Using Equalizing Filter (e.g., Interferometer, Grating) Patents (Class 398/149)
  • Publication number: 20080310845
    Abstract: A wavelength division multiplexer and etendue conserved optics are used to combine multiple wavelength LED lights into a combined light. The combined light, with higher intensity and higher power than the light from an individual LED, is used to excite a wavelength conversion material such as phosphors to generate a high brightness and high power light. Light generated by multiple LEDs of the same wavelength may be coupled into a optical fiber bundle before inputting it into the wavelength-division multiplexer, further increasing the brightness and power. The wavelength conversion material may generate light of three different color under excitation by different LED lights, or a white light with higher brightness and higher power. Such a light source can be used in image display devices such as a projector or in illumination systems.
    Type: Application
    Filed: June 13, 2007
    Publication date: December 18, 2008
    Applicant: YLX CORP.
    Inventor: Li Xu
  • Patent number: 7447441
    Abstract: An apparatus and method of transmitting a plurality of polarized signals having different wavelengths through a length of signal transmission cable which changes the polarization of the signals in correspondence with their amplitudes and wavelengths. A dynamic filter capable of differential adjustment of the amplitudes of the signals and a polarizing element are provided in series with the length of signal transmission cable and the amplitudes of the different wavelength signals are so adjusted that the polarization states of the signals move towards alignment with the low-loss axis of the polarizing element. An advantage provided by the apparatus and method is that the high-amplitude signals are aligned with the low-loss axis of the polarizing element while low-amplitude noise is aligned with the high-loss axis of the polarizing element, resulting in an improvement in signal-to-noise ratio.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: November 4, 2008
    Assignee: Ericsson AB
    Inventors: Steven Alleston, Paul Harper, Donald Govan, Nicholas John Doran
  • Patent number: 7437083
    Abstract: A wavelength converter for binary optical signals includes an interferometer structure (110) for generating an output signal by modulating a received local signal (LS) according to the modulation of a fUrther received first input signal (IS 1). When such interferometer structures (110) are operated in a standard mode it is known in the art to control the power of the input signal such that the extinction ratio of the output signal is kept minimal. The invention also controls the power of the input signals to achieve the minimal extinction ratio when the wavelength converter and in particular the interferometer structure (110) is operated in a differential mode receiving two input signals.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: October 14, 2008
    Assignee: ALCATEL
    Inventors: Bruno Lavigne, Olivier Leclerc, Jean-Luc Moncelet, Alex Bombrun, Jean-Baptiste Pomet, Fabien Seyfert
  • Patent number: 7424226
    Abstract: An optical code division multiplexing communication method includes the steps of: producing a multi-wavelength optical pulse train from wavelength multiplexing pulse; transmitting the multi-wavelength optical pulse train through a transmission line using a time-spreading/wavelength-hopping method; decoding wavelength multiplexing pulse from the multi-wavelength optical pulse train transmitted through the transmission line; compensating delay time differences between individual optical pulses of the multi-wavelength optical pulse train, the delay time differences occurring in the step of transmitting the multi-wavelength optical pulse train through the transmission line; and compensating optical pulse spread in a time direction, which occurs in each of the optical pulses of the multi-wavelength optical pulse train in the step of transmitting the multi-wavelength optical pulse train through the transmission line.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: September 9, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Akihiko Nishiki, Kensuke Sasaki, Shuko Kobayashi, Satoko Kutsuzawa
  • Patent number: 7418206
    Abstract: It is an object of the present invention to provide a control technique for reducing wavelength dependence of wavelength dispersion values and also for suppressing a change in wavelength transmission characteristic with a temperature variation or the like, in a VIPA-type wavelength dispersion compensator.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: August 26, 2008
    Assignee: Fujitsu Limited
    Inventor: Yuichi Kawahata
  • Patent number: 7418212
    Abstract: A system and method for detecting digital symbols carried in a received optical signal. The system comprises a functional element operative to receive a stream of samples of an electrical signal derived from the received optical signal and to evaluate a non-linear function of each received sample, thereby to produce a stream of processed samples. The system also comprises a detector operative to render decisions about individual symbols present in the received optical signal on the basis of the stream of processed samples. In an embodiment, the non-linear function computes substantially the square root of each received sample.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: August 26, 2008
    Assignee: Nortel Networks Limited
    Inventor: Chandra Bontu
  • Publication number: 20080170861
    Abstract: A system and method for dispersion compensation of an optical signal in a hybrid network includes generating optical traffic in a first set of one or more channels, wherein the traffic in the first set of channels is modulated using a first modulation technique. Optical traffic is generated in a second set of one or more channels, wherein the traffic in the second set of channels is modulated using a second modulation technique. An optical dispersion pre-compensation is applied to the second set of channels. The first set of channels and the second set of channels are combined to form an optical signal, and the optical signal is transmitted over an optical network.
