Including Compensation Patents (Class 398/136)
  • Patent number: 11742951
    Abstract: Certain network switch device can use pluggable transceivers to send and receive data. Transceiver may be capable of operating in multiple different operating modes defined by parameters such as speed. Application data indicating one or more operational modes supported by the transceiver may be read from a memory of a transceiver. An interface may be provided by a network switch device that indicates the one or more operational modes and identifiers of the one or more operational modes. The transceiver may be configured by the network switch device to operate in a selected operational mode based on a selection of an identifier corresponding to the selected operational modes. The selected operational mode, which may require multiple parameters to be configured on the transceiver, may be set using a single command based on the identifier.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: August 29, 2023
    Assignee: ARISTA NETWORKS, INC.
    Inventors: Aditya Bhiday, Radu Handolescu, Alex Volinsky, Hacene Chaouch, Robert Spark
  • Patent number: 11391898
    Abstract: Pluggable optical transceiver modules are described herein that are specifically configured to preclude use of fiber jumpers inside of the module. The pluggable optical transceiver modules include an on-board application-specific integrated circuit (ASIC), optical transceiver, and an optical socket allowing a fiber to connect to the optical transceiver. Pluggable optical transceiver modules implement an opto-mechanical interface between an external fiber cable (attached to the pluggable optical transceiver module) and the optical transceiver in manner that does not require the fiber jumper, while ensuring tight alignment tolerances. In some embodiments, optical transceiver modules are designed to achieve a direct opt-mechanical coupling between the external fiber cable and on-board opto-electrical components (e.g., optical transceiver).
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: July 19, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Paul Kessler Rosenberg, Michael Renne Ty Tan, Kevin B. Leigh
  • Patent number: 11374653
    Abstract: Provided is a visible light communication transceiver. A drive amplification module performs digital-to-analog conversion and amplification on a digital modulation signal to obtain a first electrical signal, and transmits the signal to a Bias Tee-like circuit. The Bias Tee-like circuit transmits the first electrical signal to a LED light source. The LED light source performs electrical-to-optical conversion on the first electrical signal to generate a first optical signal and transmits the first optical signal, and performs optical-to-electrical conversion on a received second optical signal to obtain a second electrical signal. The Bias Tee-like circuit obtains the second electrical signal from the LED light source, and transmits the second electrical signal to an adaptive amplification and equalization module. The adaptive equalization module adjusts a gain of the second electrical signal based on an optical power of the first optical signal.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: June 28, 2022
    Assignee: University of Science and Technology of China
    Inventors: Shangbin Li, Zhengyuan Xu, Boyang Huang
  • Patent number: 11251867
    Abstract: An access network includes a first local network node configured to serve one or more first client devices according to a first network protocol, a second local network node configured to serve one or more second client devices according to a second network protocol different than the first network protocol, and a hub in operable communication with the first and second local network nodes over respective transport media. The hub contains a centralized network node configured to generate a first digitized radio frequency (RF) stream to the first local network node and a second digitized RF stream to the second local network node. The first digitized RF stream corresponds to the first network protocol and the second digitized RF stream corresponds to the second network protocol.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: February 15, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Luis Alberto Campos, Zhensheng Jia, Joseph Padden
  • Patent number: 11187861
    Abstract: An optical module with directional bias of light beams for improved reception and transmission of optical signals includes a substrate, a photodetector disposed on the substrate, and an optical path control element disposed above the substrate. The optical path control element includes a filter and a reflector. The filter has an upper surface and a lower surface opposite to the upper surface, and the reflector is in contact with the upper surface. A first light beam enters the filter through the lower surface, and is reflected by the reflector to the photodetector. A light source is disposed on the substrate and emits a second light beam. The second light beam is reflected by the lower surface and away from the cavity.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: November 30, 2021
    Assignee: SHUNYUN TECHNOLOGY (ZHONG SHAN) LIMITED
    Inventor: Han-Zhang Xiao
  • Patent number: 11153008
    Abstract: Examples described herein relate to method for measuring a disconnect response time. The method includes discontinuing, in response to a determining that a disconnect response metric test is to be initiated, transmission of a test optical signal by a test device to a DUT coupled to the test device, wherein the DUT is to discontinue transmission of a response optical signal to the test device upon detection of a loss of the test optical signal. Further, a loss of the response optical signal by may be detected by the test device. Furthermore, a disconnect response metric of the DUT may be determined by the test device based on a time of discontinuation of the transmission of the test optical signal and a time of detection of the loss of the response optical signal.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 19, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Robert R. Imark, Brian S. Birk
  • Patent number: 10841011
    Abstract: Disclosed herein are techniques, methods, structures and apparatus that provide a silicon photonics multicarrier optical transceiver wherein both the transmitter and receiver are integrated on a single silicon chip and which generates a plurality of carriers through the effect of an on-chip modulator, amplifies the optical power of the carriers through the effect of an off-chip amplifier, and generates M orthogonal sets of carriers through the effect of an on-chip basis former.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 17, 2020
    Assignee: Acacia Communications, Inc.
