Dispersion Compensation Patents (Class 398/147)
  • Patent number: 9178614
    Abstract: A wavelength dispersion amount estimation method, a wavelength dispersion compensation circuit, and a receiving device which rapidly estimate and set a wavelength dispersion amount to compensate with high accuracy at the receiving device which compensates waveform distortion at an optical fiber transmission path.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: November 3, 2015
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Etsushi Yamazaki, Takayuki Kobayashi, Masahito Tomizawa, Riichi Kudo, Koichi Ishihara, Tadao Nakagawa, Mitsuteru Ishikawa
  • Patent number: 9071354
    Abstract: An optical receiving apparatus includes: a compensator configured to compensate an amount of change in a characteristic; a controller configured to obtain, based on a first amount of change in the characteristic with respect to a first optical signal with a first wavelength, the first wavelength, and a wavelength characteristic in the characteristic, a second amount of change in the characteristic made when a second optical signal with a second wavelength is propagated in an optical path, the second wavelength being different from the first wavelength, and obtain a compensation amount based on the second amount of change; and a first setting unit configured to set the compensation amount for the compensator so that the compensator compensates the amount of change in the characteristic.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: June 30, 2015
    Assignee: FUJITSU LIMITED
    Inventor: Hiroshi Iizuka
  • Patent number: 9071355
    Abstract: A dynamic dispersion detecting method and apparatus are disclosed. The apparatus includes a tunable dispersion compensation module (101), a demodulator (102), a receiver (103), a partial band radio frequency power detecting unit (104), and an electrical signal ratio calculating unit (105). The method includes: demodulating a phase of a received optical signal; converting the demodulated optical signal into an electrical signal; sampling radio frequency power of the electrical signal to obtain an radio frequency signal; obtaining an electrical signal ratio of the radio frequency signal; and comparing a value of a currently detected electrical signal ratio with the values of the previously detected electrical signal ratios, tuning a dispersion compensation value according to a comparison result to find a peak electrical signal ratio, and obtaining a residual dispersion value of a system according to the peak electrical signal ratio.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: June 30, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dezhong Yu, Fanming Meng, Junbo Xie, Yu Xu, Jiahong Zeng, Binlin Deng
  • Patent number: 9036998
    Abstract: An undersea long-haul transmission system includes an optical fiber transmission span and a coherent detection and digital signal processing module for providing dispersion compensation. The transmission span includes at least one fiber pair comprising substantially equal lengths of a positive-dispersion first fiber and a negative-dispersion second fiber that are configured to provide a signal output at transmission distances greater than 10,000 km, in which the combined accumulated dispersion across the operating bandwidth does not exceed the dispersion-compensating capacity of the coherent detection and digital signal processing module. Further described is a fiber for use in an undersea long-haul transmission span. At a transmission wavelength of 1550 nm, the fiber has a dispersion coefficient in the range of ?16 to ?25 ps/nm·km, and a dispersion slope in the range of 0.04 to 0.02 ps/nm2·km.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: May 19, 2015
    Assignee: OFS FITEL, LLC
    Inventor: Ole A Levring
  • Patent number: 9020357
    Abstract: A method of calculating a series of control parameters to be applied to a polarization controller arranged so as to compensate for the modal dispersion of polarization affecting an optical signal passing through an optical link by calculating a plurality of polarization states of which the respective representations on a Poincaré sphere are separated from one another by a distance greater than a minimum distance dependent on an acceptable threshold of bit error ratios and, for each state of polarization thus calculated, associating at least one control parameter to be applied to the polarization controller with the calculated state of polarization.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: April 28, 2015
    Assignee: Orange
    Inventors: Abdul Rahman El Falou, Paulette Gavignet, Erwan Pincemin
  • Patent number: 9020365
    Abstract: Current optical networks are engineered to handle amplifier noise and chromatic dispersion. Polarization mode dispersion occurs in optical networks due splitting of the light energy of a pulse propagating in a fiber into two modes. Compensating for polarization mode dispersion is a difficult and expensive task and hence only few commercial systems have been deployed to deal with this issue. A polarization mode dispersion compensation module according to an example embodiment of the present invention compensates for polarization mode dispersion by determining a performance metric related to an error rate of an optical signal in at least one polarization mode in a filtered state. Based on the performance metric, a control vector is determined to control the optical signal in the at least one polarization mode in the filtered state. The control vector is then applied to a polarization effecting device to compensate for polarization mode dispersion.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 28, 2015
    Assignee: Tellabs Operations, Inc.