    Type: Application
    Filed: January 11, 2007
    Publication date: July 17, 2008
    Inventors: Olga I. Vassilieva, Takao Naito
  • Patent number: 7394986
    Abstract: The invention relates to wavelength-selective optical filters for allowing light of a narrow optical spectral band, centered around a wavelength (?c) to pass through them, while reflecting the wavelengths lying outside this band. According to the invention, the transfer function (T1,2(?)) of the component is defined by multiplying two transfer functions of spectrally offset Fabry-Perot filters.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: July 1, 2008
    Assignee: Atmel Grenoble S. A.
    Inventors: Romain Ramel, Sylvie Jarjayes, Stéphane Gluck
  • Patent number: 7389047
    Abstract: The network comprises an optical ring link (F) and a concentrator (HUB) that sends via one end of the link “downlink” optical signals carried by respective wavelengths and receives “uplink” optical signals via the other end of the link. The link is divided into a plurality of segments (FS1-FS4) separated by access nodes (AN1-AN3) for receivers (RX) of downlink optical signals and for senders (TX) of uplink optical signals. Each access node comprises coupling means that are not wavelength-selective for coupling the segment on the upstream side of the node to the segment on the downstream side and to the receivers and to couple the senders (TX) to the segment on the downstream side. The downlink optical signals are carried by wavelengths belonging to a set of predefined wavelengths. To optimize the use of spectral resources, a rejection filter (NF) is inserted into a segment to reject a portion of the wavelengths of said set of wavelengths.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 17, 2008
    Assignee: Alcatel
    Inventors: Thierry Zami, Arnaud Dupas
  • Patent number: 7385754
    Abstract: Efficient wavelength calibration in a WDM optical amplifier that includes an optical channel monitor (OCM) is obtained by introducing a notch into the amplified spontaneous emission (ASE) noise spectrum of the amplifier outside a WDM transmission band, and having the OCM detect the notch and use the notch as a reference to calibrate the wavelength measurement. The notch is introduced into the ASE noise spectrum using a notch filter, which is preferably incorporated in a gain flattening filter (GFF).
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: June 10, 2008
    Assignee: REDC Optical Networks Inc.
    Inventors: Uri Ghera, Alex Shlifer, Tomer Eliyahu, David Menashe
  • Patent number: 7379677
    Abstract: The wavelength converter comprises (1) an optical multiplexer for multiplexing an amplitude-modulated first light and reference light, which is continuous light having a wavelength different from the wavelength of the first light, (2) an optical fiber for propagating the multiplexed light therethrough to generate a third light by a non-linear optical phenomenon, and (3) an optical filter having a pass wavelength range set such that a pulse time width of the third light is 20% or more narrower than a pulse time width of the first light after the third light has passed through the optical filter, or (3?) an optical filter having a pass wavelength range set such that a cross point of an eye pattern of the third light is lower than a cross point of an eye pattern of the first light after the third light has passed through the optical filter.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: May 27, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Toshiaki Okuno
  • Patent number: 7369777
    Abstract: A dispersion compensator is provided that includes an input port 102 for receiving a WDM optical signal and a dispersion compensating element 110 coupled to the input port for substantially compensating the WDM optical signal for dispersion that has accumulated along an external transmission path. The dispersion compensator also includes an output port 104 for directing the dispersion compensated WDM optical signal to an external element and a dynamic power controller 106, 108, 112, 114, 116 for maintaining a total power of the WDM signal below a prescribed level prior to receipt of the WDM optical signal by the dispersion compensating element.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: May 6, 2008
    Assignee: General Instrument Corporation
    Inventors: Chandra Sekhar Jasti, Hermann Gysel, Mani Ramachandran
  • Patent number: 7352971
    Abstract: A method and system is provided for compensating polarization mode dispersion (PMD) in an optical communications system includes a controller designed to control a broadband PMD compensator to differentially delay light at each one of a plurality of selected wavelengths. At least one of the selected wavelengths lies between an adjacent pair of channel wavelengths of the optical communications system. A performance parameter value indicative of PMD is measured at each channel wavelength of the optical communications system. An estimated performance parameter value is then calculated at each selected wavelength, and an error function calculated as a function of wavelength based on the estimated performance parameter values. The broadband PMD compensator is then controlled to minimize the value of the error function.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: April 1, 2008