    Inventor: Christopher Doerr
  • Patent number: 10833791
    Abstract: Systems and methods are provided for reducing interference when optical signals are added. One embodiment includes a method for adding an optical channel for communicating data and having a bandwidth within an optical spectrum for transmission along an optical link of an optical network. The method includes creating a lower frequency holding zone having a lower frequency bandwidth adjacent to the bandwidth of the added optical channel and including at least one lower frequency sub-slice having a power spectral density that varies throughout the lower frequency sub-slice. Also, the method includes creating a higher frequency holding zone having a higher frequency bandwidth adjacent to the bandwidth of the added optical channel and including at least one higher frequency sub-slice having a power spectral density that varies throughout the higher frequency sub-slice. The lower frequency holding zone and the higher frequency holding zone are dynamically configured with respect to fiber and channel requirements.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: November 10, 2020
    Assignee: Ciena Corporation
    Inventor: Choudhury A. Al Sayeed
  • Patent number: 10778561
    Abstract: A diagnostic testing utility is used to perform single link diagnostics tests including an electrical loopback test, an optical loopback test, and a link traffic test. To perform the diagnostic tests, two ports at each end of a link are identified and configured as D_Ports and as such will be isolated from the fabric with no data traffic flowing through them. Advertisement frames may be sent at predetermined time intervals to transition the two ports to different states within the diagnostic test. After transitioning to the different states, the ports will then be used to send test frames to perform the diagnostic tests.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: September 15, 2020
    Assignee: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED
    Inventors: Raghavendra Shenoy Ranjal, Kiran Sangappa Shirol
  • Patent number: 10761352
    Abstract: The invention relates to optical devices comprising polarization diversity couplers. An embodiment of the invention relates to an optical device comprising a polarization diversity coupler configured to receive a beam of optical radiation. The optical device may further comprise a phase shifter, a 2×N coupler, a photodetector and a control unit configured to generate a control signal based on a monitor signal of the photodetector.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: September 1, 2020
    Assignee: SICOYA GMBH
    Inventors: Moritz Grehn, Thorsten Kettler, Gan Zhou, Marco Vitali
  • Patent number: 10693559
    Abstract: An access network includes a first local network node configured to serve one or more first client devices according to a first network protocol, a second local network node configured to serve one or more second client devices according to a second network protocol different than the first network protocol, and a hub in operable communication with the first and second local network nodes over respective transport media. The hub contains a centralized network node configured to generate a first digitized radio frequency (RF) stream to the first local network node and a second digitized RF stream to the second local network node. The first digitized RF stream corresponds to the first network protocol and the second digitized RF stream corresponds to the second network protocol.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: June 23, 2020
    Assignee: Cable Television Laboratories, Inc
    Inventors: Luis Alberto Campos, Zhensheng Jia, Joseph Padden
  • Patent number: 10594403
    Abstract: An optical transceiver of the present disclosure includes: a first light emitting element configured to perform electric-optic conversion at a first transmission rate; a second light emitting element configured to perform electric-optic conversion at a second transmission rate higher than the first transmission rate; a light receiving element configured to perform optic-electric conversion at a predetermined transmission rate; an optical sub-assembly accommodating the light emitting elements and the light receiving element; a circuit board having a plurality of integrated circuits which are configured to drive the light emitting elements and the light receiving element; a housing accommodating the optical sub-assembly and the circuit board, the housing having a longest dimension in a longitudinal direction thereof and having thermal conductivity; a temperature sensor configured to detect a temperature inside the housing; a temperature control unit configured to determine a control value to be designated to th
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: March 17, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Daisuke Kawase, Daisuke Umeda
  • Patent number: 10530476
    Abstract: Free space optical communication is plagued by interruptions in the connections caused by atmospheric phenomena, such as weather. A wireless beam transmission system includes at least one transmitter (110) and accommodates several wavelengths, and at least one transmission wavelength is arranged to be chosen based on spectral absorption measurements of the atmosphere in the carrier beam path of communication. The invention concerns also a transceiver for repeating wireless optical communication signals. The long range and high reliability of spectroscopically sensitive light beams at a penetrating frequency allow the affordable provisioning of high bandwidth optical or IR communication connections to devices and buildings that were previously either very expensively connected to the fiber optic backbone networks, expensive low bandwidth radio or microwave networks, or unreachable by traditional free space optics solutions.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: January 7, 2020
    Assignee: Mikko Kalervo Vaananen
    Inventor: Mikko Kalervo Vaananen
  • Patent number: 10498462