    Inventors: Richard C. Younce, Julia Y. Larikova
  • Publication number: 20150104189
    Abstract: A compensation apparatus and method for inter-channel nonlinear damage are disclosed where the apparatus includes: an iteration parameter determining unit configured to determine an iteration step of cross-phase modulation damage compensation performed in each channel in a multichannel optical fiber transmission link; an estimating unit configured to divide an optical fiber transmission link in each iteration step of each channel into one or more optical fiber segments, and perform cross-phase modulation damage estimation at a position in each optical fiber segment where the nonlinear damage is maximal; and a first compensating unit configured to perform cross-phase modulation damage compensation according to the result of the cross-phase modulation damage estimation.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Applicant: FUJITSU LIMITED
    Inventors: Yangyang FAN, Liang DOU, Zhenning TAO
  • Patent number: 9002211
    Abstract: A communication system includes a transmission path through which an optical signal is propagated; and dispersion slope imparting sections provided on a transmitting side and a receiving side of the transmission path, the dispersion slope imparting sections imparting different dispersion and dispersion slope characteristics in accordance with a wavelength band of the optical signal, wherein the dispersion and dispersion slope characteristics imparted by the dispersion slope imparting section on the transmitting side is different from those on the receiving side.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: April 7, 2015
    Assignee: Fujitsu Limited
    Inventor: Hiroshi Nakamoto
  • Patent number: 8995844
    Abstract: An optical homodyne communication system and method in which a side carrier is transmitted along with data bands in an optical data signal, and upon reception, the side carrier is boosted, shifted to the center of the data bands, and its polarization state is matched to the polarization state of the respective data bands to compensate for polarization mode dispersion during transmission. By shifting a boosted side carrier to the center of the data bands, and by simultaneously compensating for the effects of polarization mode dispersion, the provided system and method simulate the advantages of homodyne reception using a local oscillator. The deleterious effects of chromatic dispersion on the data signals within the data bands are also compensated for by applying a corrective function to the data signals which precisely counteracts the effects of chromatic dispersion.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: March 31, 2015
    Assignee: Teradvance Communications LLC
    Inventors: Marcel F. C. Schemmann, Zoran Maricevic, Antonije R. Djordjevic, Darby Racey
  • Patent number: 8971724
    Abstract: A characteristic compensation method includes obtaining compensation information when degradation of a transmission characteristic of an optical transmission path of a received light signal is compensated for by using digital signal processing with respect to an electric signal obtained by photoelectrically converting the light signal, calculating an compensation value for a characteristic compensation device that optically compensates for degradation of the transmission characteristic to start characteristic compensation, based on the compensation information with respect to the light signal, setting the compensation value in the characteristic compensation device, and switching a state in which compensation is done using the digital signal processing to a state in which compensation is done using the characteristic compensation device after the setting of the compensation value is completed.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Fujitsu Limited
    Inventor: Kiyotoshi Noheji
  • Patent number: 8971703
    Abstract: A wavelength dispersion amount estimation method, a wavelength dispersion compensation circuit, and a receiving device which rapidly estimate and set a wavelength dispersion amount to compensate with high accuracy at the receiving device which compensates waveform distortion at an optical fiber transmission path.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: March 3, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Etsushi Yamazaki, Takayuki Kobayashi, Masahito Tomizawa, Riichi Kudo, Koichi Ishihara, Tadao Nakagawa, Mitsuteru Ishikawa
  • Patent number: 8958703
    Abstract: In a representative embodiment, a multipath channel and an optical subcarrier modulation scheme are designed in concert to cause different modulated subcarriers of the optical communication signal to become substantially uncorrelated over the aggregate signal bandwidth. Provided that the employed FEC code has sufficient error-correcting capability for average channel conditions, breakdowns in the operation of the FEC decoder and the corresponding system outages can substantially be avoided.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: February 17, 2015
    Assignee: Alcatel Lucent
    Inventors: Peter J. Winzer, Gerard J. Foschini
  • Patent number: 8942568
    Abstract: An apparatus has frame loss detecting unit 14 for detecting frame loss of a data frame; dispersion amount control request transmission device for transmitting, when the frame loss detecting device 14 detects the frame loss in an undetected state of an input break of an optical signal by optical input break detecting unit 13, an optical signal of a dispersion amount control request pattern to the opposite apparatus at a bit rate lower than that for transmitting the optical signal of the data frame until the frame loss becomes undetected state; and dispersion amount control request receiving device for receiving the optical signal of the dispersion amount control request pattern transmitted from the opposite apparatus, wherein dispersion compensator 21 controls the dispersion amount of transmission line between the apparatus and the opposite apparatus when the dispersion amount control request receiving device receives the optical signal of a specific pattern.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: January 27, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Shoichi Sato
  • Patent number: 8934786
    Abstract: An apparatus comprises an optical transmitter that comprises a processor and at least one optical modulator. The processor is configured to generate electronic representations of at least two pre-dispersion-compensated phase-conjugated optical variants carrying a same modulated payload data for transmission. The at least one optical modulator is configured to modulate the electronic representations, wherein an amount of dispersion induced on the pre-dispersion-compensated phase-conjugated optical variants depends on an accumulated dispersion (AD) of a transmission link through which the pre-dispersion-compensated phase-conjugated optical variants are to be transmitted. The amount of dispersion induced on the phase-conjugated optical variants may be approximately ?AD/2, where AD is the accumulated dispersion of the transmission link.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 13, 2015
