Using Optical Phase Conjugation Patents (Class 398/150)
  • Patent number: 6771853
    Abstract: An optical fiber communication system according to the present invention has, for example, first and second phase conjugators. The first phase conjugator converts a signal beam from a first optical fiber into a first phase conjugate beam. The first phase conjugate beam is supplied to the second phase conjugator by a second optical fiber. The second phase conjugator converts the first phase conjugate beam into a second phase conjugate beam. The second phase conjugate beam is transmitted by a third optical fiber. The second optical fiber is composed of a first portion located between the first phase conjugator and a system midpoint and a second portion located between the system midpoint and the second phase conjugator. The total dispersion of the first optical fiber substantially coincides with the total dispersion of the first portion, and the total dispersion of the second portion substantially coincides with the total dispersion of the third optical fiber.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: August 3, 2004
    Assignee: Fujitsu Limited
    Inventor: Shigeki Watanabe
  • Patent number: 6763157
    Abstract: A system to facilitate alignment of an optical connector to respective optical channels of one or more optical arrays. Optical planar arrays having multiple optical emitters and multiple optical detectors of a multi-channel optical link are aligned by employing supporting circuitry and software that controls the optical devices, enabling all receivers, turning on the transmitters sequentially, and recording the optimal transmitter/receiver pairs. Another feature of the invention is the aspect of redundancy, wherein the system establishes a record of spare emitters and spare detectors that are used when the selected transmitter receiver pair degrades or fails. The techniques of the present invention also provide a unique multiplexer/demultiplexer arrangement for a single wavelength channel of emitters and detectors.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: July 13, 2004
    Assignee: Teraconnect, Inc.
    Inventors: Richard J. Williams, Mani Sundaram
  • Patent number: 6760110
    Abstract: A low coherent reflectometer uses low coherent beams for measurement of refletance and refleting positions with respect to a measured optical circuit which includes a reflecting point. The low coherent beams are branched to produce measurement beams (DL) and local beams (KL), so that the measurement beams are introduced into a first optical path, which includes a dispersion shifted fiber, towards the measured optical circuit, while the local beams are introduced into a second optical path which includes a spatial optical path terminated by a reflecting mirror. Refleted measurement beams (RL) and reflected local beams are combined together to produce combined beams, which are subjected to processing and analysis.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: July 6, 2004
    Assignees: Ando Electric Co., Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Syoichi Aoki, Tetsuo Yano, Kenji Senda, Kazumasa Takada
  • Patent number: 6748178
    Abstract: An optical fiber (12a) with a large effective core area and a large chromatic dispersion value is disposed on an input side of signal light, and an optical fiber (12b) with a small effective core area and a small chromatic dispersion value or a chromatic dispersion value of negative polarity is disposed on an output side of the signal light. A pumping light source (14) generates pumping light of 1450 nm to cause Raman amplification of 1550 nm in the optical fiber (12b). The output light from the pumping light source (14) enters the optical fiber (12b) from the back through a WDM optical coupler (16). Provided that y=(Pin−&agr;)/(Pp·10 Log L) where input power of the optical fiber (12a) (i.e.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: June 8, 2004
    Assignees: DDI Corporation, KDD Submarine Cable Systems, Inc.
    Inventors: Takayuki Miyakawa, Masatoshi Suzuki, Noboru Edagawa
  • Patent number: 6728019
    Abstract: An optical gate according to the invention comprises a polarization divider to divide an optical signal into two orthogonal polarization components and to output them as a first polarization component which precedes in the time base and a second polarization component which follows the first one in the time base; a semiconductor optical amplifier to modulate the phase of the second polarization component output from the polarization divider according to a control light; an assist light supplier to supply to the semiconductor optical amplifier an assist light to help the recovery of the refractive index variation of the semiconductor optical amplifier caused by the control light; a polarization combiner to combine the first and second polarization components of the optical signal transmitting on the semiconductor optical amplifier so as to adjust them in the same time location; and a polarization extractor to extract a predetermined polarization direction component from the output from the polarization combine
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: April 27, 2004
    Assignee: KDD Submarine Cable Systems Inc.
    Inventors: Masashi Usami, Kosuke Nishimura, Munefumi Tsurusawa
  • Patent number: 6724997
    Abstract: The invention relates to a method for compensating signal dispersion in an optical communication network and to an optical communication network. The dispersion compensation is carried out by constructing the network in such a way that a route having an even number of phase conjugating means can be found between any two nodes. The routing is primarily made along a route in which there is the minimum even number of phase conjugating means between the terminal nodes. A preferred embodiment of the invention is a ring network constructed of two concentric rings in such a way that both rings comprise the same node points, but the number of phase conjugating means to be installed in said rings, in the optical fibers between adjacent nodes is, for example, even in the outer ring and odd in the inner ring.
    Type: Grant
    Filed: September 11, 2001
    Date of Patent: April 20, 2004
    Assignee: Nokia Corporation
    Inventor: Markku Oksanen
  • Patent number: 6704519
    Abstract: An optical transmission system is formed to include an optical phase conjugator at alternate repeater sites to minimize the presence of four-wave mixing and other Kerr effect nonlinearities in systems using optical fiber transmission paths (particularly in systems using DWDM and launching relatively high power signals into the low dispersion fiber). Raman gain is included in each fiber span (or in alternate fiber spans) so as to provide a “negative absorption” along the length of the fiber and thereby provide for essentially symmetrical power distribution along the length of each span, where the presence of such a symmetric,power distribution on each side of an optical phase conjugator has been found to significantly improve its performance.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: March 9, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Igal M. Brener, Benny Peter Mikkelsen, Karsten Rottwitt, Jason Blain Stark
  • Patent number: 6626592
    Abstract: An optical communication system which uses optical phase conjugation to compensate for chromatic dispersion and optical Kerr effect. The optical communication system includes a first fiber, a phase conjugator, and a second fiber. The first fiber transmits a light signal therethrough, and is a polarization maintaining fiber. The light signal is a linear polarized wave. The phase conjugator receives the light signal from the first fiber and produces a corresponding phase conjugate light signal. The second fiber receives the phase conjugate light signal from the phase conjugator and transmits the phase conjugate light signal therethrough. A wavelength division multiplexing optical communication system is also provided which uses optical phase conjugation to compensate for dispersion and optical Kerr effect.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: September 30, 2003
    Assignee: Fujitsu Limited
    Inventor: Shigeki Watanabe