    Abstract: A method and structure for tap centering in a coherent optical receiver device. The center of gravity (CG) of the filter coefficients can be used to evaluate a proper convergence of a time-domain adaptive equalizer. However, the computation of CG in a dual-polarization optical coherent receiver is difficult when a frequency domain (FD) adaptive equalizer is adopted. In this case, the implementation of several inverse fast-Fourier transform (IFFT) stages is required to back time domain impulse response. Here, examples of the present invention estimate CG directly from the FD equalizer taps and compensate for an error of convergence based off of the estimated CG. This estimation method and associated device architecture is able to achieve an excellent tradeoff between accuracy and complexity.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: December 3, 2019
    Assignee: INPHI CORPORATION
    Inventors: Mario R. Hueda, José Correa, Oscar E. Agazzi
  • Patent number: 10298330
    Abstract: An embodiment includes a host-equalized optical transceiver. The host-equalized optical transceiver includes a driver analog interface, a linear laser diode driver (LLDD), and an optical transmitter. The driver analog interface is configured to interface with a host integrated circuit (IC) of a host system. The LLDD is directly electrically coupled to a host IC of the host system via the driver analog interface. The LLDD is configured to receive an equalized electrical data signal directly from the host IC via the driver analog interface and to generate a driving signal based on the equalized electrical data signal. The equalized electrical data signal is a linear signal. The optical transmitter is electrically coupled to the LLDD. The optical transmitter is configured to receive the driving signal from the LLDD and to generate an optical signal that is representative of the driving signal.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 21, 2019
    Assignee: FINISAR CORPORATION
    Inventor: Jim Alan Tatum
  • Patent number: 10193631
    Abstract: The present disclosure relates to an optical module having digital diagnostic monitoring functions and a circuit and method to control the optical module. In an embodiment, a control circuit for an optical module including an optical receiving unit and an optical transmitting unit may comprise a first memory for storing a plurality of configuration parameters at predefined locations within the first memory, a second memory for storing a plurality of variables at dynamically allocated locations of the second memory, the plurality of variables including variables corresponding to a current operation status of the optical module, and an analog-to-digital converter configured to receive an analog signal corresponding to the current operation status and convert the analog signal to a digital value to be stored as the variable corresponding to the current operation status in the dynamically allocated location of the second memory.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: January 29, 2019
    Assignees: Accelink Technologies Co., Ltd., Wuhan Telecommunication Devices Co., Ltd
    Inventors: Long Chen, Fanrong Gao, Jun Zhang, Xianghong Yu
  • Patent number: 10180542
    Abstract: A control device that may be implemented in a single IC chip is provided that is capable of controlling EAM bias voltages and DFB bias currents and of monitoring the EAM photocurrents and received signal strength indicators (RSSIs) in a multi-channel optical transceiver module. The control device IC chip can be manufactured at relatively low cost with relatively high yield, and can be implemented in a relatively small area. To implement the control device in a single IC chip, multiple supply voltage domains are used in the IC chip, one of which is a negative supply voltage domain and one of which is a positive supply voltage domain. In order to provide these different supply voltage domains, a level shift circuit is employed in the IC chip that converts signals from the positive to the negative supply voltage domain, and vice versa, and changes the voltage levels, as needed.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: January 15, 2019
    Assignee: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED
    Inventors: Samir Aboulhouda, Faouzi Chaahoub, Ahmed Rashid Syed, Kartikeya Gupta, Kazi Asaduzzaman
  • Patent number: 9882634
    Abstract: Systems and methods for connection validation between a pair of mated transceivers implemented in a network element include, responsive to a request for connection validation at a first transceiver of the pair of mated transceivers, performing a first optical loopback test through the first transceiver with a unique trace identifier; responsive to a successful first optical loopback test, providing the unique trace identifier to a second transceiver of the mated transceivers with a request for a second optical loopback test; performing the second optical loopback test through the second transceiver with the unique trace identifier; and, responsive to a successful second optical loopback test, providing the unique trace identifier back to the first transceiver from the second transceiver.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: January 30, 2018
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, Marc Veilleux
  • Patent number: 9621382
    Abstract: A receiver applies a calibration method to compensate for skew between input channels. The receiver skew is estimated by observing the coefficients of an adaptive equalizer which adjusts the coefficients based on time-varying properties of the multi-channel input signal. The receiver skew is compensated by programming the phase of the sampling clocks for the different channels. Furthermore, during real-time operation of the receiver, channel diagnostics is performed to automatically estimate differential group delay and/or other channel characteristics based on the equalizer coefficients using a frequency averaging or polarization averaging approach. Framer information can furthermore be utilized to estimate differential group delay that is an integer multiple of the symbol rate. Additionally, a DSP reset may be performed when substantial signal degradation is detected based on the channel diagnostics information.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: April 11, 2017
    Assignee: Clariphy Communications, Inc.
