Test Signal Patents (Class 398/16)
-
Publication number: 20140376906Abstract: An optical measurement system configured to determine whether an optical transmitter signal requires calibration is disclosed. In an implementation, the system includes an optical transmitter configured to emit electromagnetic radiation in limited spectrums of wavelengths at amplitudes based upon one or more transmission signals, and an optical sensor configured to detect the electromagnetic radiation in the limited spectrums of wavelengths and to generate a signal in response thereto. The system includes reference current sources configured to generate a respective reference current and a switch configured to transition between a first configuration and a second configuration based upon the transmission signals. The reference currents are configured to subtract from the signal generated by the optical sensor such that a difference remains.Type: ApplicationFiled: September 17, 2013Publication date: December 25, 2014Applicant: Maxim Integrated Products, Inc.Inventors: Benjamin A. Willcocks, Miguel Valencia, Sayed A. Madni
-
Patent number: 8917988Abstract: A system to provide carrier frequency control in an optical network includes a first network element monitoring performance information and a second network element coupled to the first network element by the optical network. The second network element receives performance information from the first network element using an administration channel bandwidth, and modifies a carrier frequency associated with the second network element based on the performance information such that the carrier frequency is aligned to a center of a signal channel bandwidth. A method of providing carrier frequency control includes transmitting performance information by the first network element to the second network element using an administration channel bandwidth, and modifying the carrier frequency by the second network element based on the performance information such that the carrier frequency is aligned to the center of the signal channel bandwidth.Type: GrantFiled: December 7, 2012Date of Patent: December 23, 2014Assignee: AT&T Intellectual Property I, L.P.Inventor: Xiang Zhou
-
Patent number: 8917987Abstract: A method for detecting branch fibers is provided, which includes: sending test signals to a plurality of branch fibers, where the test signals are added at ports of the optical splitting module with identification information for identifying branch fibers connected to the ports and receiving a reflection signal added with the identification information of a detected branch fiber, identifying the detected branch fiber corresponding to the reflection signal through detecting the identification information added to the reflection information, and obtaining channel characteristics of the detected branch fiber according to the reflection signal. Further, a system and an apparatus for detecting branch fibers are provided.Type: GrantFiled: June 21, 2012Date of Patent: December 23, 2014Assignee: Huawei Technologies Co., Ltd.Inventors: Yunsheng Wen, Jun Zhao, Shijun Wang, Xiaolei Shan, Bo Wang
-
Patent number: 8913887Abstract: In a first aspect, the method and apparatus of the present disclosure can be used to periodically and/or intermittently place one or more ONUs attached to a PON in a power savings mode so that an OTDR test can be performed. While in the power savings mode, the ONUs temporarily suspend their transmitter function and power down their upstream lasers. In a second aspect, the method and apparatus of the present disclosure can be used to coordinate the performance of OTDR during one or more periodic or intermittent discovery slots used to detect and register ONUs recently connected to the PON. Because new ONUs are infrequently connected to the PON and ONUs already registered are not permitted to transmit during the discovery windows, OTDR can be performed during these windows without impacting, to a great degree, the normal operation of the PON.Type: GrantFiled: May 30, 2012Date of Patent: December 16, 2014Assignee: Broadcom CorporationInventors: Ryan E. Hirth, Lowell D. Lamb
-
Patent number: 8909039Abstract: A method and apparatus for testing an optical cable is provided. In one embodiment, the apparatus may include a receiver for receiving a received pulse train through the optical cable. The apparatus may further include a cross-correlation system in communication with the receiver. The cross-correlation system may be adapted to determine a cross-correlation of the received pulse train and matched filter to an expected pulse train. The apparatus may further include a comparator in communication with the cross-correlation system. The comparator may be adapted to compare the cross-correlation to a threshold. The apparatus may also include an output transmitter, in communication with the comparator. The output transmitter may be able to output a comparison-result output that includes the results of the comparator comparison of the cross-correlation against a threshold.Type: GrantFiled: March 7, 2013Date of Patent: December 9, 2014Assignee: International Business Machines CorporationInventors: Tara Astigarraga, Louie A. Dickens, Michael E. Starling, Daniel J. Winarski
-