    Assignee: Nortel Networks Limited
    Inventors: Kim B. Roberts, Richard D. Habel, Maurice S. O'Sullivan
  • Patent number: 7340187
    Abstract: In an optical signal monitoring method in wavelength multiplexing and an optical network, an area corresponding to a characteristic pattern of an eye pattern of an optical signal to be monitored, which characterizes a deterioration, is extracted from a database storing a map which associates a quality deterioration factor and deterioration amount of the optical signal with the characteristic pattern of the area of the eye pattern of the optical signal. The extracted pattern is collated with the map stored in the database to monitor the quality deterioration factor and deterioration amount of the optical signal, an occurrence time of a deterioration, duration of a deterioration, a deterioration occurrence cycle, and a deterioration duration cycle. An optical signal monitoring apparatus is also disclosed.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 4, 2008
    Assignee: NEC Corporation
    Inventor: Hitoshi Takeshita
  • Publication number: 20080031633
    Abstract: A multi-level modulation receiving device for adaptively compensating for chromatic dispersion and polarization mode dispersion with high precision. Each equalizing filter has at least one variable parameter as a weight therefor and equalizes the waveform of a corresponding channel signal in accordance with an averaged variable parameter value. A signal quality monitor monitors the signal quality of the filter output signal, and a variable parameter value calculator calculates a variable parameter value to be set as the variable parameter, in accordance with the signal quality. A variable parameter averaging unit averages the variable parameter values calculated for respective channels, to generate an averaged variable parameter value, and sends the averaged variable parameter value to the equalizing filters such that the same weight is set in the equalizing filters associated with the n channels.
    Type: Application
    Filed: January 19, 2007
    Publication date: February 7, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Takeshi Hoshida, Hisao Nakashima
  • Patent number: 7327956
    Abstract: A method and apparatus for mitigating intersymbol interference (ISI) from narrow-band optical filtering and improving transmission performance by filtering multichannel optical signals using an optical filter device that exhibits a desired loss ripple in the transmittance profile of the filter passband.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: February 5, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Christopher Richard Doerr, Daniel A. Fishman, Xiang Liu
  • Patent number: 7324758
    Abstract: An optical dispersion monitoring apparatus and an optical dispersion monitoring method are capable of monitoring dispersion accurately with a simple construction in an optical transmission system using the same. To this end, the optical dispersion monitoring apparatus includes a light receiving section converting an input optical signal into an electrical signal, a signal transition position detecting section detecting the voltage level of a waveform of the output signal from the light receiving section, at a crossing point of a rising edge and a falling edge, and a cumulative dispersion information extracting section comparing the voltage level at the crossing point with a reference signal to extracts cumulative dispersion information.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: January 29, 2008
    Assignee: Fujitsu Limited
    Inventors: Masazumi Marutani, Takuji Yamamoto
  • Patent number: 7319823
    Abstract: The invention shows a transmission system with a transmitter function, a transmitting fiber and a receiver function where the transmitter function comprising lightsources (1), modulators (2) and a multiplexer (3), and the receiver comprising at least a demultiplexer (5), filters and electrical receivers where the channels for left side filtering are modulated with modulators with a negative chirp and for right side filtering with modulators with positive chirp.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: January 15, 2008
    Assignee: Alcatel
    Inventors: Sébastien Bigo, Yann Frignac, Wilfried Idler, Eugen Lach
  • Patent number: 7315575