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Peter J. Winzer, Andrew Roman Chraplyvy, Robert William Tkach
  • Patent number: 8923702
    Abstract: A microwave photonics based signal receiving device includes a signal generation module, a first Mach-Zehnder modulator, a dispersion module, a second Mach-Zehnder modulator, and a signal conversion module. The signal receiving device simplifies a structure of the signal receiving device by adopting quadrature demodulation. The signal receiving device demodulates a high-order modulation signal and flexibly adjusts a microwave carrier frequency.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 30, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wentong Wan, Kun Li, Limin Dong, Yanfu Yang, Chao Lv
  • Patent number: 8909052
    Abstract: A method is provided for carrying out dispersion compensation in an optical mesh network supporting simultaneously traffic services being provided at two or three different bit rates including a basic bit rate being 10 Gbps and at least one higher bit rate selected from among 40 Gbps and 100 Gbps. The method comprises the following steps: providing in-line dispersion compensation for every span in the network so as to reach positive average residual dispersion RDS per span extending to less than about 3 km; providing start points of possible trails in the network with respective external, pre-compensation negative Dispersion Compensation modules (DCMs), and providing termination points of possible trails in the network with respective external post-compensation positive DCMs.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: December 9, 2014
    Assignee: ECI Telecom Ltd.
    Inventor: Eyal Lichtman
  • Patent number: 8909041
    Abstract: A method for determining an optical signal-to-noise ratio penalty as a measure for a quality of an optical signal transmitted via an optical link between a source optical node and a destination optical node in an optical network, the method includes collecting information of the optical link; determining a configuration parameter Pconf of the optical link based on the information of the optical link; adjusting the configuration parameter Pconf to an adjusted configuration parameter P?conf according to linear impairments in the optical link; and determining the optical signal-to-noise ratio penalty based on a non-linear function of the adjusted configuration parameter P?conf, the non-linear function accounting for non-linear impairments in the optical link.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: December 9, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yabin Ye, Tong Wu, Sen Zhang
  • Patent number: 8909060
    Abstract: An optical communication system in which optical transmitter 101 that modulates an electric signal to an optical signal and transmits the optical signal and optical receiver 108 that receives the optical signal are connected via transmission path 107, wherein, when a change in the dispersion amount of chromatic dispersion caused by the optical signal passing through transmission path 107 is nearly eliminated, optical transmitter 101 and optical receiver 108 decrease the absolute value of a receiver-side dispersion compensation amount while keeping the total value of a transmitter-side dispersion compensation amount for compensating for the dispersion amount by optical transmitter 101 and the receiver-side dispersion compensation amount for compensating for the dispersion amount by optical receiver 108 substantially constant.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: December 9, 2014
    Assignee: NEC Corporation
    Inventor: Kiyoshi Fukuchi
  • Patent number: 8891972
    Abstract: An optical receiving apparatus includes a variable dispersion compensation unit, a delay interference unit, a photoelectric converter, a polarization control unit for control the polarization state of an optical signal inputted to the photoelectric converter, a received data processing unit for monitoring the number of error occurrences, and a control unit for controlling the dispersion compensation amount at the variable dispersion compensation unit and the optical phase control amount at the delay interference unit, based on information on the number of error occurrences from the received data processing unit.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 18, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventor: Toshiki Honda
  • Patent number: 8886050
    Abstract: The present invention provides a wavelength division multiplexing system and a method and device for its residual dispersion compensation, wherein the device for residual dispersion compensation of wavelength division multiplexing system comprises: a performance parameter detecting device for receiving and detecting performance parameter of receiving terminal optical signal and sending detecting result of the performance parameter to a central control device; the central control device for deciding a dispersion regulating mode of a tunable dispersion compensator according to the detecting result of the performance parameter and sending the dispersion regulating mode to a tunable dispersion compensator control device through control signaling; and the tunable dispersion compensator control device for receiving the control signaling sent by the central control device and adjusting dispersion compensation amount of the tunable dispersion compensator according to the control signaling in order to make residual di
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: November 11, 2014
    Assignee: ZTE Corporation
    Inventors: Likun Zhang, Jiaying Wang
  • Patent number: 8886051
    Abstract: Compensation for in-phase (I) and quadrature (Q) timing skew and offset in an optical signal may be achieved based on the correlation between derivatives of I and Q samples in the optical signal. The magnitude of the correlation between derivatives is measured to determine the presence of skew. Correlation between derivatives may be coupled with frequency offset information and/or with trials having additional positive and negative skew to determine presence of skew. Correlations are determined according to pre-defined time periods to provide for continued tracking and compensation for timing skew that may result from, for example, thermal drift.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: November 11, 2014
    Assignee: ViaSat, Inc.