Patent number: 8903237Abstract: There is provided a method for determining a signal transfer characteristic along a light path between a first point and a second point in an optical network. The optical network comprises at least one optical element situated in the light path. The method comprises transmitting a plurality of optical test signals of different bandwidths from the first point along the light path. Each signal has a known bandwidth and a known power. The method further comprises receiving the optical test signals at the second point after they have travelled along the light path and measuring the power of each received optical test signal. The method also comprises determining the signal transfer characteristic along the light path from the power measurements.Type: GrantFiled: October 27, 2008Date of Patent: December 2, 2014Assignee: Telefonaktiebolaget L M Ericsson (publ)Inventor: Gianmarco Bruno
-
Publication number: 20140341563Abstract: The present disclosure relates generally to a process controller and more specifically to a process controller with integrated optical sensing.Type: ApplicationFiled: April 16, 2014Publication date: November 20, 2014Applicant: Watlow Electric Manufacturing CompanyInventors: William Bohlinger, John Bergen, Stanton Hopkins-Breitiow, James Hentges, Jason Houzenga, Gil Ramos, Kurt Peterson, Larry Walters, Daryl James
-
Publication number: 20140341564Abstract: There are provided a method and a system for characterizing the CMRR of an ICR under test, which employ highly coherent light from two continuous-wave (CW) single-frequency lasers whose respective optical frequencies mutually differ by an offset defining an “Intermediate Frequency” (fIF) in the rf electrical baseband. The method involves the coherent mixing of light from these two lasers in the ICR under test. A “tone” in the rf electrical baseband at frequency fIF is generated by the beating of light from the two single-frequency lasers as they interfere on the photodetectors of the ICR. The resulting tone at frequency fIF in the output electrical signals of the ICR is then detected and analyzed to characterize the CMRR of the ICR.Type: ApplicationFiled: May 9, 2014Publication date: November 20, 2014Applicant: EXFO Inc.Inventors: Mathias WESTLUND, Henrik SUNNERUD
-
Patent number: 8886474Abstract: An apparatus for testing one or more transmission lines is disclosed. The apparatus comprises a processor capable of configuring the apparatus in one of a master mode and a slave mode. The apparatus when configured in the master mode controls the testing of the one or more transmission lines of a cable. The apparatus also includes one or more test modules associated with one or more tests to be performed on the one or more transmission lines. Further, one or more transceivers of the apparatus are capable of one or more of sending and receiving a plurality of signals through the one or more transmission lines. One or more signals of the plurality of signals are associated with the one or more test modules.Type: GrantFiled: September 6, 2011Date of Patent: November 11, 2014Assignee: Psiber Data Pte LtdInventors: Patel Arvindbhai Chimanbhai, Xing Zhu, Pandya Harshang Nileshkumar, Ravi Kishore Doddavaram
-
Patent number: 8879905Abstract: One embodiment provides a system for performance monitoring in a passive optic network (PON). The system includes an optical line terminal (OLT) and an optical network unit (ONU). The OLT includes an optical transceiver configured to transmit optical signals to and receive optical signals from the ONU, and a performance monitoring mechanism configured to monitor performance of the PON based on received optical signals.Type: GrantFiled: May 13, 2013Date of Patent: November 4, 2014Assignee: Broadcom CorporationInventors: Weidong Rick Li, Jaroslaw Wojtowicz
-
Patent number: 8873946Abstract: A system and method is disclosed that allows for the monitoring, analyzing and reporting on performance, availability and quality of optical network paths. The correlation of PM parameter metrics to client connections, coupled with threshold-based alarm generation provides a proactive and predictive management, reporting and analyzing of the health and effectiveness of individual path connections to alert Operational Support (OS) staff and/or customers to signal degradation and impending Network Element (NE) failures. The system and method performs in real-time processing intervals required for alarm surveillance in a telecommunications network.Type: GrantFiled: September 7, 2012Date of Patent: October 28, 2014Assignee: AT&T Intellectual Property II, L.PInventors: David Mayo, Meei-Ling Chen
-
Patent number: 8867912Abstract: Optical service channel (OSC) systems and methods over high loss links are described utilizing redundant telemetry channels. A first telemetry channel provides a low bandwidth communication channel used when Raman amplification is unavailable on a high loss link for supporting a subset of operations, administration, maintenance, and provisioning (OAM&P) communication. A second telemetry channel provides a high bandwidth communication channel for when Raman amplification is available to support full OAM&P communication. The first and second telemetry operate cooperatively ensuring nodal OAM&P communication over high loss links (e.g., 50 dB) regardless of operational status of Raman amplification.Type: GrantFiled: September 7, 2012Date of Patent: October 21, 2014Assignee: Ciena CorporationInventors: Balakrishnan Sridhar, Jun Bao
-