    Abstract: A method is provided for an equalization strategy for compensating channel distortions in a dual-polarization optical transport system wherein the received signal includes a complex signal of a first transmitted polarization component and a complex signal of a second transmitted polarization component. In a first step, a blind self recovery mode used a blind adaptation algorithm in calculating and modifying multiple complex equalizer transfer function coefficients to enables recovery of only the complex signal of the first transmitted polarization component. In a second step, equalization is performed in a training mode for recovery of the complex signals of the first and second transmitted polarization components. In a third step, equalization is performed in a data directed mode. The method is suited for a digital signal processing implementation in a coherent receiver.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: January 1, 2008
    Assignee: Nortel Networks Limited
    Inventors: Han Sun, Kuang Tsan Wu
  • Patent number: 7302192
    Abstract: Methods, apparatus, and systems for an optical communication channel. A data signal is preconditioned prior to transmission over a fiber optic cable to minimize signal distortion and transmitted over a fiber optic cable. Preconditioning may include none, one or more, or all of the following: encoding the data signal using a run length limited code, correlating bits of the data signal, and spreading out the pulses in the time-domain in the data signal. The pulse spreading function can be implemented either in the electrical domain prior to the electrical-to-optical conversion; in the optical domain during and/or after the electrical-to-optical conversion; or a combination of both. During reception, the data signal and clock are recovered. Recovery may include maintaining an amplitude in an electrical signal, filtering the electrical signal, shaping the electrical signal, and removing distortions and intersymbol interference (ISI) from the received electrical signal.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: November 27, 2007
    Assignee: Menara Networks
    Inventors: Salam Elahmadi, Siraj Nour Elahmadi
  • Patent number: 7289739
    Abstract: A polarization mode dispersion (PMD) controller device for controlling the state of polarization of an optical light wave comprising a dispersion compensation unit (2; 25; 40) and an adaptation control unit (6; 28; 44), wherein the dispersion compensation unit (2; 25; 40) comprises a multitude of compensation stages processing the optical light wave, and wherein the adaptation control unit (6; 28; 44) controls the dispersion compensation unit (2; 25; 40) is characterized in that at least one feed-forward signal tap (4; 26a-26c, 73a-73c) is provided tapping the optical light wave inserted into one of the compensation stages, that the feed-forward signal(s) is(are) fed into a distortion analyzer unit (5; 27; 66) and that the distortion analyzer unit (5; 27; 66) provides the adaptation control unit (6; 28; 44) with information about the incoming optical light wave. It accelerates the adaptation speed and lowers the costs of a high-speed PMD controller device.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: October 30, 2007
    Assignee: Alcatel
    Inventors: Henning Bülow, Fred Buchali
  • Patent number: 7263296
    Abstract: In a system connecting a transmitter and a receiver using transmission paths and repeaters (in-line amplifiers), red chirping whose ? parameter is performed for an optical signal on a transmitting side. Each of the repeaters includes a dispersion-compensator for compensating the amount of dispersion on a preceding transmission path. The amount of dispersion compensation of the dispersion-compensator included in the transmitter is made constant. The dispersion-compensator included in the receiver is arranged in order to compensate the amount of dispersion on a preceding transmission path. A spread of a pulse width on a transmission path can be efficiently compensated by using the compensation capability of the dispersion-compensators and the red chirping on the transmitting side.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: August 28, 2007
    Assignee: Fujitsu Limited
    Inventors: Akira Miyauchi, Kazuo Yamane, Yumiko Kawasaki, Satoru Okano
  • Patent number: 7251396
    Abstract: A device for tailoring the chromatic dispersion of a multi-channel light signal is proposed. The device includes at least two waveguides coupled in a cascade, each provided with a spatially distributed optical filter. The group delay response of the filters is designed so that the group delay of each channel of the light signal can be tuned independently of the others, and an appropriate tuning mechanism is provided for this purpose. The device may advantageously be used as a flexible dispersion compensator.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: July 31, 2007
    Assignee: Universite Laval
    Inventors: Sophie Larochelle, Serge Doucet
  • Publication number: 20070166044
    Abstract: An optical quantizing unit includes an optical divider dividing 1st optical pulses to be quantized and sending the divided 1st optical pulses into a plurality of paths; a plurality of optical filters passing with different transmittances the divided 1st optical pulses; and an optical threshold filter sequentially receiving the 1st optical pulses, and sending 2nd optical pulses when light intensities of the 1st optical pulses are above a preset threshold value.