    Inventors: Shih Cheng Wang, Seyedmohammadreza Motaghiannezam, Matthew C. Bashaw
  • Patent number: 9488769
    Abstract: A surface light guide includes a radiation exit area running along a main extension plane of the surface light guide and includes a light guiding region, which has scattering locations and a coating arranged on a first main area of the light guiding region, wherein radiation coupled in along the main extension plane impinging on the first main area after scattering at the scattering locations has an excessively increased radiation component and the coating reduces in a targeted manner an exit of the excessively increased radiation component from the radiation exit area.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: November 8, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Peter Brick, Joachim Frank, Stephan Kaiser, Gerhard Kuhn, Ales Markytan, Julius Muschaweck, Christian Neugirg
  • Patent number: 9455788
    Abstract: A hitless modulation change method at a node in an optical network includes determining that a modulation change is warranted for an optical modem in the node, the optical modem configured to communicate over an optical link; determining an impact of the modulation change on the optical link and associated underlying connections thereon; causing changes in a data plane for the associated underlying connections, prior to performing the modulation change; and causing the modulation change subsequent to accommodating the associated underlying connections in the data plane, thereby minimizing interruptions of the associated underlying connections due to the modulation change.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: September 27, 2016
    Assignee: Ciena Corporation
    Inventor: David W. Boertjes
  • Patent number: 9450698
    Abstract: The optical transmission device includes an N×N optical switch, an optical packet receiver and an optical packet generation unit. The N×N optical switch transmits data in which a plurality of optical signals each having a different wavelength is multiplexed. The optical packet receiver detects change in the number of wavelengths of optical signals constituting the data. The optical packet generation unit generates, when the change is detected by the optical packet receiver, data to be transmitted by the N×N optical switch, using optical signals for the number of wavelengths after the change.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: September 20, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Koji Matsunaga, Tatsuya Toyozumi, Yasuo Tanaka, Yuichiro Sakane, Koji Bato, Wataru Kawasaki, Tatsuhiko Saito
  • Patent number: 9397752
    Abstract: An optical transceiver module coupled to a device is provided. The optical transceiver module includes an electronic signal transmitting terminal coupled to a receiving terminal of the device, an electronic signal receiving terminal coupled to a transmitting terminal of the device, an optical signal receiving terminal coupled to the electronic signal transmitting terminal, and an optical signal transmitting terminal coupled to the electronic signal receiving terminal. When the optical transceiver module is at an normal operation state and the electronic signal receiving terminal does not receive any electronic signal over a first predetermined time period, the optical transceiver module enters a idle detection state to make the electronic signal transmitting terminal to perform a receiver termination detection to the device to determine whether the device is coupled to the optical transceiver module.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: July 19, 2016
    Assignee: VIA TECHNOLOGIES, INC.