Patent number: 8855486Abstract: A remotely controlled fiber testing method has the steps of: building a fiber network system including a local fiber station and a remote fiber station; sending a modulated signal to the remote fiber station by the local fiber station; demodulating the modulated signal to obtain a control command by the remote fiber station; executing the control command to obtain a testing result by the remote fiber station; modulating the testing result and sending the testing result back to the local fiber station; and demodulating the testing result by the local fiber station. Only one technician appointed to the local fiber station is sufficient to do the testing action. Therefore, the personnel cost is effectively reduced.Type: GrantFiled: December 12, 2012Date of Patent: October 7, 2014Assignee: Polarlink Technologies, Ltd.Inventors: Shih-Tien Lin, Fu-Chun Hung, Yu-Shu Chen, Ching-Wen Hsiao, Chun-Hung Su
-
Publication number: 20140270751Abstract: An optical communication device comprises an input/output configured to be coupled to an optical communications line, and a passive optical loopback module coupled to the input and configured to receive optical signals from the input/output, the loopback module being further configured to reflect incoming signals of a test wavelength to the input/output.Type: ApplicationFiled: May 27, 2014Publication date: September 18, 2014Applicant: ROCKSTAR CONSORTIUM US LPInventors: Norival Figueria, Paul Bottorff, Guyves Achtari, Huiwen Li, Richard Brand
-
Publication number: 20140270750Abstract: An example embodiment includes an optical transmission device. The optical transmission device includes an optical source, a collimator lens, and an optical monitor. The optical source is configured to transmit a channel of light. The collimator lens is configured to reflect a portion of the channel of light. The optical monitor is arranged to receive at least a first portion of the reflected channel of light directly from the collimator lens, and is configured to communicate a gross electrical signal representative of received light including the first portion of the reflected channel of light.Type: ApplicationFiled: March 13, 2014Publication date: September 18, 2014Applicant: FINISAR CORPORATIONInventor: Frank Flens
-
Patent number: 8837934Abstract: Monitoring signals associated with operating parameters of an optical transceiver are ascertained by using a comparator arrangement external to a micro-controller unit. Monitoring signals associated with these operating parameter are provided as inputs to a discrete arrangement of comparators and then evaluated against a known reference voltage source. The reference source is swept across a known range of values, and when the output of the comparator changes state, the value of the reference input associated with this transition is defined as the value of the specific monitoring input signal and stored within the proper memory location within the microcontroller portion of the transceiver monitor circuit. The digital output signal of the comparator is applied as an input to the microcontroller, which recognizes this digital signal as defining the specific value of the reference signal to use and equate with the value of the monitored signal.Type: GrantFiled: August 22, 2012Date of Patent: September 16, 2014Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.Inventor: Tien-Tsorng Shih
-
Publication number: 20140255021Abstract: A method and apparatus for testing an optical cable is provided. In one embodiment, the apparatus may include a receiver for receiving a received pulse train through the optical cable. The apparatus may further include a cross-correlation system in communication with the receiver. The cross-correlation system may be adapted to determine a cross-correlation of the received pulse train and matched filter to an expected pulse train. The apparatus may further include a comparator in communication with the cross-correlation system. The comparator may be adapted to compare the cross-correlation to a threshold. The apparatus may also include an output transmitter, in communication with the comparator. The output transmitter may be able to output a comparison-result output that includes the results of the comparator comparison of the cross-correlation against a threshold.Type: ApplicationFiled: March 7, 2013Publication date: September 11, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Tara Astigarraga, Louie A. Dickens, Michael E. Starling, Daniel J. Winarski
-
Publication number: 20140255022Abstract: An embodiment of the present invention provides an optical burst synchronization method. A synchronization method includes: selecting a reference chassis, and transmitting, by an output port corresponding to an FTL in the reference chassis, an optical burst test signal respectively to receive ports corresponding to ORs in other line card chassis, where the optical burst test signal carries a transmission timeslot number; and acquiring, by a receive port corresponding to an OR in each line card chassis, according to an optical path difference between the receive port corresponding to the OR in each line card chassis and the output port corresponding to the FTL in the reference chassis, time of receiving the optical burst test signal, and the transmission timeslot number, a time-phase difference between each line card chassis and the reference chassis, and calibrating a local clock phase according to the time-phase difference.Type: ApplicationFiled: May 22, 2014Publication date: September 11, 2014Applicant: Huawei Technologies Co., Ltd.Inventor: Qiwen Zhong
-