    Type: Application
    Filed: September 25, 2006
    Publication date: July 19, 2007
    Inventors: Masatoshi Hirono, Takahiro Suzuki, Hideki Ito, Takeshi Morino
  • Patent number: 7221872
    Abstract: The invention discloses an on-line dispersion compensation device for a wavelength division optical transmission system. The device is consisted of two optical path selectors and at least one chirped grating fiber unit. The chirped grating fiber unit is consisted of two chirped grating fibers with same wavelength band and connected oppositely. In addition, the chirped grating fiber unit is serially connected between the appropriate ports of the two optical path selectors. The invention applies a structure that combines a chirped grating fiber unit with two optical path selectors. The structure is suitable to on-line dispersion compensation in a DWDM system and has low insertion loss. When only a few wavelengths need to be compensated, the structure makes dispersion compensation with low cost, low insertion loss and compensating a large dispersion value. For single channel or broadband compensation, the invention provides dispersion compensation without through OADM or MUX/DEMUX filtering.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: May 22, 2007
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Heliang Liu, Qianjin Xiong
  • Patent number: 7218808
    Abstract: An optical equalizer circuit for a light source, the optical equalizer circuit comprising M optical couplers linked by differential delay lines, wherein coupling ratios for the respective M optical couplers of the equalizer circuit are calculated based on an input signal from the light source and a designed profile the optical input is to be equalized to.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: May 15, 2007
    Assignee: Agency for Science, Technology and Research
    Inventors: Ying Zhang, Qi Jie Wang, Yeng Chai Soh
  • Patent number: 7203400
    Abstract: A dispersion compensator having relatively uniform transmission characteristics over the bandwidth of a communication channel. The compensator is designed to process an optical signal corresponding to the communication channel by decomposing that signal into spectral components, routing different components along different optical paths that impart relative delays between the components, and recombining the delayed components spatially and directionally to generate a processed optical signal with reduced chromatic dispersion. In one embodiment, the compensator is a waveguide circuit that includes four diffraction gratings operating in transmission and optically coupled to a tunable lens array, in which different tunable lenses receive light corresponding to different communication channels. For each channel, a desired group delay value is produced by selecting magnification strength of the corresponding tunable lens.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: April 10, 2007
    Assignee: Lucent Technologies Inc.
    Inventor: David T. Neilson
  • Patent number: 7187873
    Abstract: An output signal of a single mode fiber (SMF) is spectrally shaped to achieve characteristics of a predefined channel “target” response. The target response is that of a partial-response, maximum-likelihood channel with additive white Gaussian noise. A receiver employs a maximum-likelihood sequence estimation (MLSE) detector having its detection algorithm, such as a Viterbi algorithm (VA), matched to the target response. Thus, state, branch, and path metric calculations for a Viterbi trellis may be optimized for a channel having this target response.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: March 6, 2007
    Assignee: Agere Systems Inc.
    Inventor: Anthony Bessios
  • Patent number: 7184665
    Abstract: A chromatic dispersion compensator in a single-pass and a double-pass version is disclosed. In a single-pass version, the compensator has a diffractive grating for spatially separating an input optical signal into spatially spaced frequency components and a MEMS array of separate phase shifters, each for imparting an independent phase shift to a channel containing a range of the spatially spaced frequency components. In a double-pass version, a retroreflector is disposed to effect a double pass of the light beam through the grating and the phase shifters. The arrangement is effecting in reducing chromatic dispersion of the optical signal.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: February 27, 2007
    Assignees: JDS Uniphase Inc., JDS Uniphase Corporation
    Inventors: Valentine N. Morozov, Sheldon McLaughlin, Thomas Ducellier
  • Patent number: 7184627
    Abstract: An optical wavelength grating coupler incorporating one or more distributed Bragg reflectors (DBR) or other reflective elements to enhance the coupling efficiency thereof. The grating coupler has a grating comprising a plurality of scattering elements adapted to scatter light along a portion of an optical path, and the one or more DBRs are positioned with respect to the grating such that light passing through the grating towards the substrate of the grating coupler is reflected back by DBRs toward the grating. The DBR comprises a multilayer stack of various materials and may be formed on the substrate of the grating coupler. The grating coupler may include a gas-filled cavity, where the cavity is formed by a conventional etching process and is used to reflect light toward the grating. The grating coupler may also incorporate an anti-reflection coating to reduce reflective loss on the surface of the grating.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: February 27, 2007
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime Jean Rattier
  • Patent number: 7181145
    Abstract: The optical communication multiplex device for a vehicle comprises optical communication lines connecting a transmitting terminal (Tx) to a receiving terminal (Rx). Contact resistances are disposed near the optical communication line to generate heat for changing the length of the optical communication lines. A power terminal and a ground terminal are respectively connected to one end and the other end of the contact resistances to thereby supply power to the contact resistances. A control terminal outputs a control signal for changing the length of the optical communication lines via the contact resistances supplied with power from the power terminal. A transistor connected between the control terminal and the contact resistances carries out a switching operation of power applied to the contact resistances from the power terminal in response to the control signal inputted from the control terminal.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: February 20, 2007
