Multimode Patents (Class 398/143)
  • Patent number: 11881675
    Abstract: It is difficult to construct an optical fiber transmission system enabling relay optical amplification using a coupled multi-core optical fiber as an optical transmission path; therefore, an optical amplification device includes first optical spatial layout converting means for converting a spatial layout of a plurality of optical signal beams propagating through each of a plurality of cores, from a coupled state in which optical signal beams interfere between a plurality of cores to a non-coupled state in which optical signal beam interference is reduced between a plurality of cores; optical amplifying means for amplifying, in the non-coupled state, the plurality of optical signal beams with the non-coupled state and generating a plurality of amplified optical signal beams; and second optical spatial layout converting means for converting a spatial layout of the plurality of amplified optical signal beams from the non-coupled state to the coupled state.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: January 23, 2024
    Assignee: NEC CORPORATION
    Inventors: Hitoshi Takeshita, Keiichi Matsumoto, Shigeyuki Yanagimachi
  • Patent number: 11750315
    Abstract: A wall-mountable outlet comprising an enclosure and a faceplate mechanically coupled to the enclosure. An optical network terminal (ONT) is provided in the enclosure. In one example embodiment, the ONT comprises an optical-electrical (O-E) data module, and the O-E data module comprises an O-E converter. The O-E data module can further comprise a switch arranged to selectively couple at least one signal with the O-E converter. The O-E data module further can comprise a Passive Optical Network (PON) controller interposed between the O-E converter and the switch.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: September 5, 2023
    Assignee: TELLABS BEDFORD, INC.
    Inventors: Richard Schroder, Russell W. Brown, Thomas C. Ruvarac, John Silovich, Andrew G. Low
  • Patent number: 11716146
    Abstract: To relax the accuracy with respect to a positional deviation, and thus to reduce costs. An optical waveguide is included that performs propagation only in a reference mode at a first wavelength. Communication is performed using light that has a second wavelength and includes a component of at least a first order mode in addition to a component of the reference mode. Here, the second wavelength is a wavelength that enables the optical waveguide to perform propagation in at least the first order mode in addition to the reference mode. For example, a light path adjuster that adjusts a light path such that input light is guided to a core of the optical waveguide, is further included.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: August 1, 2023
    Assignee: SONY GROUP CORPORATION
    Inventors: Hiroshi Morita, Kazuaki Toba, Masanari Yamamoto, Yusuke Oyama
  • Patent number: 11513295
    Abstract: An optical coupling structure, an optical coupling system and a method for preparing the optical coupling structure are provided. The method includes: step S101: preparing a base substrate; step S102: forming a lithium niobate optical waveguide on the base substrate; step S103: forming a silicon dioxide core layer enclosing the lithium niobate optical waveguide on peripheral walls of the lithium niobate optical waveguide; step S104: forming a silicon dioxide cladding layer enclosing the silicon dioxide core layer on peripheral walls of the silicon dioxide core layer. The optical coupling structure alleviates a technical problem of low coupling efficiency between the lithium niobate optical waveguide and the single-mode optical fiber in the related art, and achieves a technical effect of improving the coupling efficiency between the lithium niobate optical waveguide and the single-mode optical fiber.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 29, 2022
    Assignee: INSTITUTE OF SEMICONDUCTORS, CHINESE ACADEMY OF SCIENCES
    Inventors: Lin Yang, Shanglin Yang, Lei Zhang
  • Patent number: 10969611
    Abstract: A microwave photonic filter is provided. The filter includes an optical source, an electro-optic modulator, a single mode optical fiber, a few-mode optical fiber, and a photodiode. The electro-optic modulator is configured to receive an optical carrier from the optical source and an input electrical signal. The electro-optic modulator modulates the optical carrier based on the input electrical signal. The single mode optical fiber is configured to receive the modulated optical carrier from the electro-optic modulator. The few-mode optical fiber is configured to receive the modulated optical carrier from the single mode optical fiber. The filter includes one of a plurality of methods for causing higher order mode excitation in the few-mode fiber. The photodiode is configured to receive an output from the few-mode optical fiber.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 6, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel V. Nickel, Bryan Haas
  • Patent number: 10782479
    Abstract: Methods and systems for mode converters for grating couplers may include a photonic chip comprising a waveguide, a grating coupler, and a mode converter, with the waveguide being coupled to the grating coupler via the mode converter. The mode converter may include waveguide material and tapers defined by tapered regions, where the tapered regions do not have waveguide material. The photonic chip may receive an optical signal in the mode converter from the waveguide, where the received optical signal has a light profile that may be spatially deflected in the mode converter to configure a desired profile in the grating coupler. A long axis of the tapers may be parallel to a direction of travel of the optical signal. The long axis of the tapers may point towards the input waveguide of the grating couplers, which may be linear.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 22, 2020
    Assignee: LUXTERA LLC
    Inventors: Roman Bruck, Attila Mekis
  • Patent number: 10326529
    Abstract: The present invention provides a photonic integrated circuit, system, apparatus and method which can be used as an optical transmitter in a system, for example in a telecommunication system. According to the various embodiments of the invention, the circuit includes several optical devices, wherein some are passive and others have gain, which constructed and connected with the specific characteristics, leads to a multi-wavelength transmitter with tunable operation band.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: June 18, 2019
    Assignee: ALTICE LABS, S.A.