Patent number: 8818199Abstract: A correlation system, such as a correlation optical time domain reflectometer (OTDR) system, transmits a correlation sequence, such as an M-sequence, and measures the returns of the correlation sequence over time. The system correlates the transmitted sequence with the returns to provide correlation measurement values that respectively correspond to different distances from the point of transmission. A correlation error compensation element estimates a correlation error floor based on at least one correlation measurement value corresponding to a point along the fiber beyond a finite impulse response (FIR) length from the transmitter. The correlation error compensation element adjusts each correlation measurement value estimate in order to cancel the contribution of the correlation error floor from the measurements to provide compensated measurement values that are substantially free of the effects of the correlation error floor.Type: GrantFiled: February 6, 2012Date of Patent: August 26, 2014Assignee: Adtran, Inc.Inventor: Daniel M. Joffe
-
Patent number: 8811815Abstract: A method includes generating a test signal and modulating the test signal. The method may also include transmitting the test signal on an optical path, where the optical path may include a number of add-drop multiplexer devices and amplifiers. The method may also include receiving the test signal at a destination device and converting the received test signal into an electrical signal. The method may further include identifying a portion of the electrical signal that is associated with the modulated test signal.Type: GrantFiled: April 20, 2009Date of Patent: August 19, 2014Assignee: Verizon Patent and Licensing Inc.Inventors: Tiejun J. Xia, Glenn A. Wellbrock
-
Patent number: 8805183Abstract: An OLT operable in a PON and structured to perform OTDR measurements. The OLT comprises an electrical module for generating continuous downstream signals and processing received upstream burst signals according to a communication protocol of the PON; an optical module for transmitting continuous optical signals over a first wavelength, receiving optical upstream burst signals over a second wavelength, and transmitting optical upstream burst signals over a third wavelength, wherein the optical module further includes an ONU traffic processing module being electrically coupled to the optical module and the electrical module, wherein the ONU traffic processing module is configured to emulate one of a plurality of ONUs of the PON, to generate an analysis pattern to be transmitted as an optical upstream burst signal over a third wavelength, and analyze an analysis pattern received in an optical upstream burst signal for the purpose of performing the OTDR measurements.Type: GrantFiled: May 23, 2012Date of Patent: August 12, 2014Assignee: Broadcom CorporationInventor: Amiad Dvir
-
Patent number: 8798456Abstract: A diagnostic testing utility is used to perform single link diagnostics tests including an electrical loopback test, an optical loopback test, a link traffic test, and a link distance measurement test. To perform the diagnostic tests, two ports at each end of a link are identified and then statically configured by a user. The ports will be configured as D_Ports and as such will be isolated from the fabric with no data traffic flowing through them. The ports will then be used to send test frames to perform the diagnostic tests.Type: GrantFiled: March 14, 2011Date of Patent: August 5, 2014Assignee: Brocade Communications Systems, Inc.Inventors: David Aaron Skirmont, Saumitra Buragohain, Balakrishna Wusirika, Badrinath Kollu, Kyuh Kim
-
Patent number: 8798457Abstract: Methods for managing an optical network through out-of-band communication between optical transceiver modules in a heterogeneous network fabric are disclosed. The disclosed methods include methods for performing fabric discovery, communicating error messages, detecting intrusion. Methods are also disclosed for communicating between transceivers of differing protocol versions and memory capacity.Type: GrantFiled: January 23, 2012Date of Patent: August 5, 2014Assignee: Finisar CorporationInventor: Gayle L. Noble
-
Publication number: 20140212131Abstract: A repeater that enables both bi-directional optical time domain reflectometry (OTDR) and loop gain monitoring techniques that may be employed, for example, in particularly long repeater spans. In one embodiment, the repeater includes high loss loopback (HLLB) paths configured to couple test signals between incoming and outgoing fiber paths. The HLLB paths are coupled from the outputs to the inputs of amplifiers within the repeater and couple both OTDR and loopback signals from an outgoing fiber path to an incoming fiber path so that may be returned to line monitoring equipment that transmitted the test signals.Type: ApplicationFiled: January 30, 2013Publication date: July 31, 2014Applicant: TYCO ELECTRONICS SUBSEA COMMUNICATIONS LLCInventor: TYCO ELECTRONICS SUBSEA COMMUNICATIONS LLC
-
Publication number: 20140193147Abstract: An optical splitter assembly including a splitter housing, a passive optical power splitter positioned within the splitter housing and a plurality of splitter output pigtails that extend outwardly from the splitter housing. Each of the splitter output pigtails including an optical fiber structure having a first end optically coupled to the passive optical power splitter and a second end on which a fiber optic connector is mounted. Each of the splitter output pigtails having a different test characteristic such that the splitter output pigtails can be individually identified during optical network testing.Type: ApplicationFiled: October 29, 2013Publication date: July 10, 2014Applicant: ADC Telecommunications, Inc.Inventor: Trevor D. Smith
-