    Inventors: Cheng-Ming Ying, Woei-Harng Lin, Yu-Lung Lin, Wei-Yu Wang
  • Patent number: 9392664
    Abstract: A method for operating an LED lighting device (L), wherein the LED lighting device comprises: at least two color channels (Ch1, Ch2, Ch3), wherein each color channel (Ch1, Ch2, Ch3) comprises at least one LED (LD1, LD2, LD3), wherein the LEDs (LD1, LD2, LD3) of a color channel (Ch1, Ch2, Ch3) each have the same color, and wherein each color channel (Ch1, Ch2, Ch3) is able to be activated separately, and at least one photodetector (D), which is configured and arranged to detect a portion of the light radiated by the LEDs (LD1, LD2, LD3), wherein the method comprises the steps of: switching over the LED lighting device (L) from an operating phase (BP 1) into a measurement phase (MP); and temporally consecutive activation of the color channels (Ch1, Ch2, Ch3) so that a light radiated during the measurement phase (MP) by the LEDs (LD1, LD2, LD3) has an integral mixture which substantially corresponds to a color mixture of the operating phase.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: July 12, 2016
    Assignee: OSRAM GmbH
    Inventors: Tobias Frost, Bakuri Lanchava
  • Patent number: 9391714
    Abstract: A nodal system (10) includes a unit (D) having a memory (42) and an optical data receiver (36), and a common control unit (12) in communication with the unit. A method of commissioning the system comprises the steps of activating the optical data receiver on the unit, and transmitting an optical data signal to the unit, thereby commissioning the unit.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: July 12, 2016
    Assignee: TYCO FIRE & SECURITY GMBH
    Inventors: Faruk Meah, Andrew D. Naish
  • Patent number: 9264135
    Abstract: A bidirectional pentaplex system is connected to a machine room. The machine room provides a first optical signal, a second optical signal and a monitoring signal and transmits to the bidirectional pentaplex system. The bidirectional pentaplexer includes a first receiving unit, a second receiving unit, a first emitting unit, a second emitting unit, a filter, a transceiver, a grating, a plurality of reflecting units and a control circuit. The receiving units and the transceiver respectively receives the signals, then the control circuit controls the emitting units emitting the feedback signals and transmits the feedback signals back to the machine room.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: February 16, 2016
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chang-Chia Chi, Chen-Wen Tarn, I-Ju Chen
  • Patent number: 9215010
    Abstract: Provided is a node device in an optical communication system in which a plurality of node devices are connected by a plurality of optical fibers, including: at least a first optical transceiver that consumes a first power consumption amount during standby; at least a second optical transceiver that consumes a second power consumption amount greater than the first power consumption amount during standby; and a power consumption control unit that preferentially selects the second optical transceiver as an optical transceiver to be maintained by the node device, the second optical transceiver being in a fast startup standby mode in which startup time from a standby state is shorter than allowable time of interruption time of a communication service in the optical communication system.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: December 15, 2015
    Assignee: NEC CORPORATION
    Inventor: Kenji Mizutani
  • Patent number: 9103948
    Abstract: A fiber bypass module and its adapted in-line equipment are provided. The fiber bypass module has an optical switch, a plurality of connectors, and a circuit substrate with an electrical signal control connector exposed. The electrical signal control connector may be plugged to the socket of the in-line equipment to receive the electrical control signal sent from the in-line equipment. The optical switch is provided on the circuit substrate and the electrical signal control connector is electrically connected with the optical switch such that the received electrical control signal is transmitted to the optical switch to execute the switching mode of the optical switch. Each of the plurality of connectors may be extended remotely to connect optical transceivers and optical network equipments, so that the optical transceivers and the fiber network equipments do not have to be provided at the same place as the in-line equipment.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 11, 2015
    Inventor: Sean Jiang
  • Patent number: 9083460
    Abstract: A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: July 14, 2015
    Assignee: Sandia Corporation
    Inventor: William A. Zortman
  • Patent number: 9031415
    Abstract: An Ethernet adapter system may include a transmitter to insert a payload type identifier sequence in a generic frame procedure header to indicate that a network is a converged enhanced Ethernet network. The transmitter may insert idle sequences in a stream of data frames transmitted along a link. The system may include a receiver to recognize a condition and to force a loss of synchronization condition on the link that will be converted by the receiver into a loss of light condition. The receiver may scan the transmitted stream of data frames for invalid data frames and introduce a code into the stream of data frames whenever an invalid data frame is detected.