    Inventors: António Luís Jesus Teixeira, Ana Cristina Maia Tavares, Ana Patricia Silva Lopes, Cláudio Emanuel Rodrigues
  • Patent number: 10135534
    Abstract: The present disclosure relates to a fiber optic network configuration having an optical network terminal located at a subscriber location. The fiber optic network configuration also includes a drop terminal located outside the subscriber location and a wireless transceiver located outside the subscriber location. The fiber optic network further includes a cabling arrangement including a first signal line that extends from the drop terminal to the optical network terminal, a second signal line that extends from the optical network terminal to the wireless transceiver, and a power line that extends from the optical network terminal to the wireless transceiver.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 20, 2018
    Assignee: CommScope Technologies LLC
    Inventors: Trevor D. Smith, Yu Lu, Wayne M. Kachmar
  • Patent number: 10116396
    Abstract: A receiver includes a planar antenna array including at least three antennas. Each antenna simultaneous receives a local oscillator (LO) signal from a near field region and a radio frequency (RF) signal from a far field region. Each antenna is coupled to a respective quasi-optical mixer. Each quasi-optical mixer includes only passive components and outputs a respective intermediate frequency (IF) signal. The receiver includes two six-port demodulators. Each six-port demodulator receives a different pair of IF signals as input and outputs signals representing baseband power of the pair of IF signals. Each six-port demodulator includes only passive components. The receiver also includes a processor to calculate direction of arrival (DoA) for the LO signal and the RF signal using the output from the six-port demodulators.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 30, 2018
    Assignee: HUAWEI TECHNOLOGIES CANADA CO., LTD.
    Inventors: Ke Wu, Ruizhi Liu
  • Patent number: 9857529
    Abstract: A fiber span comprising: a first optical fiber and a second optical fiber coupled to the first optical fiber, both fibers comprising the an inner core region with maximum refractive index delta, ?0?0.1% and an outer radius R1>4.5 ?m, an outer core region with an outer radius R2 and a minimum refractive index delta ?1 and alpha value ??5, wherein ?1<?0, 5.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: January 2, 2018
    Assignee: Corning Incorporated
    Inventor: William Allen Wood
  • Patent number: 9748738
    Abstract: In a multiple-wavelength laser source, a multiple-mode laser outputs a set of wavelengths in a range of wavelengths onto an optical waveguide, where a spacing between adjacent wavelengths in the set of wavelengths is smaller than a width of channels in an optical link. Furthermore, a set of ring-resonator filters in the multiple-wavelength laser source, which are optically coupled to the optical waveguide, output corresponding subsets of the set of wavelengths for use in the optical link based on free spectral ranges and quality factors of the set of ring-resonator filters. These subsets may include one or more groups of wavelengths, with another spacing between adjacent groups of wavelengths that is larger than the width of the given channel in the optical link. In addition, the one or more groups of wavelengths may include one or more wavelengths, with the spacing between adjacent wavelengths in the given group of wavelengths.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: August 29, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ashok V. Krishnamoorthy, Xuezhe Zheng
  • Patent number: 9287980
    Abstract: An optical passive repeater is provided. The repeater is operated under a state of polariton Bose-Einstein condensation (BEC). A phase transition from a thermal polariton state to a condensed polariton state is controlled, where system temperatures and densities are lower than thermal dissociation temperatures and nonlinear saturation densities, respectively. Original input multimode laser signals are transformed into final output single-mode laser signals. Thus, the polariton BEC passive repeater becomes a power-efficient and low-cost device to increase the reach of optical links without sacrificing its signal quality and integrity.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: March 15, 2016
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventor: Yun-Chung Na
  • Patent number: 8965217
    Abstract: A method of superimposing N optical transmission modes for collective transmission along a multimode optical fiber is provided where each of the N optical signals comprises N distinct superimposed transmission modes (M1, M2, . . . ) and a portion of each of the N propagating optical signals is sampled at a receiving end of the data transmission network. N2?1 distinct measurement conditions are derived from a transmission matrix T and a special unitary matrix group SU(N) corresponding to the superimposed transmission modes (M1, M2, . . . ) at the receiving end of the data transmission network and N2?1 measurements are extracted from the sampled signals. The extracted N2?1 measurements are used to solve a matrix equation corresponding to the generated SU(N) matrices and the output matrix transposed and used to generating principal state launch conditions from the eigenvectors of the transposed output matrix to form a principal state in each of the N optical signals.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 24, 2015