    Assignee: Hyundai Motor Company
    Inventor: Byong-Sik Choi
  • Patent number: 7177545
    Abstract: The present invention propose an optical filter for filtering out at least a part of one of two spectral side-bands of a coded optical signal spectrum having a carrier wavelength, the first of said side-bands which is to be transmitted by said filter being called transmitted side-band, the second of said side-bands which is to be filtered out by said filter being called vestigial side-band, said optical filter having a transmission response in intensity, having a maximum value at a central filter wavelength distinct from said carrier wavelength and located in said transmitted side-band, and said response being divided into two parts, a first filter part associated to a wavelength region including said carrier wavelength, a second filter part associated to a wavelength region which does not include said carrier wavelength where at a given value of transmittance distinct from said maximum value, said second filter part has a filter width smaller than the filter width of said first filter part.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: February 13, 2007
    Assignee: Alcatel
    Inventors: Yann Frignac, Sébastien Bigo
  • Patent number: 7167647
    Abstract: The present invention is generally directed to optical signal devices that monitor the quality of an optical signal in a wavelength division multiplexing system by evaluating the information in the different wavelength channels.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: January 23, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Louay Eldada, Reinald Gerhardt
  • Patent number: 7167649
    Abstract: Disclosed is a dense wavelength division multiplexing-passive optical network (DWDM-PON) system utilizing self-injection locking of Fabry-Perot laser diodes, in which output optical signals of different wavelengths are partially fed back by a partial mirror, so as to injection-lock the Fabry-Perot laser diodes, respectively. In accordance with this system, inexpensive Fabry-Perot laser diodes can be used as respective light sources of a central office and optical network units (ONUs). Accordingly, it is possible to minimize the system construction costs, as compared to conventional optical networks.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: January 23, 2007
    Inventors: Jae-Won Song, Jong-Hoon Lee
  • Patent number: 7151898
    Abstract: A polarization mode dispersion (PMD) feedforward compensator compensates first and second order PMD. An optical signal is provided to a PMD detector that senses first and second order PMD in the optical signal and produces control signals for the PMD compensator. The PMD compensator comprises, in series, a first polarization controller, an adjustable delay, a second polarization controller, a first fixed delay, a third polarization controller and a second fixed delay.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: December 19, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Poh-Boon Phua, Hermann A. Haud
  • Patent number: 7146107
    Abstract: A tunable dispersion compensator whose passband center wavelength changes when the amount of dispersion compensation is changed is suitably adjusted. The relationship between temperature for keeping the center wavelength constant and the amount of dispersion compensation is stored in advance. After controlling the amount of dispersion compensation to achieve best or optimum transmission quality, the amount of dispersion compensation is converted into temperature in accordance with the stored relationship and, based on that, the temperature is controlled to keep the center wavelength constant.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: December 5, 2006
    Assignee: Fujitsu Limited
    Inventors: Kentaro Nakamura, Hiroki Ooi, Tomoo Takahara
  • Patent number: 7123841
    Abstract: The transmission system is suitable for amplitude modulated controlled phase optical signals (S) having an optical phase in each low level pulse that precedes or follows a high level pulse. The system includes an optical link (L) and, to allow a high transmitting power, optical corrector means (FG) are provided for applying optical filtering to the signal R at the exit (B) of the link and/or at one point or a plurality of points of the link (L), to compensate widening of its spectrum that the controlled phase signal (S) may suffer because of phase self-modulation during its transmission. Application to long-haul optical transmission.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: October 17, 2006
    Assignee: Alcatel
    Inventor: Hans Bissessur
  • Patent number: 7120361
    Abstract: Two set of filter chips on the upper and lower surfaces, each of which has a wavelength characteristic corresponding to each wavelength component of wavelength-multiplexed light, are mounted on a transparent substrate to make an optical filter element. When the wavelength-multiplexed light is inputted to the optical filter element via an optical fiber and when the same light components as those having the wavelengths demultiplexed by an optical fiber is also inputted, the demultiplexed light and the replaced wavelength-multiplexed light will be obtained at another optical fibers, respectively.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: October 10, 2006
    Assignee: Santec Corporation
    Inventor: Masataka Tei
  • Patent number: 7110683
    Abstract: An output signal of a single mode fiber (SMF) is spectrally shaped to achieve characteristics of a predefined channel “target” response. The target response is that of a partial-response, maximum-likelihood channel with additive white Gaussian noise. A receiver employs a maximum-likelihood sequence estimation (MLSE) detector having its detection algorithm, such as a Viterbi algorithm (VA), matched to the target response. Thus, state, branch, and path metric calculations for a Viterbi trellis may be optimized for a channel having this target response.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: September 19, 2006
    Assignee: Agere Systems Inc.