    Type: Grant
    Filed: December 8, 2012
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Thomas A. Gregg, Rajaram B. Krishnamurthy
  • Patent number: 9025962
    Abstract: A system for transmitting an optical signal between a host and a device according to a SATA protocol. The system comprises a transmitting-side converter for generating a logic one voltage value responsive to a data one value from an information source, for generating a logic zero voltage value responsive to a data zero value from the information source, for generating an idle state logic voltage value, wherein the idle state logic voltage value is (logic one voltage value+logic zero voltage value)/2, the transmitting-side converter comprising only linear functions to preserve the idle state logic voltage value, and an electrical-to-optical converter for converting the logic one, logic zero and the idle state logic voltage values to an optical signal further comprising respective logic one, logic zero and idle state optical values and for supplying the optical signal to an optical communications medium.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: May 5, 2015
    Inventor: James V Wernlund
  • Patent number: 9008518
    Abstract: A system includes an optical transmitter package comprising an optical transmitter to generate optical transmission signals based on electrical transmission signals. The system also includes an optical receiver package comprising an optical receiver to generate electrical reception signals based on optical reception signals. The system further includes a printed circuit board (PCB) on which the optical transmitter package and the optical receiver package are mounted. The PCB includes a heat generating circuit component. The optical transmitter package can be mounted to the PCB to subjected to less heat from the heat generating circuit component than the optical receiver package.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: April 14, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, Glenn C. Simon, Sagi Varghese Mathai
  • Patent number: 8995845
    Abstract: A multi-laser transmitter optical subassembly may include N number of lasers, where each laser is configured to generate an optical signal with a unique wavelength. The transmitter optical subassembly may further include a focusing lens and a filter assembly. The filter assembly may combine the optical signals into a combined signal that is received by the focusing lens. The filter assembly may include N?1 number of filters. Each of the filters may pass at least one of the optical signals and reflect at least one of the optical signals. The filters may be low pass filters, high pass filters, or a combination thereof.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: March 31, 2015
    Assignee: Finisar Corporation
    Inventors: Tengda Du, Bernd Huebner
  • Publication number: 20150086215
    Abstract: System and method embodiments are provided for bit loading for optical Discrete Multi-Tone Transmission (DMT). In an embodiment, a method for bit loading for optical DMT transmission or reception includes receiving, at a processor, a bit data stream, wherein the bit data stream comprises a plurality of subcarriers; assigning, with the processor, a code rate to each of a plurality of forward error correction (FEC) encoders/decoders according to a mapping of a signal-to-noise-ratio (SNR) to a code rate for each of the subcarriers or subcarrier groups, wherein each FEC encoder/decoder corresponds to a respective one of the subcarriers or a respective subcarrier group; and assigning, with the processor, a modulation format to each subcarrier or each subcarrier group according to a mapping of an SNR for each subcarrier or subcarrier group to a bit number for a corresponding subcarrier or subcarrier group.
    Type: Application
    Filed: April 14, 2014
    Publication date: March 26, 2015
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Chen Chen, Mahdi Zamani, Zhuhong Zhang, Chuandong Li
  • Patent number: 8989583
    Abstract: A system and a method are disclosed for generating an infrared signal on a mobile device. The infrared signal is generated on a mobile device by generating a bitstream based on information to be transmitted as an infrared signal. The bitstream is modulated and output on a bus to an infrared-emitting diode. The bitstream is processed in a software layer configured on the computing device, enabling the computing device to generate and process signals without additional hardware configured on the device.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: March 24, 2015
    Assignee: Peel Technologies, Inc.
    Inventors: Samyeer Suresh Metrani, Siva Subramanian Muthukumarasamy
  • Patent number: 8989589
    Abstract: An apparatus in one embodiment includes a transceiver housing operable to be inserted into a port of a host system, the port comprising at least a first channel and a second channel. The transceiver housing may be a compact small form-factor (SFP) pluggable module housing. The apparatus also includes a printed circuit board mounted in the transceiver housing and an electrical interface of the printed circuit board operable to interface with the port of the host system. The electrical interface includes a first transmit pin and a first receive pin configured to interface with the first channel of the port and a second transmit pin and a second receive pin configured to interface with the second channel of the port. A first connector couples the first transmit pin and the second receive pin, and a second connector couples the second transmit pin and the first receive pin.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: March 24, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Farrokh Mottahedin, Darren K. Hopcroft, Brice D. Achkir
  • Patent number: 8989588
    Abstract: An optical transceiver includes an optical IC coupled to a processor IC. For transmit, the optical IC can be understood as a transmitter IC including a laser device or array. For receive, the optical IC can be understood as a receiver IC including a photodetector/photodiode device or array. For a transmitter IC, the processor IC includes a driver for a laser of the transmitter IC. The driver includes an equalizer that applies high frequency gain to a signal transmitted with the laser device. For a receiver IC, the processor IC includes a front end circuit to interface with a photodetector of the receiver IC. The front end circuit includes an equalizer that applies high frequency gain to a signal received by the receiver IC. The driver can be configurable to receive a laser having either orientation: ground termination or supply termination.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 24, 2015
    Assignee: Intel Corporation
    Inventors: Gil Afriat, Lior Horwitz, Dror Lazar, Assaf Issachar, Alexander Pogrebinsky, Adee O. Ran, Ehud Shoor, Roi Bar, Rushdy A. Saba
  • Publication number: 20150078759
    Abstract: A distortion compensation circuit compensates for the distortions generated by the dispersion-slope of an optical component and the frequency chirp of an optical transmitter. The dispersion compensation circuitry can be utilized in the optical transmitter, the optical receiver and/or at some intermediate point in a fiber-optic network. One embodiment of the compensation circuit utilizes a primary electrical signal path that receives at least a portion of the input signal and a delay line; and a secondary signal path in parallel to the primary path that receives at least a portion of the input signal and including: an amplifier with an electrical current gain that is proportional to the dispersion-slope of the optical component, an optional RF attenuator, an optional delay line, a “squarer” circuit, and a “differentiator” circuit.