    Assignees: Corning Incorporated, The Research Foundation of CUNY of behalf of the City College of New York
    Inventors: Daniel A. Nolan, Giovanni Milione, Robert R. Alfano
  • Patent number: 8891964
    Abstract: An optical network includes a multidimensional coder and modulator for handling multiple-in-multiple-out MIMO spatial lightpath properties and content of any specific supercarrier, a spatial mode multiplexer responsive to orthogonal frequency division multiplexing OFDM transmissions and the multidimensional coder, a spatial-spectral routing node coupled over a fiber link to the spatial mode multiplexer for performing switching granularity by a spatial mode reconnection, a multidimensional decoder and demodulator; and a spatial mode demultiplexer coupled over a fiber link to the spatial-spectral routing node and responsive to the multidimensional decoder and demodulator.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 18, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Milorad Cvijetic, Ivan B. Djordjevic, Neda Cvijetic, Ting Wang
  • Patent number: 8879920
    Abstract: The present wavelength multiplexed optical system includes a multimode optical fiber that transmits wavelength multiplexed optical signals and a plurality of multimode modal dispersion compensation optical fibers. Each modal dispersion compensation optical fiber can transmit one of the multiplex wavelengths, and each modal dispersion compensation optical fiber has an optimized index profile such that the modal dispersion for the transmitted wavelength is approximately inversely equal to the modal dispersion induced in the multimode optical fiber. The wavelength multiplexed optical system facilitates an increased bitrate without reducing bandwidth.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 4, 2014
    Assignee: Draka Comteq, B.V.
    Inventors: Yves Lumineau, Denis Molin, Asghar Gholami
  • Publication number: 20140286648
    Abstract: A technique is provided for an optical multiple input multiple output (MIMO) processing system.
    Type: Application
    Filed: November 6, 2012
    Publication date: September 25, 2014
    Inventor: Henning Buelow
  • Patent number: 8837953
    Abstract: A bi-directional optical transceiver includes multiple single mode optical ports and a multi-mode optical port. A multi-mode optical combiner combines single mode optical signals received at the single mode optical ports into a multi-mode optical signal at the multi-mode optical port. Each single mode optical signal having a distinct optical mode that does not interfere with the optical mode of the other single mode optical signals. A photo detector coupled to the multi-mode optical combiner detects a total optical power of the single mode optical signals in the multi-mode optical signal.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: September 16, 2014
    Assignee: ARRIS Enterprises, Inc.
    Inventors: Venk Mutalik, Marcel F. Schemmann
  • Patent number: 8822905
    Abstract: An apparatus includes a first optical mode coupler having a spatial light modulator with a two-dimensional array of separately controllable optical phase modulators. The optical mode coupler is configurable to cause the spatial light modulator to couple a light source or light detector to an end-face of a multi-mode optical fiber via a plurality of light beams. Each of the light beams couples to a different one of optical modes in the multi-mode optical fiber.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 2, 2014
    Assignee: Alcatel Lucent
    Inventor: Roland Ryf
  • Publication number: 20140226990
    Abstract: An optical communication system includes a transceiver with a light source, a transition lens and an optical medium. Each of the light source, the transition lens and the optical medium define a corresponding axis. The light source defines a normal launch axis. The transition lens defines an optical axis. The optical medium defines a longitudinal axis. A relative misalignment from a coaxial alignment of the corresponding axes of at least one the light source, the transition lens and the optical medium is used to reduce a back reflection incident at the light source. Such misalignments can be achieved by one or both of angular adjustments and offsets of the axes.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Inventors: David Chak Wang Hui, Xiaozhong Wang, Bing Shao, Pengyue Wen
  • Patent number: 8774574
    Abstract: An apparatus includes an N×1 spatial mode multiplexer, an optical source and an optical receiver. The spatial mode multiplexer has N input ports and an output port end-couplable to a multimode optical fiber. The multiplexer is configured to preferentially couple light between individual ones of the input ports and corresponding spatial optical modes of the multimode optical fiber. The optical source is connected to a first one of the input ports to launch an optical probe pulse into the fiber. The optical receiver is connected to electrically analyze an optical signal backscattered from the multimode optical fiber and output by a second one of the input ports in response to the launch of the optical probe pulse into the fiber.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 8, 2014
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Roland Ryf
  • Patent number: 8737845