Publication number: 20140186022Abstract: For testing an optical network, a transmission module transmits a first optical power level on a first optical port of an optical assembly. The optical assembly includes the first optical port, one or more of an optical cable and an optical waveguide, and a second optical port. The optical assembly is installed in an assembled computer in a state suitable for an end user. A measurement module measures a second optical power level on the second optical port, and a determination module determines a quality level by determining if the second optical power level is below a quality threshold value. The transmission module, the measurement module, and the determination module function within an assembled computer in a state suitable for an end user.Type: ApplicationFiled: January 3, 2013Publication date: July 3, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Alan F. Benner, Richard B. Finch, Jason Thomas Hirst, Peter Paul Lai, Gerald Glen Stanquist
-
Publication number: 20140186023Abstract: Apparatus enabling modular implementation of active optical cable (AOC) with multiple integrated functions including: integration of different types of data on the AOC via media conversion; distribution of electrical power over the AOC; electrical multiplexing data channels for optical fibers; integration of voltage regulators enabling AOC operation at different supply voltages; integration of voltage regulators to provide stable, low noise power source; ruggedized, blind-mateable electrical connectors; integration of electronics and optoelectronics inside a connector backshell; implementation of health monitoring and test channel enabling monitoring, test, and control of both ends of the AOC and monitoring and control of upstream systems and components; and enabling a form, fit, function replacement of existing electrical cables to improve SWaP, electromagnetic interference resiliency, length-bandwidth product, electromagnetic pulse resistance, signal integrity, system reliability, testability and maintenancType: ApplicationFiled: December 19, 2013Publication date: July 3, 2014Inventor: Duane Louderback
-
Publication number: 20140178063Abstract: An apparatus including: addition circuitry configured to receive simultaneously a probe signal that has passed through a channel having a complex transmission and a reference signal and configured to produce at least: a plurality of weighted additions including an addition of the probe signal and the reference signal with different relative phase rotations between the probe signal and the reference signal for each weighted addition; and processing circuitry configured to use at least two of the plurality of weighted additions to determine a first quantitative parameter for the channel dependent upon the complex transmission for the channel.Type: ApplicationFiled: December 20, 2012Publication date: June 26, 2014Applicant: NOKIA CORPORATIONInventors: Antti NISKANEN, David BITAULD
-
Patent number: 8755685Abstract: A joint switching method for an aggregation node, an aggregation node, and an optical network protection system including an aggregation node are provided. By monitoring information transferred between an active optical line terminal (OLT) and a broadband network gateway (BNG), the aggregation node finds a fault in time according to the monitored information and when a fault occurs, the aggregation node starts a local protection solution, enables a corresponding backup port connected to a backup OLT corresponding to the active OLT, and disables an active port connected to the active OLT. Through the method, when the active OLT is switched to the backup OLT, the aggregation node performs joint switching, which ensures normal communication.Type: GrantFiled: February 3, 2012Date of Patent: June 17, 2014Assignee: Huawei Technologies Co., Ltd.Inventors: Ruobin Zheng, Chenghu Shen
-
Publication number: 20140161440Abstract: A receiver for a communications link includes a receiver module and a host receiver. These two components can be tested independently. In one embodiment, the receiver module is characterized with respect to noise and distortion. The noise performance can be determined by comparing input and output signals of the receiver module, to determine the relative noise of the receiver module. The distortion performance can be determined by comparing the distortion of input and output signals of the receiver module, using a reference host receiver that includes an equalizer. The host receiver can be tested by using a reference receiver module.Type: ApplicationFiled: July 29, 2013Publication date: June 12, 2014Applicant: ClariPhy Communications, Inc.Inventors: Thomas A. Lindsay, Norman L. Swenson, Paul Voois
-
Publication number: 20140161439Abstract: A method of superimposing N optical transmission modes for collective transmission along a multimode optical fiber is provided where each of the N optical signals comprises N distinct superimposed transmission modes (M1, M2, . . . ) and a portion of each of the N propagating optical signals is sampled at a receiving end of the data transmission network. N2?1 distinct measurement conditions are derived from a transmission matrix T and a special unitary matrix group SU(N) corresponding to the superimposed transmission modes (M1, M2, . . . ) at the receiving end of the data transmission network and N2?1 measurements are extracted from the sampled signals. The extracted N2?1 measurements are used to solve a matrix equation corresponding to the generated SU(N) matrices and the output matrix transposed and used to generating principal state launch conditions from the eigenvectors of the transposed output matrix to form a principal state in each of the N optical signals.Type: ApplicationFiled: March 14, 2013Publication date: June 12, 2014Applicants: Corning IncorporatedInventors: Daniel A. Nolan, Giovanni Milione, Robert R. Alfano