    Type: Application
    Filed: June 11, 2014
    Publication date: March 19, 2015
    Applicant: AURORA NETWORKS, INC.
    Inventor: Sudhesh Mysore
  • Patent number: 8983300
    Abstract: A system and a method are disclosed for receiving an infrared signal on a mobile device. The mobile device receives an infrared signal by creating an intermediate bitstream based on the received infrared signal. The intermediate bitstream is trimmed, downsampled, and demodulated in the time domain. The intermediate bitstream is then converted into a raw infrared code. The received bitstream is processed in a software layer, enabling the mobile device to process infrared signals without the use of additional hardware configured on the mobile device.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: March 17, 2015
    Assignee: Peel Technologies, Inc.
    Inventors: Samyeer Suresh Metrani, Siva Subramanian Muthukumarasamy
  • Publication number: 20150063812
    Abstract: An optical node comprises a tunable optical transceiver having a laser and a temperature element. The optical node also comprises a wavelength shift stabilization circuit configured to adjust current provided to the temperature element such that wavelength shifts, due to changes in a drive current applied to the tunable optical transceiver, are reduced.
    Type: Application
    Filed: August 21, 2014
    Publication date: March 5, 2015
    Inventors: Jason Dove, Harold A. Roberts
  • Patent number: 8971717
    Abstract: An optical system has an optical emitter that transmits an optical signal through an optical fiber. An optical detector detects light from the fiber and provides an analog signal indicative of such light. A crosstalk cancellation element is configured to receive an electrical signal from the optical emitter and to adjust such signal in order to form a cancellation signal that models the optical and/or electrical crosstalk affecting the analog signal. The cancellation signal is subtracted from the analog signal thereby removing optical and/or electrical crosstalk from the analog signal.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: March 3, 2015
    Assignee: ADTRAN, Inc.
    Inventor: Daniel M. Joffe
  • Patent number: 8938171
    Abstract: The present invention discloses a synchronization method suitable for increasing the receiving speed in the receiving part of an orthogonal optical frequency division multiplexing (OOFDM) transceiver.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 20, 2015
    Assignee: Bangor University
    Inventors: Jianming Tang, Xianqing Jin
  • Patent number: 8938164
    Abstract: A system includes two optical modules that perform auto-setting of the optical links between the optical modules. One optical module sends an optical signal with a test pattern to the other optical module. If the receiving module determines that the test pattern is successfully received, it sends a pass indication to the transmitting module, and the transmitting module can configure its driver path in accordance with a transmit current setting used to transmit the test pattern. If the test pattern is not successfully received, the receiving module sends a fail indication, and the transmitting module can increase the transmit current setting and resend the test pattern. When the system includes multiple optical channels, one channel can be tested while feedback is provided on another channel. The system can iterate through all optical channels until they are all configured.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 20, 2015
    Assignee: Intel Corporation
    Inventors: Miaobin Gao, Christine M. Krause, Hui-Chin Wu, Hengju Cheng
  • Patent number: 8934778
    Abstract: The object of the present invention is to reliably prevent deterioration and failure of reception relevant parts in a transmission apparatus on a reception side without using an attenuator. An output value control method that controls an output value of output information transmitted from each of transmission apparatuses, in which a transmission apparatus transmits the output information having a minimum output value as the output value to the other transmission apparatus, and when the output information does not reach the other transmission apparatus, the transmission apparatus repeats transmission of the output information after increasing the own output value by adding a predetermined value to a previous output value, and then the other transmission apparatus that has received the output information calculates the output value of the transmission apparatus, and notifies the calculated output value of the transmission apparatus as an appropriate output value to the transmission apparatus.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: January 13, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Yusho Futami, Kazuhiro Watanabe
  • Patent number: 8934783