    Abstract: An optical engine for providing a point-to-point optical communications link between a first computing device and a second computing device. The optical engine includes a modulated hybrid micro-ring laser formed on a substrate and configured to generate an optical signal traveling parallel to the plane of the substrate. The optical engine further includes a waveguide, also formed in a plane parallel to the plane of the substrate, that is configured to guide the optical signal from the modulated ring laser to a defined region, a waveguide coupler at the defined region configured for coupling the optical signal into a multi-core optical fiber, and a multi-core optical fiber at the defined region that is configured to receive and transport the optical signal to the second computing device.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: May 27, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Marco Fiorentino, Qianfan Xu, Sagi Varghese Mathai, Raymond G. Beausoleil
  • Publication number: 20140126915
    Abstract: Systems and methods for reducing modal group delay when transmitting a plurality of optical signals over a transmission line that supports a plurality of modes are disclosed. The modes are converted at a plurality of positions along the transmission line so the signals in the end have minimal group delay. The method comprises the steps of receiving N number of optical signals into a multimode fiber having at least N modes, transmitting each of N signals into a mode of the at least N modes of the multimode fiber, and converting each of the N modes into another of the N modes at N positions along the transmission line, such that the net modal group delay generated between the N signals along the transmission line is minimized.
    Type: Application
    Filed: July 2, 2012
    Publication date: May 8, 2014
    Inventors: Lars Gruner-Nielsen, Sander Jansen, Poul Kristensen, Dirk Van Den Borne, Andrew Ellis
  • Patent number: 8705913
    Abstract: The outage probability in an under-addressed optical MIMO system may be reduced by configuring an intra-link optical mode mixer to dynamically change the spatial-mode mixing characteristics of the link on a time scale that is faster than the channel coherence time. Provided that the MIMO system employs an FEC code that has a sufficient error-correcting capacity for correcting the amount of errors corresponding to an average state of the MIMO channel, this relatively fast dynamic change tends to reduce the frequency of events during which the number of errors per FEC-encoded block of data exceeds the error-correcting capacity of the FEC code.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 22, 2014
    Assignee: Alcatel Lucent
    Inventors: Peter J. Winzer, Gerard J. Foschini
  • Patent number: 8693834
    Abstract: A few mode optical fiber suitable for use in a mode division multiplexing (MDM) optical transmission system is disclosed. The optical fiber has a graded-index core with a radius R1 in the range from 8 ?m to 14 ?m, an alpha value greater than or equal to about 2.3 and less than about 2.7 at a wavelength of 1550 nm, and a maximum relative refractive index ?1MAX from about 0.3% to about 0.6% relative to the cladding. The optical fiber also has an effective area greater than about 90 ?m2 and less than about 160 ?m2. The core and cladding support only the LP01 and LP11 modes at wavelengths greater than 1500 nm. The cladding has a maximum relative refractive index ?4MAX such that ?1MAX>?4MAX, and the differential group delay between the LP01 and LP11 modes is less than about 0.5 ns/km at a wavelength of 1550 nm.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: April 8, 2014
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Daniel Aloysius Nolan, Ji Wang
  • Patent number: 8649680
    Abstract: The present invention causes spatial-mode light emitted from an optical fiber (11), which is a multimode fiber, to pass through a photorefractive medium (13). The photorefractive medium (13) includes holograms for signal separation that are written by irradiation of the photorefractive medium with (i) guide light having a wave front identical to the wave front of signal light having a particular spatial mode and (ii) control light. The photorefractive medium includes holograms recorded in a multiplex manner with use of control light having different incidence angles in correspondence with respective spatial modes. For signal separation, irradiating the photorefractive medium (13) with control light (15) having a particular angle separates signal light having a spatial mode corresponding to the incidence angle of the control light (15).
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: February 11, 2014
    Assignee: National University Corporation Hokkaido University
    Inventors: Atsushi Okamoto, Kazuyuki Morita
  • Patent number: 8630545
    Abstract: Disclosed is an optical system including a polychromatic optical source emitting multiple transverse modes, an optical link having at least one portion of multimode optical fiber, and an optical device positioned between the optical source and the input of the multimode optical fiber. The optical device can modify the distribution of the energy coupling of the transverse modes emitted by the source in the propagation modes of the multimode optical fiber. The optical system makes it possible to use low-cost transverse multimode optical sources for producing high-bandwidth Ethernet transmission networks having excellent performance.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: January 14, 2014
    Assignee: Draka Comteq, B.V.