    Inventor: Anthony Bessios
  • Patent number: 7106970
    Abstract: To generate light with the degree of polarization zeroed and the spread of an optical spectrum suppressed even with temporal overlapping between optical pulses each of which is polarized orthogonally to the succeeding pulse, a polarization scrambler includes an optical pulse generator that generates optical pulses with an intensity waveform repetition period T/2 and an electrical field repetition period T in which the same intensity waveform is repeated every repetition period T/2 and in which phase is inverted every repetition period T/2, and an orthogonal polarization delay unit which receives each of the optical pulses, separates the optical pulse into two optical pulses with orthogonal states of polarization, and relatively shifts the temporal position of one of the two optical pulses from that of the other optical pulse by (2n?1)T/4 (n is a natural number) to generate light in which each pulse is polarized orthogonally to a succeeding pulse.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 12, 2006
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Masamichi Fujiwara, Mitsuhiro Teshima, Noboru Takachio, Katsumi Iwatsuki
  • Patent number: 7082268
    Abstract: Optical transmitter/receivers for use in a DWDM systems are provided. Transmission of data signals in a quadrature-return-to-zero (QRZ) format achieves a data transmission rate equal to eight times a base data rate, i.e., 80 Gbps over a 100 GHz channel if the base data rate is 10 Gbps, with high non-linear performance by setting the polarization state of the data bands such that non-linear effects induced by PMD are reduced. Additionally, a transmitter achieves a transmission data rate equal to 16 times the base data rate by sharpening the QRZ pulses and interleaving pulse-sharpened QRZ data signals in the time domain, further doubling the data rate. Using counterpropagation in the transmitter, carrier signals and data signals traverse the same length of fiber, reducing fringing effects in the transmitter. Related techniques enhance reception and detection of data at high data rates. A local pulse-sharpened carrier is mixed with a QRZ data signal at a detector reducing amplification noise by a factor of two.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: July 25, 2006
    Assignee: Teradvance Communications, LLC
    Inventors: Marcel F. C. Schemmann, Zoran Maricevic, Bogdan Hoanca
  • Patent number: 7076172
    Abstract: An optical waveguide system exhibiting reduced noise includes a varying dispersion optical waveguide fiber and a high frequency electrical filter. The varying dispersion fiber shifts the frequency spectrum of the noise relative to that of the signal so that the noise can be filtered with substantially no effect on the signal. The varying dispersion fiber is a passive component of the optical system and is compatible with optical connecting and splicing.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: July 11, 2006
    Assignee: Corning Incorporated
    Inventor: Shiva Kumar
  • Patent number: 7068943
    Abstract: The present invention provides devices and methods for dynamic dispersion compensation. According to one embodiment of the invention, a dispersion compensating device includes a negative dispersion fiber having an input configured to receive the optical signal, the negative dispersion fiber having a length and dispersion sufficient to remove any positive chirp from each wavelength channel of the optical signal, thereby outputting a negatively chirped optical signal; an amplifying device configured to amplify the negatively chirped optical signal; and a nonlinear positive dispersion fiber configured to receive the negatively chirped optical signal. The devices of the present invention provide broadband compensation for systems having a wide range of variable residual dispersions.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: June 27, 2006
    Assignee: Corning Incorporated
    Inventors: Andrey E. Korolev, Dmitri V. Kuksenkov, Shenping Li, Daniel A. Nolan, Michael Sauer, Alexej Sysoliatin
  • Patent number: 7031613
    Abstract: End of line dispersion compensation is applied on a sub-band by sub-band basis. Adequate end-of-line dispersion compensation may be provided for high data rate WDM systems even for optical link lengths of 1000 km or more. Dispersion compensating gratings (DCGs) may be used as the dispersion compensating components. There is a great savings in cost and package volume compared to per-channel compensation schemes.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: April 18, 2006
    Assignee: Cisco Technology, Inc.
