Junichi Hayakawa
  • Patent number: 7286767
    Abstract: A method, apparatus, and system for optical communications. An optical transmit signal is generated in response to an electrical transmit signal. The optical transmit signal is coupled into a single communication link for transmission there over. An optical receive signal is received from the single communication link, and in response an electrical receive signal is generated.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: October 23, 2007
    Assignee: Intel Corporation
    Inventors: Thorkild Franck, Eivind Johansen, Benny Christensen, Martin Lobel
  • Patent number: 7277642
    Abstract: A fine displacement detection device by sound or the like: which can easily align individual optical components; which disposes a light emitting element (13) and a light receiving element (14) on a substrate, emits light from the light emitting element (13) to a diaphragm (I) set at a position facing the substrate, receives light reflected from the diaphragm (1) by the light receiving element (14), and detects as an electric signal the fine displacement of the diaphragm (1) by sound or the like; and which provides, on the optical paths of the substrate and the diaphragm (1), a focusing element (2) that focuses an incidence light from the light emitting element (13) for leading to the diaphragm (1) and focuses a diverged/reflected light from the diaphragm (1) for leading to the light receiving element (14), and a reflected light flux dividing element (3) that divides the diverged/reflected light focused by the focusing element (2) for leading to the light receiving element (14).
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: October 2, 2007
    Assignee: Kabushiki Kaisha Kenwood
    Inventor: Toru Shinzou
  • Patent number: 7257327
    Abstract: An optical communication system is provided which includes an optical signal transmitter which communicates high bandwidth, high power frequencies. The optical signal transmitter includes a high efficiency/high power optical source such as an optical magnetron or a phased array source of electromagnetic radiation, and a modulator element. The modulator element may be within a resonance cavity of the high efficiency/high power optical source (intra cavity) or external to the cavity (extra cavity). The modulator element serves to modulate output radiation of the high efficiency/high power optical source to produce a modulated high frequency optical signal which may be transmitted through the air. The optical signal transmitter is particularly useful in providing the last mile connection between cable service operators and end users.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: August 14, 2007
    Assignee: Raytheon Company
    Inventor: James G. Small
  • Patent number: 7221875
    Abstract: An optical-acoustic transducer in which light is irradiated to a reflecting portion from a light emitter, and a reflected light from the reflecting portion is received with a light receiver to detect a position of a vibrating section, cantilevers are formed by performing slit working for a diaphragm, portions between an outer circumference edge of the vibrating section and inner circumference edges of the cantilevers and portions between an inner circumference edge of a supporting portion and outer circumference edges of the cantilevers are partitioned by the slit working, and the cantilevers extend along an outer circumference of the vibrating section.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 22, 2007
    Assignee: Kabushiki Kaisha Kenwood
    Inventor: Yoshio Sakamoto
  • Patent number: 7212749
    Abstract: An Improved Signal Receiver Having Wide Band Amplification Capability is disclosed. Also disclosed is a receiver that is able to receive and reliably amplify infrared and/or other wireless signals having frequency bandwidths in excess of 40 MHz. The receiver of the present invention reduces the signal-to-noise ratio of the received signal to ?th of the prior systems. The preferred receiver eliminates both the shunting resistor and the feedback resistor on the input end by amplifing the signal in current form. Furthermore, the receiver includes transconductance amplification means for amplifying the current signal without the need for Cascode stages. Finally, the receiver includes staged amplification to amplify the current signal in stages prior to converting the signal into a voltage output.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: May 1, 2007
    Assignee: ZiLOG, Inc.
    Inventors: T. Allan Hamilton, Alan Grace
  • Patent number: 7079717
    Abstract: An On-Off control circuit between the IEEE1394a and IEEE1394b compliant physical layer (PHY) output driver circuitry and the glass fiber optical physical medium dependent (PMD) sub-layer within the architecture of the IEEE 1394b standard addresses the stability issue incurred by electronic circuit's inherent noise that interferes with the connection detecting procedure defined by the connection management protocol (CMP) of the IEEE 1394b standard. The circuit includes of a voltage divider to provide a reference voltage of about 50% of the output common mode voltage, a voltage comparator, and a feedback coupled to the positive input of the comparator to eliminate possible oscillation. The negative input of the comparator may be connected to the mid point of TPB termination network and the positive input of the comparator may be connected to the output of the voltage dividing circuit. The output of the comparator may be connected to the transmission enable bar input of the optical transceiver.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: July 18, 2006
    Inventors: Sam Liu, Yan Wang
  • Patent number: 6721429
    Abstract: A microphone is provided with a simple structure by which a lead wire is not required to detect displacement of a vibrated film. The microphone is equipped with a vibrated film 2 to receive sonic waves on either surface and to receive electro-magnetic waves on other surface, a device 4 to receive and transmit the electro-magnetic waves reflected by the vibrated film, a counter to count pulses from the device to receive and transmit electro-magnetic waves, a processing logic 5 to count the pulses output from the counter. Displacement of the vibrated film is converted into electric signals by counting the processing logic the frequency and amplitude of the electro-magnetic waves reflected by the vibrated film 2.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: April 13, 2004
    Assignees: AOI Electronics Co., LTD
    Inventors: Norio Akamatsu, Kaoru Tada