    Inventors: Asghar Gholami, Denis Molin, Pierre Sillard, Yves Lumineau
  • Patent number: 8588607
    Abstract: Methods, systems, and computer program products are provided for measuring modal dispersion in a bi-directional dual-multimode fiber optic network (BDON). A modal dispersion measurement system includes a computer processor that is programmed to receive a first pulse width of a first pulse. The first pulse may be communicated over the BDON that is coupled to the processor. A second pulse width of a second pulse is received, the second pulse width being indicative of the modal dispersion. The second pulse width and the first pulse width are compared by the computer processor to determine a distortion error. A measurement of the modal dispersion is validated in accordance to the distortion error.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: November 19, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Oladeji Bamidele Akanbi, Jerry G. Aguren
  • Patent number: 8582932
    Abstract: A method for transmitting optical information between an emitter station and a receiving station via a multi-mode optical wave guide uses a wave length multiplex method. Several optical emitters generate a respective signal for each wave length to be transmitted. The signals are fed to the multi-mode optical wave guide in the form of a number of modes via mode multiplexers and wavelength multiplexers, the multi-mode optical wave guide having its own mode that can propagate within the multi-mode optical wave guide for each mode to be transmitted. After transmission and optionally regeneration and/or amplification of the signal via the multi-mode optical wave guide, the transmitted signals are broken down via the wavelength multiplexer into groups of signals having the same wavelength and via the mode demultiplexer into signals having the same mode. Subsequently, the interference signals are extracted from the transmitted demultiplexed signals.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: November 12, 2013
    Assignee: Technische Universitaet Dortmund
    Inventor: Peter Krummrich
  • Patent number: 8538275
    Abstract: An optical transmitter includes a set of optical waveguides and first, second, and third optical modulators. Output ends of the optical waveguides of the set form a two-dimensional array capable of end-coupling the optical waveguides of the set to a multimode optical fiber in response to the array being located to optically face one end of the multimode optical waveguide. The first optical modulator is optically connected to a first of the optical waveguides of the set, and each of the second and third optical modulators is optically connected to the second and third of the optical waveguides of the set. The set of optical waveguides is configured to provide a coupling matrix of rank three or more between the optical modulators and optical propagation modes in the multimode optical fiber.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 17, 2013
    Assignee: Alcatel Lucent
    Inventors: Rene'-Jean Essiambre, Christopher R. Doerr, Roland Ryf
  • Publication number: 20130236193
    Abstract: Fiber optic communications systems are provided that include an optical transmission source that is configured to transmit an optical signal having a first wavelength onto a multi-mode optical transmission path, an optical mode field converter that is optically coupled to the multi-mode optical transmission path, and an optical transmission medium that is optically coupled to the optical mode field converter. The multi-mode optical transmission path has a first cross-sectional area and the optical transmission medium has a second cross-sectional area that is smaller than the first cross-sectional area. The optical transmission medium is a few-mode transmission medium for the optical signal having the first wavelength.
    Type: Application
    Filed: August 27, 2012
    Publication date: September 12, 2013
    Applicant: CommScope, Inc. of North Carolina
    Inventor: Abhijit Sengupta
  • Patent number: 8417124
    Abstract: Multiple input, multiple output (MIMO) communication systems and a method using multimode media are provided. A MIMO communication system includes an array of emitters that receives a data signal and outputs a plurality of signals (e.g., modulated light, or other signal types) representative of the data signal, a multimode medium (e.g., a multimode fiber, a fiber bundle, a bundle of cables) that receives the plurality of signals from the array of emitters and carries the plurality of signals in a plurality of modes, and an array of detectors that receives the plurality of signals carried by the multimode medium and outputs the data signal. The system can include a demultiplexer that demultiplexes a single high-speed data stream into the array of emitters as the data signal. The system can also include a multiplexer that multiplexes the data signal from the array of detectors back into the single high-speed data stream.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: April 9, 2013
    Assignee: Broadcom Corporation
    Inventor: James Arthur Ford
  • Publication number: 20130064554
    Abstract: In some embodiments, an optical transmission system includes a few-mode fiber that supports at least 2 spatial modes but no more than 50 spatial modes.
    Type: Application
    Filed: January 27, 2011
    Publication date: March 14, 2013
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION INC.