    Inventors: Yuri Zelensky, Fan Mo
  • Patent number: 8886056
    Abstract: The present invention provides apparatus for self-phase modulation noise calculation, apparatus for self-phase modulation noise elimination and optical coherent receiver. The apparatus for calculation comprises: a signal receiver to receive an input signal; a calculator connected to the signal receiver to calculate a self-phase modulation noise at the current instant by using the signal powers of an input signal waveform at the current instant and at several sampling instants adjacent to the current instant. The embodiments of the present invention calculates the self-phase modulation noise at a certain instant by using the signal powers at a plurality of digital sampling periods before and after this instant, and when the apparatus is used to calculate the self-phase modulation noise of each of the sub-spans in an optical fiber transmission link, in case that the calculation precision is ensured, the granularity of the sub-spans may be reduced, thereby lowering the complexity of the calculation.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: November 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Lei Li, Zhenning Tao, Takeshi Hoshida
  • Patent number: 8886057
    Abstract: An optical receiver includes a splitter that splits a local oscillator lightwave into a first local oscillator lightwave and a second local oscillator lightwave; a measurement unit that measures phase variation of the first local oscillator lightwave; a receiving unit that receives a signal lightwave and the second local oscillator lightwave and mixes these lightwaves and converts the mixed lightwaves into digital signal; a dispersion compensator that reduces chromatic dispersion of the digital signal; a phase processing unit that rotates phase of the dispersion-reduced signal based on the phase variation; and a discriminating unit that discriminates the phase-rotated signal.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Kazuo Hironishi, Takeshi Hoshida
  • Patent number: 8879920
    Abstract: The present wavelength multiplexed optical system includes a multimode optical fiber that transmits wavelength multiplexed optical signals and a plurality of multimode modal dispersion compensation optical fibers. Each modal dispersion compensation optical fiber can transmit one of the multiplex wavelengths, and each modal dispersion compensation optical fiber has an optimized index profile such that the modal dispersion for the transmitted wavelength is approximately inversely equal to the modal dispersion induced in the multimode optical fiber. The wavelength multiplexed optical system facilitates an increased bitrate without reducing bandwidth.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 4, 2014
    Assignee: Draka Comteq, B.V.
    Inventors: Yves Lumineau, Denis Molin, Asghar Gholami
  • Patent number: 8879907
    Abstract: A measurement apparatus includes: a transmitter disposed at a transmission-side node and configured to transmit two pulsed lights with different wavelengths at time intervals to a reception-side node; a transmission controller configured to control the transmitter so as to transmit the two pulsed lights repeatedly while changing the time interval; a receiving unit disposed at the reception-side node and configured to receive the two pulsed lights from the transmitter via one or more relay nodes; a detection unit configured to detect a change in a phase of at least one of the two pulsed lights received by the receiving unit; and a measurement unit configured to measure, based on the time interval and the change in a phase detected by the detection unit, a dispersion value of each transmission line between two nodes of nodes including the transmission-side node, the reception-side node, and the one or more relay nodes.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: November 4, 2014
    Assignee: Fujitsu Limited
    Inventor: Ryosuke Goto
  • Patent number: 8873968
    Abstract: An optical field receiver comprises an optical branching circuit for branching a received optical multilevel signal into first and second optical signals, a first optical delayed demodulator for performing delayed demodulation on the first optical signal at a delay time T (T=symbol time), a second optical delayed demodulator for performing delayed demodulation on the second optical signal at the delay time T with an optical phase difference deviating from the first optical delayed demodulator by 90°, first and second optical receivers for converting each of the delayed demodulation signals representing x and y components of complex signals output from the first and second delayed demodulators into first and second electrical signals, and a field processing unit fort generating a first reconstructed signal representing an inter-symbol phase difference or a phase angle of a received symbol from the first and second electrical signals for each symbol time T.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 28, 2014
    Assignee: Hitachi, Ltd.