-
Patent number: 8750702Abstract: An optical communication device comprises an input/output configured to be coupled to an optical communications line, and a passive optical loopback module coupled to the input and configured to receive optical signals from the input/output, the loopback module being further configured to reflect incoming signals of a test wavelength to the input/output.Type: GrantFiled: June 21, 2002Date of Patent: June 10, 2014Assignee: Rockstar Consortium US LPInventors: Norival Figueira, Paul Bottorff, Guyves Achtari, Huiwen Li, Richard Brand
-
Patent number: 8750703Abstract: An apparatus comprising an optical transmitter, a coarse tuner coupled to the optical transmitter and having a first tuning range, a fine tuner coupled to the optical transmitter and having a second tuning range smaller than and within the first tuning range, a wavelength division demultiplexer coupled to the optical transmitter and to a plurality of optical fibers, and a detector coupled to the optical transmitter and the wavelength division demultiplexer.Type: GrantFiled: October 17, 2012Date of Patent: June 10, 2014Assignee: Futurewei Technologies, Inc.Inventor: Frank J. Effenberger
-
Patent number: 8737834Abstract: One embodiment provides a system that tests optical performance in an Ethernet passive optical network (EPON), which includes an optical line terminal (OLT) and at least one optical network unit (ONU). The system configures an ONU with a circular queue that contains test frames for testing optical performance. The OLT then notifies the ONU to transmit test frames at a specified data rate for a specified duration. After receiving test frames at the OLT, the system measures frame loss and/or bit error rate based on the received test frames.Type: GrantFiled: June 28, 2010Date of Patent: May 27, 2014Assignee: Broadcom CorporationInventors: Edward W. Boyd, Sanjay Goswami
-
Publication number: 20140140690Abstract: In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an inter-channel skew arises, therefore, a method for detecting inter-channel skew in a coherent optical receiver according to an exemplary aspect of the invention includes the steps of: outputting a plurality of optical signals separated into a plurality of signal components by making a test light from a test light source interfere with a local light from a local light source; detecting the optical signals and outputting detected electrical signals; quantizing the detected electrical signals and outputting quantized signals; performing a fast Fourier transform process on the quantized signals; and calculating a difference in propagation delay between the plurality of signal components on the basis of a plurality of peak values in the results of performing the fast Fourier transform process.Type: ApplicationFiled: November 18, 2013Publication date: May 22, 2014Applicant: NEC CORPORATIONInventors: Junichi ABE, Wakako YASUDA, Kiyoshi FUKUCHI
-
Publication number: 20140133846Abstract: Embodiments of the present disclosure provide optical link handshake techniques and configurations. In one embodiment, an optical module includes a laser driver corresponding with a channel of the optical module, a signal detector corresponding with the channel, and a link handshake state machine configured to control the laser driver to generate a connect pulse of a link handshake process to test an optical link between the channel and a corresponding channel of another optical module and monitor the signal detector to detect a connect pulse from the another optical module. Other embodiments may be described and/or claimed.Type: ApplicationFiled: March 27, 2012Publication date: May 15, 2014Inventors: Miaobin Gao, Christine M. Krause, Hui-Chin Wu, Hengju Cheng
-
Patent number: 8724985Abstract: The present invention discloses a Wavelength Division Multiplexing Filter which can satisfy coexistence requirements of different PON systems and an optical line detecting system.Type: GrantFiled: December 21, 2009Date of Patent: May 13, 2014Assignee: ZTE CorporationInventors: Jidong Xu, Dezhi Zhang
-
Publication number: 20140126901Abstract: A method of monitoring an optical fibre comprises modulating an optical signal with a traffic signal; modulating the optical signal with an incoherent optical frequency domain reflectometry, IOFDR, test signal; transmitting the doubly modulated optical signal onto an optical fibre at a first end of the fibre; detecting scattered radiation output from the first end of the fibre; and analysing the detected scattered radiation using incoherent optical frequency domain reflectometry to determine a distance to a break in the optical fibre. Apparatus suitable for carrying out the method is also described, as well as an optical communications network employing the method.Type: ApplicationFiled: January 13, 2014Publication date: May 8, 2014Applicant: Telefonaktiebolaget LM Ericsson (publ)Inventors: Carlo CAMPANELLI, Roberto MAGRI
-
Patent number: 8718467Abstract: Terminals of upstream and downstream sides of an in-service line and a detour line are connected by optical couplers. An optical oscilloscope is connected to one optical coupler, and a chirped pulse light source is connected to the other optical coupler to thereby form dualized lines. The detour line includes an optical line length adjuster for compensating for the phase difference of optical transmission signals that occurs because of the optical line length difference with the in-service line. Pulse light in which an optical frequency is chirped is transmitted from the chirped pulse light source. The pulse light is branched by the second optical coupler, passes through the in-service line and the detour line, is multiplexed again by the first optical coupler, and is measured by the optical oscilloscope.Type: GrantFiled: November 24, 2009Date of Patent: May 6, 2014Assignee: Nippon Telegraph and Telephone CorporationInventors: Takeshi Tsujimura, Kuniaki Tanaka, Koichi Yoshida, Kazunori Katayama, Yuji Azuma, Masatoshi Shimizu