    Inventors: Guifang Li, Fatih Yaman, Xiaobo Xie, Likai Zhu, Neng Bai, Cen Xia
  • Patent number: 8355638
    Abstract: A representative optical receiver of the invention receives an optical transverse-mode-multiplexed (TMM) signal through a multimode fiber that supports a plurality of transverse modes. The optical receiver has a plurality of optical detectors operatively coupled to a digital signal processor configured to process the TMM signal to determine its modal composition. Based on the determined modal composition, the optical receiver demodulates each of the independently modulated components of the TMM signal to recover the data encoded onto the TMM signal at the remote transmitter.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 15, 2013
    Assignee: Alcatel Lucent
    Inventors: Rene′-Jean Essiambre, Roland Ryf, Peter J. Winzer
  • Patent number: 8335430
    Abstract: An optical data transmission apparatus is provided, in which a first communication unit 101 and a second communication unit 102 arranged to freely move relatively to each other each include an optical signal transmission unit having a laser diode 120 for emitting single-mode light, a multi-mode optical fiber 111 for guiding a single-mode optical signal output from the laser diode 120 , converting the single-mode optical signal into a multi-mode optical signal, and outputting the multi-mode optical signal, an optical lens 112 for forming the optical signal output from the multi-mode optical fiber 111 into parallel light, and a first polarization element for passing the optical signal polarized in a predetermined direction out of optical signals output from the optical lens 112.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 18, 2012
    Assignee: Hokuyo Automatic Co., Ltd.
    Inventors: Yoji Maejima, Masanori Hino
  • Patent number: 8326157
    Abstract: A duplex optical fiber link is provided that includes two bi-directional optical fiber links. Each of the bi-directional links includes a multimode optical fiber and an optical transceiver connected to each of the ends of each of the fibers. Each of the optical transceivers includes a bi-directional optical multiplexer (MUX) that is configured to simultaneously optically couple optical data signals produced by a laser diode of the transceiver into an end of one of the fibers and to optically couple an optical data signal passing out of the end of one of the fibers onto a photodiode of the transceiver. The laser diodes operate at a data rate of at least 10 Gb/s such that each optical transceiver transmits and receives optical data signals at an aggregate data rate of at least 20 Gb/s. Consequently, the bi-directional duplex optical link has an aggregate data rate of at least 40 Gb/s.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Cambridge Enterprise Limited
    Inventors: David G. Cunningham, Ian H. White, Jonathan D. Ingham
  • Patent number: 8320769
    Abstract: An optical communication system having an optical transmitter and an optical receiver optically coupled via a multi-path fiber. The optical transmitter launches, into the multi-path fiber, an optical transverse-mode-multiplexed (TMM) signal having a plurality of independently modulated components by coupling each independently modulated component into a respective transverse mode of the multi-path fiber. The TMM signal undergoes inter-mode mixing in the multi-path fiber before being received by the optical receiver. The optical receiver processes the received TMM signal to reverse the effects of inter-mode mixing and recover the data carried by each of the independently modulated components.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: November 27, 2012
    Assignee: Alcatel Lucent
    Inventors: Rene′-Jean Essiambre, Roland Ryf, Peter J. Winzer
  • Publication number: 20120251105
    Abstract: A method and an apparatus are provided for launching light into an entrance facet of a MMF of an optical MMF link in a way that excites one or more targeted higher-order mode groups in the MMF. The light is launched into the entrance facet of the MMF as a line of phase-modulated spots, referred to herein as a “line launch”. The line launch causes one or more targeted higher-order mode groups to be excited in the MMF. The use of the line launch to excite one or more higher-order mode groups in the MMF increases the bandwidth of the link and allows overall link lengths to be increased. In addition, the use of the line launch is reliable and robust despite defects in the MMF and despite connector offsets. Thus, the use of the line launch ensures that a sufficient increase in link bandwidth will be achieved despite the existence of defects in the MMF and even if there is some amount of optical misalignment due to the connector being offset relative to the corresponding receptacle.
    Type: Application
    Filed: March 19, 2010
    Publication date: October 4, 2012
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Chi Hang Kwok, Ian Hugh White, Richard Vincent Penty, David George Cunningham
  • Publication number: 20120224861
    Abstract: The outage probability in an under-addressed optical MIMO system may be reduced by configuring a spatial-mode coupler at a transmitter and/or a spatial-mode separator at a receiver to dynamically change its spatial-mode configuration on a time scale that is shorter than the channel coherence time. Provided that the MIMO system employs an FEC code that has a sufficient error-correcting capacity for correcting the amount of errors corresponding to an average state of the MIMO channel established between the transmitter and receiver, this relatively fast dynamic change tends to reduce the frequency of events during which the number of errors per FEC-encoded block of data exceeds the error-correcting capacity of the FEC code.