    Inventor: Nobuhiko Kikuchi
  • Publication number: 20140308046
    Abstract: Systems and methods for optical multi-path interference (MPI) compensation are provided. In an embodiment, a mean MPI signal representing a mean amplitude of the MPI in an input signal is generated and subtracted from a first estimate of transmitted amplitude of the input signal to generate a mean MPI compensated estimate of transmitted amplitude. The mean MPI compensated estimate of transmitted amplitude is sliced to generate a decision of transmitted amplitude of the input signal. The mean MPI signal can be generated using a mean MPI feedback loop or using an iterative feed-forward process. In another embodiment, mean MPI levels corresponding to respective transmitted intensity levels are generated and used to control slice levels of a slicer in order to compensate for MPI.
    Type: Application
    Filed: June 26, 2013
    Publication date: October 16, 2014
    Inventors: William BLISS, John WANG
  • Patent number: 8861960
    Abstract: The present disclosure provides systems and methods for the compensation of signal distortion in fiber optic communication systems and the like. More specifically, the present disclosure provides an orthogonal polarization detection and broadband pilot (OPDBP) technique for the compensation of nonlinear cross polarization (i.e. nonlinear cross polarization modulation) (XPolM) induced noise and nonlinear nonlinear cross phase modulation (XPM) induced noise in a high data rate polarization multiplexed (PM) multilevel-quadrature amplitude modulated (M-QAM) channel due to neighboring channels. This approach allows for the compensation of both XPolM and XPM simultaneously, providing several dBs of optical reach extension. The approach uses a pilot tone based orthogonal polarization detection scheme with broadband (i.e. a few GHz wide) filtering of the pilot tones.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: October 14, 2014
    Assignee: Ciena Corporation
    Inventors: Vladimir S. Grigoryan, Michael Y. Frankel
  • Patent number: 8861981
    Abstract: Embodiments of the present invention disclose an optical signal compensation device, where, a nonlinear compensation module in the optical signal compensation device adopts a new nonlinear compensation algorithm to perform nonlinear compensation on an optical signal, and during the process of performing the nonlinear compensation, it is no longer required to look up a table. Technical solutions provided in the embodiments of the present invention can effectively increase the processing speed of the nonlinear compensation, thereby reducing the overall processing delay of an optical signal compensation system.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ling Liu, Liangchuan Li
  • Patent number: 8849131
    Abstract: Polarization scattering compensation device and method are disclosed. In the device, a time sequence alignment unit aligns time sequences of signals in the first and second polarization state transmitted simultaneously; a polarization scattering estimation unit estimates a scattering coefficient of a scattering by the signal in the first polarization state on the signal in the second polarization state, and a scattering coefficient of a scattering by the signal in the second polarization state on the signal in the first polarization state; and a polarization scattering removal unit removes the scattering by the signal in the first polarization state on the signal in the second polarization state, and the scattering by the signal in the second polarization state on the signal in the first polarization state, in accordance with the scattering coefficients.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: September 30, 2014
    Assignee: Fujitsu Limited
    Inventors: Lei Li, Zhenning Tao, Shoichiro Oda
  • Patent number: 8849126
    Abstract: Exemplary embodiments include a method and systems for impairment compensation in a communication system. The systems can include an electronic phase conjugation system that receives an incoming optical signal from a first section of a fiber optic link, converts the incoming optical signal to an in-phase electric signal and a quadrature electrical signal, and generates a phase conjugated outgoing optical signal from the in-phase and quadrature electrical signals. The phase conjugated outgoing optical signal compensates for impairment of the fiber in the communication system.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: September 30, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Xiang Zhou, Guifang Li, Eduardo F. Mateo
  • Patent number: 8818206
    Abstract: The present disclosure provides electrical domain suppression of linear crosstalk in optical communication systems using single-carrier implementations. This electrical domain suppression applies spectral shaping in the electronic radio frequency (RF) domain. Advantageously, spectral shaping in the electronic RF domain transfers system complexity from the bulk optical domain into the highly integrated CMOS (or equivalent) domain. The spectral shaping can include electronic circuitry including an electrical filtering block and a signal linearization block prior to optical modulation. The electrical filtering block suppresses coherent interference terms and can include an RF-domain low pass filter. The signal linearization block linearizes modulator response to compensate spectral regrowth due to nonlinear mixing in the modulator.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: August 26, 2014
    Assignee: Ciena Corporation