    Abstract: An Ethernet adapter system may include a transmitter to insert a payload type identifier sequence in a generic frame procedure header to indicate that a network is a converged enhanced Ethernet network. The transmitter may insert idle sequences in a stream of data frames transmitted along a link. The system may include a receiver to recognize a condition and to force a loss of synchronization condition on the link that will be converted by the receiver into a loss of light condition. The receiver may scan the transmitted stream of data frames for invalid data frames and introduce a code into the stream of data frames whenever an invalid data frame is detected.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Thomas A. Gregg, Rajaram B. Krishnamurthy
  • Patent number: 8934779
    Abstract: Methods, architectures, circuits, and/or systems for monitoring operating parameters and/or generating status indications associated with electronic device operation are disclosed. The method can include (i) monitoring a first operating parameter related to operation of the electronic device to determine a first parameter value, (ii) calculating a difference between the first parameter value and a predetermined value for the first operating parameter, (iii) monitoring a second operating parameter on which thresholds for operational warnings and/or alarms are based to determine a second parameter value, (iv) updating or changing the thresholds based on a predetermined change or event in the second parameter value, (v) comparing the difference to the updated or changed thresholds, and (vi) generating a corresponding one of the operational warnings and/or alarms when the difference crosses at least one of the thresholds in a predetermined direction.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: January 13, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Todd Rope, Mark Heimbuch
  • Publication number: 20150010312
    Abstract: Apparatuses and methods for an optical data interface with electrical forwarded clock are provided. One example optical data interface (220, 320) can include a transmitter (224, 324) having a data input (232, 332) and a clock input (242, 342), and a receiver (226, 326) having a data output (271, 339) and a forwarded clock signal path (254, 376). An optical communication path (248, 348) is coupled between the data input (232, 332) and the data output (271, 339) and configured to communicate a data signal. An electrical communication path (236, 336) is coupled between the clock input (242, 342) and the forwarded clock signal path (254, 376). The electrical communication path (236, 336) is arranged to forward a clock signal used by the receiver (226, 326) as a reference for the optical data signal.
    Type: Application
    Filed: April 24, 2012
    Publication date: January 8, 2015
    Inventors: Daniel A. Berkram, Dacheng Zhou
  • Patent number: 8929744
    Abstract: Integrated performance monitoring (PM); optical layer operations, administration, maintenance, and provisioning (OAM&P); alarming; amplification, and the like is described in optical transceivers, such as multi-source agreement (MSA)-defined modules. An optical transceiver defined by an MSA agreement can include advanced integrated functions for carrier-grade operation which preserves the existing MSA specifications allowing the optical transceiver to operate with any compliant MSA host device with advanced features and functionality. The optical transceiver can include CFP and variants thereof (e.g., CFP2, CDFP, CXP), OIF-MSA-100GLH-EM-01.0, CCRx (Compact Coherent Receiver), Quad Small Form-factor Pluggable (QSFP) and variants thereof (e.g., QSFP+, QSFP2), 10×10 MSA, XFP, XPAK, XENPAK, X2, XFP-E, SFP, SFP+, 300-pin, and the like.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 6, 2015
    Assignee: Menara Networks, Inc.
    Inventors: Siraj Nour El-Ahmadi, Salam El-Ahmadi, Adam R. Hotchkiss, Gabriel E. Cardona
  • Patent number: 8929742
    Abstract: An optical communication module in which the pin arrangement can be applied flexibly. An optical communication module has an outer shape formed based on normal standards and which is able to communicate with a host-side circuit board, etc. to which it is fitted, via a predetermined communication interface; wherein the optical communication module exchanges input/output I/F information with the circuit board, etc., and the communication interface can be switched to another communication interface based on these input/output I/F information.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: January 6, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 8929747
    Abstract: A transmitter reduces or minimizes pulse narrowing. In one approach, an optical transmitter is designed to transmit data over an optical fiber at a specified data rate using on-off keying. The transmitter includes a pre-converter electrical channel and a limiting E/O converter. The pre-converter electrical channel produces a pre-converter signal that drives the limiting E/O converter. The pre-converter electrical channel is designed to reduce pulse narrowing in the pre-converter signal. In one implementation, the pre-converter electrical channel includes a pre-emphasis filter that is designed to minimize pulse width shrinkage.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: January 6, 2015
    Assignee: ClariPhy Communications, Inc.
    Inventor: Thomas A. Lindsay