    Type: Application
    Filed: December 21, 2011
    Publication date: September 6, 2012
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: Peter J. Winzer, Gerard J. Foschini
  • Publication number: 20120195600
    Abstract: An optical transport system has an optical transmitter and an optical receiver coupled to one another via an optical link having a plurality of transmission paths. The optical transmitter uses at least one of the transmission paths to transmit an optical-reference signal that enables the optical receiver to obtain (i) an optical local-oscillator signal that is phase- and frequency-locked to an optical-carrier frequency used by the transmitter for the generation of data-bearing optical signals and (ii) a clock signal that is phase- and frequency-locked to the clock signal used by the transmitter. The optical receiver then uses these signals to demodulate and decode the data-bearing optical signals in a manner that significantly reduces the complexity of digital signal processing compared to that in a comparably performing prior-art system.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicant: ALCATEL-LUCENT USA INC.
    Inventor: Peter J. Winzer
  • Patent number: 8078053
    Abstract: Various example embodiments are disclosed. According to one example embodiment, a method may include transmitting a semiconductor laser-generated optical signal from a first end of a multi-mode fiber (MMF) optical link to a second end of the link. The optical signal may have a reference bandwidth at the first end of the link. The method may further include converting the optical signal to an electrical signal. The method may further include analyzing the electrical signal with an electronic dispersion compensator to determine an effective modal bandwidth (EMBW) of the received optical signal. The method may further include analyzing the electrical signal with an electronic dispersion compensator to determine an intersymbol interference (ISI) penalty of the optical link.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 13, 2011
    Assignee: Cisco Technology, Inc.
    Inventors: Marco Mazzini, Carlo Tosetti, Carlo Mariotti
  • Patent number: 7965949
    Abstract: A robustly stabilized communication laser can output a multimode optical signal remaining aligned to a coordinate of a dense wavelength division multiplexing (“DWDM”) grid while responding to a fluctuating condition or random event, such as, without limitation, exposure to a temperature fluctuation, stray light, or contamination. Responsive to the fluctuating condition, energy can transfer among individual modes in a plurality of aligned longitudinal modes. Modes shifting towards a state of misalignment with the DWDM coordinate can attenuate, while modes shifting towards a state of alignment can gain energy. Fabrication processes and systems and light management, such as beam steering, epoxy scaffolds, spectral adjustments, mode matching, thermal expansion control, alignment technology, etc. can facilitate nano-scale control of device parameters and can support low-cost fabrication.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: June 21, 2011
    Assignee: Cirrex Systems LLC
    Inventor: Michael L. Wach
  • Patent number: 7965944
    Abstract: A system for passively scrambling and unscrambling a, pulse optical signal transmitted through a multi-mode optical fiber is provided. The system includes a scrambling unit connected between a signal receiving end of said transmission fiber and an optical signal source that includes an optical fiber which creates a differential delay between two groups of optical modes of the signal that is at least one bit period long such that said optical signal is passively scrambled, and an unscrambling unit connected to a signal transmitting end of said transmission fiber having an optical fiber that counteracts said differential delay between said two groups of optical modes of the signal such that said optical signal is passively unscrambled.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: June 21, 2011
    Assignee: Corning Incorporated
    Inventors: Shenping Li, Dmitri Vladislavovich Kuksenkov, Daniel Aloysius Nolan
  • Publication number: 20110002694
    Abstract: An optical data transmission apparatus is provided, in which a first communication unit 101 and a second communication unit 102 arranged to freely move relatively to each other each include an optical signal transmission unit having a laser diode 120 for emitting single-mode light, a multi-mode optical fiber 111 for guiding a single-mode optical signal output from the laser diode 120, converting the single-mode optical signal into a multi-mode optical signal, and outputting the multi-mode optical signal, an optical lens 112 for forming the optical signal output from the multi-mode optical fiber 111 into parallel light, and a first polarization element for passing the optical signal polarized in a predetermined direction out of optical signals output from the optical lens 112.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 6, 2011
    Applicant: HOKUYO AUTOMATIC CO., LTD.