    Inventor: Michael Y. Frankel
  • Patent number: 8818189
    Abstract: A transmission-path-type specifying apparatus includes an optical filter that extracts a plurality of different wavelength components from light including wavelength components occurring at the time of communication; an optical switch that simultaneously transmits same pulse signals superposed on light of the extracted wavelength components. The apparatus also includes an ASE modulation controlling unit that obtains a delay-time difference among the transmitted pulse signals when arriving at a destination via a transmission path; a characteristic-value calculating unit that calculates a characteristic value of the transmission path corresponding to a reference time varied depending on the obtained delay-time difference and a type of the transmission path; and a fiber-type determining unit that specifies the type of the transmission path based on the calculated characteristic value.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Limited
    Inventor: Futoshi Izumi
  • Patent number: 8818193
    Abstract: An embodiment of the invention includes a tunable optical dispersion compensator (TODC) comprising a first beam displacer on an optical path, wherein the first beam displacer separates an optical signal into a first beam and a second beam, and one or more polarizing beam splitters on the optical path, wherein the one or more polarizing beam splitters keep the first beam and the second beam on the optical path. The TODC also comprises one or more etalons on the optical path, wherein the one or more etalons are tunable to introduce a group delay in the first beam and the second beam, and a reflecting mirror on the optical path, wherein the reflecting mirror returns the optical signal back along the optical path. The TODC further comprises a second beam displacer, wherein the second beam displacer combines the first beam and the second beam into an output optical signal.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 26, 2014
    Assignee: Finisar Corporation
    Inventors: Fan Chen, Yongkang Hu, Zhenli Wen, Dongshen Han, Fahua Lan, Kevin Dapeng Zhang
  • Patent number: 8805199
    Abstract: A dispersion compensation design system includes a changing unit setting a changed value for the amount of dispersion compensation for a span connecting nodes constituting an optical network; a path classification unit determining whether respective paths in the optical network are capable of transmission with the changed value and classifying one or more of the paths as second category paths based on the determination results; an updating unit updating the amount of dispersion compensation with the changed value if the number of the second category paths in the latest classification result is less than the number of the second category paths in the retained previous classification result; and a repeating unit that, if not all of the paths in the optical network are capable of transmission, prevents use of combinations of amounts of dispersion compensation applied to the spans in the second category paths in the latest classification result.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 12, 2014
    Assignee: Fujitsu Limited
    Inventors: Kazuyuki Tajima, Tomohiro Hashiguchi, Yutaka Takita
  • Patent number: 8798477
    Abstract: The present invention relates to chromatic dispersion monitor and method, chromatic dispersion compensator. The chromatic dispersion monitor is used for estimating a chromatic dispersion in accordance with a chromatic dispersion correlation amount sequence, comprising: a phase differential unit, for obtaining a phase difference sequence by performing a phase differential calculation in accordance with the chromatic dispersion correlation amount sequence; a phase difference differential unit, for obtaining a phase difference differential sequence by performing a phase difference differential operation; and a chromatic dispersion estimating unit, for estimating the chromatic dispersion in accordance with the phase difference differential sequence obtained by the phase difference differential unit.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: August 5, 2014
    Assignee: Fujitsu Limited
    Inventors: Ling Liu, Zhenning Tao, Takahito Tanimura
  • Patent number: 8798483
    Abstract: The present invention discloses an apparatus and method for adaptive dispersion compensation, the apparatus comprising: a coarse-grain tunable dispersion compensator, a receiver with electric adaptive dispersion compensator, and a control logic unit. In the method, firstly it is to perform optical dispersion compensation for the input optical signals; then to perform electric dispersion compensation for the optical signals for which the optical dispersion compensation is performed; it is to detect the performance parameters of the receiving of the optical signals for which the electric dispersion compensation has been performed, and based on the performance parameters, it is to perform optical dispersion compensation adjustment for said input optical signals. With an optical de-multiplexer further, said apparatus can perform adaptive dispersion compensation for the multi-channel system.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: August 5, 2014
    Assignee: ZTE Corporation
    Inventor: Huade Shu
  • Patent number: 8787771