-
Patent number: 8718468Abstract: There is provided an optical fiber communication system restricting enlargement of the diameter of an optical fiber as well as enabling achievement of a large-capacity optical communication with a small number of optical fibers. An optical fiber communication system 100 includes an optical transmitter 10 transmitting a plurality of optical signals in parallel, a multicore fiber 20 in which outer circumferences of a plurality of cores are covered with a common clad, and the respective optical signals transmitted in parallel from the optical transmitter 10 are input into the cores, and an optical receiver 30 receiving the optical signals output in parallel from the respective cores of the multicore fiber, wherein the optical transmitter 10 and the optical receiver 30 perform a MIMO communication.Type: GrantFiled: January 6, 2012Date of Patent: May 6, 2014Assignee: Fujikura Ltd.Inventors: Katsuhiro Takenaga, Ning Guan
-
Publication number: 20140119722Abstract: A transmission apparatus includes a plurality of output units and a detector. The plurality of output units is configured to couple to a plurality of transmission paths, respectively, branched from one transmission path. The plurality of output units includes at least one first output unit configured to transmit signal light selectively to one of the branched transmission paths, and at least one second output unit configured to transmit test light with a wavelength different from a wavelength of the signal light to another of the branched transmission paths. The detector is configured to decide a failure in the branched transmission paths, based on a result of detection of a reflected light of the test light received through at least one of the branched transmission paths.Type: ApplicationFiled: August 23, 2013Publication date: May 1, 2014Applicant: FUJITSU LIMITEDInventors: Kohei Ichimura, Yasuko Nozu, Tsuyoshi Ohigawa
-
Publication number: 20140119723Abstract: The present invention discloses an optical module and a detection circuit thereof. The detection circuit includes: a sampling module, including a first potentiometer configured to convert a sampling current into a sampling voltage; an amplifying module, coupled to an output end of the sampling module and configured to amplify the sampling voltage; and an analog-to-digital conversion module, coupled to an output end of the amplifying module and configured to convert the amplified sampling voltage into a digital signal for detection. By arranging a potentiometer in a sampling module of a detection circuit, a resistance value of the sampling module can be adjusted, thereby adapting to responsivities of different modulators, increasing the locking speed of a modulator, preventing horizontal shifts of a locking point and a false locking point, and reducing the occupied PCB area.Type: ApplicationFiled: October 22, 2013Publication date: May 1, 2014Applicant: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Weijian CHEN, Yongzhong Wang
-
Patent number: 8712236Abstract: An optical link power management scheme takes the best advantage of a dynamic connection environment, where ports may be connected and disconnected at any time, and where data flows may start and stop as needed by the applications using the high speed data links. Power consumption is optimized, eye safety standards are met, and robust connection detection is preserved.Type: GrantFiled: December 21, 2010Date of Patent: April 29, 2014Assignee: Intel CorporationInventors: Klaus D. Giessler, Christine M. Krause
-
Patent number: 8712252Abstract: To efficiently apply jitter to an optical signal using a simple configuration, provided is an optical signal output apparatus that outputs an optical pulse pattern signal including jitter, the optical signal generating apparatus comprising a light source section that outputs an optical signal having an optical frequency corresponding to a frequency control signal; an optical modulation section that modulates the optical signal output by the light source section, according to a designated pulse pattern; and an optical jitter generating section that delays an optical signal passed by the optical modulation section according to the optical frequency, to apply jitter to the optical signal.Type: GrantFiled: October 18, 2011Date of Patent: April 29, 2014Assignee: Advantest CorporationInventors: Shin Masuda, Kazunori Shiota
-
Publication number: 20140112656Abstract: A relay device includes a first transmitting and receiving unit connected to a PON line on the upper-level side and performing mutual conversion between optical and electrical signals; a second transmitting and receiving unit connected to a PON line on the lower-level side and performing mutual conversion between optical and electrical signals; a relay processing unit relaying a downstream frame received by the first unit to the second unit, and relays an upstream frame received by the second unit to the first unit; and a control unit. The control unit follows upstream multiple access control performed by a station side device, for transmission of the upstream frame to be transmitted by the first unit to the station side device, and independently performs upstream multiple access control for reception of the upstream frame received by the second unit from a home side device.Type: ApplicationFiled: April 5, 2012Publication date: April 24, 2014Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventor: Kazuhisa Yamashita