    Inventors: Yoji Maejima, Masanori Hino
  • Patent number: 7805079
    Abstract: Photonic signals are tagged with a pre-selected modification, such as a polarization signature to carry data across an obstructed path between sender and receiver. Communication authentication through polarization variation allows for Yuen-Kumar or entangled photon quantum communication protocols to propagate through environmental scattering media such as air, smoke, fog, rain, and water. While ultraviolet light photons are well suited as a carrier for quantum communication signals scattered in air, it is appreciated that visible wavelengths have longer propagation paths in water to convey non-line-of-sight data. A secure signal is scattered by the media and simultaneously communicated to a single recipient or multiple recipients exposed to scattered signal portions. A process of solving the scattering processes through a random scattering media is provided to reconstruct a quantum keyed message at a receiver.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: September 28, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ronald E. Meyers, Keith S. Deacon
  • Patent number: 7747119
    Abstract: Disclosed is a method for manufacturing a multimode optical fiber for high data rate LAN using MCVD, which includes a deposition process for forming a clad layer and a core layer, doped with an additive for controlling a refractive index, on an inner wall of a quartz tube by injecting a deposition gas into the quartz tube and applying heat to outside of the quartz tube; and a collapse process, which is repeatedly conducted N times, for filling up a gap in the quartz tube by applying heat of a temperature over a deposition temperature to the quartz tube after the core layer is completely deposited. In the method, together with an N?1th collapse process, an etching process of injecting a reaction gas for etching into the quartz tube is conducted in order to eliminate a portion of which refractive index is transformed due to evaporation of the additive.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: June 29, 2010
    Assignee: LS Cable Ltd.
    Inventors: Dong-Wook Lee, Byeong-Chul Kang, Byong-Yoon Kang
  • Publication number: 20100142969
    Abstract: Disclosed is an optical system including a polychromatic optical source emitting multiple transverse modes, an optical link having at least one portion of multimode optical fiber, and an optical device positioned between the optical source and the input of the multimode optical fiber. The optical device can modify the distribution of the energy coupling of the transverse modes emitted by the source in the propagation modes of the multimode optical fiber. The optical system makes it possible to use low-cost transverse multimode optical sources for producing high-bandwidth Ethernet transmission networks having excellent performance.
    Type: Application
    Filed: November 6, 2009
    Publication date: June 10, 2010
    Applicant: DRAKA COMTEQ, B.V.
    Inventors: Asghar Gholami, Denis Molin, Pierre Sillard, Yves Lumineau
  • Publication number: 20100098431
    Abstract: An optical multimode fiber including a graded index core and an extended gradient core which has a negative refractive index difference with respect to the cladding. The fiber improves the bandwidth, reliability and complexity of the telecommunication systems that are based on multimode fibers. The fiber reduces the differential mode delay among modes. The fiber thereby allows achieving large bandwidth even in the case when the highest order modes are excited. This has positive effects to the conditions that need to be fulfilled by the components such as optical sources, connectors, fiber couplers, other optical components, cables, etc. The fiber eliminates negative impact of the cladding that allows for reduction of fiber core size and the difference between the cladding and the core and thereby allows for achieving the larger bandwidth of optical fiber at lower fiber production cost.
    Type: Application
    Filed: December 21, 2009
    Publication date: April 22, 2010
    Inventor: Denis Donlagic
  • Patent number: 7697794
    Abstract: A narrow-linewidth micropulse LIDAR transmitter based on a low-SBS single clad, small-mode-area optical fiber. High narrow-linewidth peak powers are achieved through the use of an erbium doped fiber with an acoustic waveguide. Over 6 ?J per pulse (100 ns pulse width) is achieved before a weak form of stimulated Brillouin scattering appears. This laser has the potential to scale to very high power in a low-SBS dual clad fiber.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: April 13, 2010
    Inventor: Peter Dragic
  • Patent number: 7638351
    Abstract: A photodiode and a method of fabricating a photodiode for reducing modal dispersion and increasing travel distance. The central region of the photodiode is made less responsive to incident light than a peripheral region of the photodiode. The less responsive central region discriminates the lower order modes such that only the higher order modes are incident on the more responsive peripheral region. Because the lower order modes are subtracted, the range of propagation constants is reduced and modal dispersion is also reduced.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: December 29, 2009
    Assignee: Finisar Corporation
    Inventor: Jimmy A. Tatum
  • Patent number: 7509004
    Abstract: Disclosed are various embodiments of systems, devices, components and methods for launching high-transmission-rate optical communication signals into legacy fiber optic cables. At least one aperture is provided on a proximal end of single-mode fiber optic stub so as to block or otherwise control the propagation of unwanted light into and through the stub. In one embodiment, a low-cost spheroidal lens is mounted between the optical transmitter and the proximal end of the fiber optic stub to focus and direct light emitted by the optical transmitter towards the fiber optic stub. The relatively broad light beam formed by the low-cost lens, in combination with the aperture, removes the requirement to precisely align the transmitter, lens and stub with one another, and further does away with the conventional requirement to attenuate the amount of signal power provided to the fiber optic stub.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: March 24, 2009
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Christopher L. Coleman