    Abstract: The present invention provides an optical networking device for re-amplifying, re-shaping, and re-timing an optical signal, as well as providing distortion compensation and performance monitoring of the optical signal. The optical networking device includes an all-optical regenerator device for one or more of re-amplifying, re-shaping, and re-timing the optical signal; a distortion compensator device for compensating for distortion associated with the optical signal; and a quality-of-signal monitoring device for measuring the quality of the optical signal. Preferably, the all-optical regenerator device, the distortion compensator device, and the quality-of-signal monitoring device are disposed within a single module. The quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation. Alternatively, the quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation and all-optical regeneration.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: July 22, 2014
    Assignee: Ciena Corporation
    Inventor: Michael Y. Frankel
  • Patent number: 8786821
    Abstract: A polarization controller includes a first polarization controller, a demultiplexer, a second polarization controller, and a multiplexer. The first polarization controller controls the state of polarization of input light such that a part of the wavelength components of the input light is in a first state of polarization. The demultiplexer demultiplexes the light output from the first polarization controller into a plurality of wavelength components. The second polarization controller controls the plurality of wavelength components in a second state of polarization by using liquid crystal modulation devices. The multiplexer multiplexes the plurality of wavelength components output from the second polarization controller.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: July 22, 2014
    Assignee: Fujitsu Limited
    Inventor: Takashi Shiraishi
  • Patent number: 8786939
    Abstract: A spectral sensing demodulator can include a programmable filter bank and a reconfigurable processor coupled to the programmable filter bank. The programmable filter bank can frequency demultiplex a plurality of frequency division multiplexed channels from a frequency band into a plurality of demultiplexed channels. The reconfigurable processor can include a plurality of reconfigurable resources. Each resource can be alternatively be configured to demodulate a demultiplexed channel and to monitor a demultiplexed channel.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: July 22, 2014
    Assignee: L-3 Communications Corp.
    Inventors: Thomas R. Giallorenzi, Samuel C. Kingston, Robert G. Rebolledo, Osama S. Haddadin
  • Patent number: 8787773
    Abstract: A dispersion correction circuit is provided for use with an input driving signal. The dispersion correction circuit includes an input portion an output portion and a filter portion. The input portion is arranged to receive the input driving signal. The output portion can output an output signal based on the input driving signal. The filter portion is disposed between the input portion and the output portion. The filter portion includes a first varactor, a DC bias portion, and a second varactor. The DC bias portion provides a DC bias to the first varactor. The first varactor is arranged in a first polarity direction, and the second varactor is arranged in a second polarity direction that is the same as the first direction.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: July 22, 2014
    Assignee: Motorola Mobility LLC
    Inventor: Jun Wang
  • Patent number: 8787755
    Abstract: Techniques, devices and applications are provided for monitoring a polarization mode dispersion (PMD) effect in an optical signal.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: July 22, 2014
    Assignee: General Photonics Corporation
    Inventor: Xiaotian Steve Yao
  • Patent number: 8787754
    Abstract: A method of estimating nonlinear transmission impairments of an Optical Channel (OCh) trail in an optical communications network. A per-span nonlinear field variance is calculated for each span of the trail. The per-span nonlinear field variance represents nonlinearly induced noise due to the transmission impairments of that span. The nonlinearly induced noise being imparted to a signal transmitted through the trail and detected by the receiver. A respective covariance between the nonlinear fields contributed by each span pair of the OCh trail is computed. The covariance represents the correlation of the nonlinearly induced noise imparted to the signal within the first span of a span pair with the nonlinearly induced noise imparted to the signal within the second span of the pair. A covariance matrix is populated using the computed per-span variance values and covariance values. A total nonlinear field variance is computed by summing over the covariance matrix elements.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 22, 2014
    Assignee: Ciena Corporation
    Inventors: Douglas James Beckett, Nourhan Eid, Michael Reimer, Xuefeng Tang, Maurice O'Sullivan
  • Patent number: 8781329
    Abstract: A dispersion compensation design system includes a segment dividing unit to divide an optical network into segments of a linear network or a ring network, a path classifying unit to classify one of paths of the optical network, as a specific type path, the one of the paths being incapable of transmitting an optical signal and contained in a longer path having a route longer than that of the one of the paths and capable of transmitting the optical signal, a segment reconfiguration unit to reconfigure the segments so as to maximize a number of the specific type paths, a dispersion compensation amount computing unit to compute a dispersion compensation amount in any of spans of the optical network so as to minimize the number of the specific type paths within the reconfigured segment, and an update unit to update the dispersion compensation amount with the computed dispersion compensation amount.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: July 15, 2014