-
Patent number: 8705955Abstract: An optical access network has a first and a second network-side termination node, the first including a first transceiver arrangement connected to a first optical link, configured to send a first signal to a customer side termination node including a transceiver for receiving the first signal, and the second including a second transceiver arrangement connected to a second optical link and configured for sending a second signal to a transceiver of a customer-side termination node via the second link. The transceiver of the customer side termination node has a loopback element emitting a monitoring signal back to the network side termination nodes. Both network-side termination nodes have a link failure detector receiving the monitoring signal.Type: GrantFiled: May 11, 2011Date of Patent: April 22, 2014Assignee: Adva AG Optical NetworkingInventors: Klaus Grobe, Joerg-Peters Elbers
-
Patent number: 8693867Abstract: A system and method for stabilizing a plurality of output frequencies (wavelengths) of a plurality of lasers (106). The laser beams are combined using optical multiplexer (110) and coupled into length-imbalanced (armlength-mismatched) Mach-Zehnder interferometer (MZI) (114) having an optical modulator (e.g. AOM) (122) in one of its arms. The output of the MZI is divided into corresponding beams via optical demultiplexer (128) and each beam is detected by a respective photo-diode (PD) (134). The individual electric signals, so generated, are demodulated using a corresponding plurality of phase-responsive devices (138) and the resulting phase-signals are directed to a plurality of servo-controllers (148) to control the central frequency of the respective lasers (106) via a corresponding plurality of feedback loop circuits (150). The lasers (106) can have different central frequencies which can also be individually tunned using offset modules (141) in the phase-responsive devices (138).Type: GrantFiled: May 1, 2009Date of Patent: April 8, 2014Assignee: The Australian National UniversityInventors: Ian C. M. Littler, Jong H. Chow, Malcolm B. Gray, David E. McClelland
-
Patent number: 8693866Abstract: A technique for detecting a fiber fault in a WDM optical access network includes launching a test signal into a fiber trunk line linking a central office (“CO”) to a remote node (“RN”) of the WDM optical access network. The test signal is generated by an optical time domain reflectometry unit to simultaneously fault test fiber access lines linking the RN to customer premises. The test signal is separated from downstream WDM signals at the RN. The test signal is power split at the RN into a plurality of access line test signals. The access line test signals are each recombined with a corresponding one of the downstream WDM signals onto a corresponding one of the fiber access lines. Test signal reflections are received at the CO from the fiber access lines as a reflection signature and analyzed to identify a location of the fiber fault.Type: GrantFiled: January 20, 2012Date of Patent: April 8, 2014Assignee: Google Inc.Inventors: Cedric F. Lam, Ben W. Segura, Ryohei Urata, Hong Liu
-
Publication number: 20140093233Abstract: A system includes two optical modules that perform auto-setting of the optical links between the optical modules. One optical module sends an optical signal with a test pattern to the other optical module. If the receiving module determines that the test pattern is successfully received, it sends a pass indication to the transmitting module, and the transmitting module can configure its driver path in accordance with a transmit current setting used to transmit the test pattern. If the test pattern is not successfully received, the receiving module sends a fail indication, and the transmitting module can increase the transmit current setting and resend the test pattern. When the system includes multiple optical channels, one channel can be tested while feedback is provided on another channel. The system can iterate through all optical channels until they are all configured.Type: ApplicationFiled: September 28, 2012Publication date: April 3, 2014Inventors: Miaobin Gao, Christine M. Krause, Hui-Chin Wu, Hengju Cheng
-
Publication number: 20140086573Abstract: A method for detecting a submarine optical cable line includes: splitting a detection signal input to a first optical functional unit in an optical functional module of an optical cable line into a first detection signal and a second detection signal; directly coupling and looping back the first detection signal to an output end of a second optical functional unit in a direction opposite to the first optical functional unit to constitute a first loopback path, and outputting a first detection loopback signal; looping back the second detection signal passing through the first optical functional unit to the output end of the second optical functional unit to constitute a second loopback path, and outputting a second detection loopback signal; and detecting a status of the submarine optical cable line according to power of the first detection loopback signal and power of the second detection loopback signal.Type: ApplicationFiled: November 27, 2013Publication date: March 27, 2014Applicant: Huawei Marine Networks Co., Ltd.Inventors: Wendou Zhang, Liping Ma