    Inventors: Marco Mazzini, Federico Carniel
  • Patent number: 7020400
    Abstract: A multi-wavelength optical communication system includes a number of emitters each of which emits radiation at a different wavelength; a plurality of the detectors each of which senses radiation at a different wavelength corresponding to the radiation from one of the emitters and a shared waveguide including a scattering medium to transmit emitted radiation to the detectors.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: March 28, 2006
    Assignee: Altera Corporation
    Inventors: John A. Trezza, Mani Sundaram, Richard J. Williams
  • Patent number: 7010235
    Abstract: A system for all-optical signal regeneration is provided, which makes it possible to exhibit desired intensity noise suppressing function with respect to pulsed input signal light without increasing the injection current of semiconductor optical amplifiers even if the magnitude of nonlinear phase shift of the input signal light is less than ?. The output light of the first delay interference unit is subjected to phase shift in the first nonlinear semiconductor waveguide and then, applied to the second delay interference unit along with the clock light. In the second delay interference unit, the first interfered light is generated from the output light while the second interfered light is generated from the clock light having an opposite logic to the input light. The second interfered light is subjected to phase shift by the first interfered light in the second nonlinear semiconductor waveguide and then, applied to the third delay interference unit.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: March 7, 2006
    Assignee: NEC Corporation
    Inventor: Yoshiyasu Ueno
  • Patent number: 7003228
    Abstract: Improved high-speed adaptive equalization is presented that may involve converting an optical signal into an electrical signal and performing equalization by (i) filtering the electrical signal with an analog filter according to at least one filter coefficient to produce a filtered output, (ii) generating an error signal from the filtered output according to an error function, (iii) providing at least one control signal to the analog filter for adjusting the at least one filter coefficient, (iv) detecting a relationship between a change in the at least one filter coefficient and a change in the error signal, and (v) adjusting the at least one filter coefficient according to the relationship to minimize the error signal. The least one coefficient may comprise a plurality of coefficients, and the relationship may be a gradient estimate having multiple components, each determined by varying only one of the coefficients and detecting a resulting change in the error signal.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 21, 2006
    Assignee: Vitesse Semiconductor Corporation
    Inventors: John S. Wang, Sudeep Bhoja, Shanthi Pavan, Hai Tao
  • Patent number: 6999683
    Abstract: A wavelength division multiplex optical system includes a WDM combiner to provide a source signal, at least one transmitter coupled to an input of the WDM combiner, a broadband noise source, and a filter coupled between the broadband noise source and another input of the WDM combiner. In one embodiment, the filter is an optical notch filter. In an alternative embodiment, the filter includes a WDM demultiplexer coupled through plural filters to provide a plurality of noise signals and a WDM multiplexer coupled through at least one filter of the plural filters to respective noise signals.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: February 14, 2006
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Franklin W. Kerfoot, III, Matthew X. Ma, Mark D. Tremblay, Wolfgang Schlosser
  • Patent number: 6980744
    Abstract: Methods and systems for higher-order PMD compensation are implemented by developing an effective mathematical model and applying economical design techniques to the model. By assuming a constant precession rate for a narrow band of frequencies in an optical signal, a simplified model of a higher-order PMD compensator can be derived. The model can be used produce an economical compensator by making multiple uses of selected optical components.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: December 27, 2005
    Assignee: AT&T Corp.
    Inventors: Antonio Mecozzi, Jonathan A. Nagel, Mark Shtaif, Moshe Tur
  • Patent number: 6980742
    Abstract: Wavelength drift in an optical WDM system between wavelengths launched by lasers (110) and received at a demultiplexer (50) can lead to disturbance of traffic signals if not identified and rectified rapidly. It is proposed to identify wavelength drift by determining a difference in temperature of the demultiplexer (50) for each channel between an actual temperature and a temperature for optimal transmission of the channel. The mean of these temperature differences for all channels is indicative of wavelength drift, while each difference is utilised to determine whether an individual channel is drifting in wavelength and to correct the drift. Wavelength drift can be detected and corrected whether sourced at a laser (110) or due to a temperature variation at the demultiplexer (50). Measurement and control can be performed during normal operation without impeding or degrading traffic flow. Wavelength influencing parameters other than temperature can be utilized.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: December 27, 2005
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Fredrik Lidén, Magnus Öberg