    Assignee: Fujitsu Limited
    Inventors: Yutaka Takita, Tomohiro Hashiguchi, Kazuyuki Tajima
  • Patent number: 8774262
    Abstract: Methods, apparatuses, and systems are presented for performing adaptive equalization involving receiving a signal originating from a channel associated with inter-symbol interference, filtering the signal using a filter having a plurality of adjustable tap weights to produce a filtered signal, and adaptively updating each of the plurality of adjustable tap weights to a new value to reduce effects of inter-symbol interference, wherein each of the plurality of adjustable tap weights is adaptively updated to take into account a constraint relating to a measure of error in the filtered signal and a constraint relating to group delay associated with the filter. Each of the plurality of adjustable tap weights may be adaptively updated to drive group delay associated with the filter toward a target group delay.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: July 8, 2014
    Assignee: Vitesse Semiconductor Corporation
    Inventors: Sudeep Bhoja, John S. Wang, Hai Tao
  • Patent number: 8775135
    Abstract: A design method includes calculating a calculated compensation amount of a dispersion compensation module arranged on each of a plurality of wavelength paths in such a way that a residual chromatic dispersion value of each of the wavelength paths which transmits an optical signal between an initial node and a final node satisfies a tolerance condition given in accordance with a priority given to each of the wavelength paths; and deciding a decision value to be applied as the compensation amount of the dispersion compensation module based on the calculated compensation amount based on a plurality of candidate values each being prepared in advance as the candidate for the compensation amount of the dispersion compensation module.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: July 8, 2014
    Assignee: Fujitsu Limited
    Inventors: Rikiya Watanabe, Takuya Miyashita
  • Patent number: 8755690
    Abstract: An optical network contains dispersion compensation modules with Fiber Bragg Gratings. A photo detector behind the Fiber Bragg Grating detects the not reflected rest of the gratings input signal and therefore the dispersion compensation modules input signal. This information is used to reduce the expenditure and to avoid errors of configuration or administration of the dispersion compensating subsystem of the optical network.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: June 17, 2014
    Assignee: Xieon Networks S.a.r.l.
    Inventor: Arne Striegler
  • Patent number: 8755694
    Abstract: The invention relates to a method and an apparatus for distortion compensation of signals transmitted via a bidirectional link between a client device and a host device, said method comprising the steps of performing a post-distortion-compensation for an upstream signal received by the host device on said bidirectional link by adjusting post-compensation parameters of a post-compensation unit of said host device and transforming the adjusted post-compensation parameters into pre-compensation parameters of a pre-compensation unit of said host device which performs a pre-distortion compensation for a downstream signal transmitted by said host device via said bidirectional link to said client device.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: June 17, 2014
    Assignee: Adva Optical Networking SE
    Inventor: Michael Eiselt
  • Patent number: 8744278
    Abstract: In a digital signal processing circuit of an optical receiver applicable to this method for electric power supply control, tap coefficients of a filter used in a waveform equalization section are calculated in a tap coefficient calculating section, based on a state of an optical fiber transmission line. Then, among the calculated tap coefficients, a tap coefficient for which an absolute value is less than a previously determined threshold is determined, and electric power supply to a circuit part of a filter corresponding to the tap coefficient is stopped. As a result, for an optical receiver that performs digital signal processing, it is possible to reduce the power consumption, while realizing waveform equalization at a high accuracy.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 3, 2014
    Assignee: Fujitsu Limited
    Inventors: Shoichiro Oda, Takeshi Hoshida, Hisao Nakashima, Takahito Tanimura
  • Patent number: 8744279
    Abstract: Polarization mode dispersion (PMD) in a dual-pole optical communications network is compensated for using an adaptive PMD equalizer. The PMD equalizer may include a number of substantially identical filter modules that provide partial outputs which may be combined to form a PMD compensated output. A constant modulus algorithm (CMA)-based equalizer may track PMD across both poles and generates an error signal. The CMA-based equalizer includes a filter bank, and uses an update algorithm and tap/output adjustments based on a difference between combined tap energies and an index, and feedback from a forward error correction code frame synchronizer.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: June 3, 2014
    Assignee: ViaSat, Inc.
    Inventors: Fan Mo, Sameep Dave, Lawrence W. Esker