Regenerative Patents (Class 398/175)
  • Patent number: 10256593
    Abstract: Aspects of an optical communications network are described that include two or more optical fibers arranged to allow communication in the same or in opposite directions. The optical network includes a first optical amplifier coupled to the first optical fiber, a second optical amplifier coupled to the second optical fiber, and an optical coupler that allows excess optical power from the first optical fiber to be provided for amplification of signals traversing the second optical fiber. The disclosed systems and devices thus enable excess power from one channel to be utilized to enable amplification of signals traveling on a different channel.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 9, 2019
    Assignee: Facebook, Inc.
    Inventors: Nitin Kumar Goel, Satyajeet Singh Ahuja
  • Patent number: 10200121
    Abstract: Devices, computer-readable media and methods are disclosed for determining reachability for a wavelength connection in a telecommunication network. For example, a processor deployed in a telecommunication network may calculate a fiber loss on a link in the telecommunication network using optical power measurements and determine that a destination node of a wavelength connection is not reachable via a path that includes the link based upon the fiber loss of the link that is calculated. In one example, the determining is based upon a number of links in the path, an effective fiber loss for each link in the path, a penalty for nodes in the path, and an acceptable loss value. The processor may further perform a remedial action in response to determining that the destination node of the wavelength connection is not reachable via the path.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: February 5, 2019
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Sheryl Woodward, Kathleen Tse, Martin Birk, Angela Chiu, Balagangadhar Bathula
  • Patent number: 9614624
    Abstract: A system for delivering optical power over an optical conduit includes at least one optical power source delivering multiple optical power forms, at least one of the optical power forms being a modulated optical power form. The system includes an optical power receiving device that is directly driven by the at least one modulated optical power form.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 4, 2017
    Assignee: Deep Science, LLC
    Inventors: Alistair K. Chan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Lowell L. Wood, Jr.
  • Patent number: 9350451
    Abstract: Signal detection for optical transmitters in networks with optical combining. Presented herein is a multi-faceted means for performing electrical to optical conversion such as in an optical transmitter as implemented within a communication system including at least some optical communication links therein. The turning on and turning off of a light source (e.g., a laser diode (LD), a light emitting diode (LED), and/or other component that performs electrical to optical conversion) is performed in accordance with a number of operational parameters. Some communication systems include multiple optical links (e.g., multiple fiber-optic links) from multiple transmitters that connect to a common receiver. In addition, some optical transmitters include multiple electrical links (e.g., multiple electrical communication links) from multiple communication devices that connect thereto.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: May 24, 2016
    Assignee: BROADCOM CORPORATION
    Inventors: Thomas J. Kolze, Victor T. Hou, Bruce J. Currivan
  • Patent number: 9119142
    Abstract: For reducing and homogenizing an end-to-end delay of data packet transmissions in a large-scale wireless mesh network, a device, a system and a method are provided for controlling data packet transmission in the wireless network, wherein transmission parameters of an intermediate node are adjusted based on a distance between the intermediate node and a sender node.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: August 25, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Javier Espina Perez, Daniel Goergen, Tim Schenk, Oscar Garcia Morchon
  • Patent number: 9112613
    Abstract: Provided are a passive optical network reach extender based on a wavelength tunable optical module and a method thereof. According to an embodiment of the invention, a passive optical network reach extender includes a first optical splitter configured to receive an optical signal from an optical line terminal and split the signal into optical signals having a multiplexed wavelength, a wavelength tunable remote relay configured to receive the optical signals split from the first optical splitter, and select and control an available wavelength for each port, a wavelength multiplexer configured to multiplex a wavelength of the optical signal output from the wavelength tunable remote relay, and a second optical splitter configured to split the optical signal multiplexed by the wavelength multiplexer into a plurality of optical network units.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 18, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Kwang-Ok Kim, Sang-Soo Lee, Jong-Hyun Lee
  • Patent number: 9031092
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: May 12, 2015
    Assignee: Pivotal Decisions LLC
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Patent number: 9025967
    Abstract: All-optical phase-modulated data signal regenerator apparatus (10) comprising an optical input (12), an optical signal converter (16), an optical carrier signal source (18), optical signal forming apparatus (20) and an optical output (14). The input (12) is arranged to receive a phase-modulated optical data signal. The signal converter (16) is arranged to receive the data signal and to convert phase modulation of the data signal into a corresponding intensity modulation of an intermediate optical signal. The carrier signal source (18) provides an optical carrier signal.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: May 5, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Ernesto Ciaramella
  • Patent number: 9025965
    Abstract: Disclosed are a phase locked loop (PLL) of a digital scheme and a method thereof. More specifically, disclosed are a digital phase locked loop having a time-to-digital converter (TDC), a digital loop filter (DLF), and a digitally controlled oscillator (DCO), and that is designed to have a constant jitter characteristic at all times even though an operating condition of a circuit varies according to a process, voltage, temperature (PVT) change, and a method thereof.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 5, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung Woo Lee, Kwang Chun Choi, Woo Young Choi, Bhum Cheol Lee
  • Patent number: 8965219
    Abstract: There is provided a repeater to relay an optical signal transmitted/received between an optical line terminal (OLT) and at least one optical network unit (ONU), the repeater including: a first port configured to receive an optical signal input from the at least one ONU; a converter circuit configured to convert an optical signal of a first transmission rate into an optical signal of a second transmission rate higher than the first transmission rate, the optical signal of the first transmission rate to be converted being included in optical signals received at the first port; and a second port configured to output the optical signal converted by the converter circuit to the OLT.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, George Ishikawa, Susumu Kinoshita
  • Patent number: 8953946
    Abstract: A free space optical communication system (100) and method including: several optical beam expanders (414) for receiving incoming optical signals from ground sites and neighboring satellites; several optical preamplifiers (412) for preamplifying the received optical signals; one or more optical main amplifiers (404) for amplifying the preamplified optical signals; and an optical switch (408) for directing respective amplified optical signals to respective destinations via a respective optical beam expander. The respective amplified optical signals are inputted to a respective optical beam expander (414) for transmission to said respective destinations, as outgoing optical signals.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: February 10, 2015
    Assignee: Raytheon Company
    Inventors: Gary D. Coleman, C. Thomas Hastings, Jr., Duane Smith, David Filgas
  • Publication number: 20150037046
    Abstract: An optical network architecture can include a first pair of tapered mixing rods and a second pair of tapered mixing rods. The optical network architecture can also include a first plurality of plastic optical fibers communicatively coupled from the first pair of tapered mixing rods to a first plurality of line replaceable units and a second plurality of plastic optical fibers communicatively coupled from the second pair of tapered mixing rods to a second plurality of line replaceable units. The optical network architecture can also include at least one plastic optical fiber communicatively coupled from the first pair of tapered mixing rods to the second pair of tapered mixing rods.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: The Boeing Company
    Inventors: Eric Y. Chan, Dennis G. Koshinz, Tuong Kien Truong, Henry B. Pang
  • Patent number: 8942565
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: January 27, 2015
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8913894
    Abstract: A free space optical communication system (100) and method including a constellation of several satellites (102). Each of satellites including: several inter-satellite optical telescopes (204) for optical communication with multiple neighboring satellites, each inter-satellite optical telescope is capable of adjusting its elevation angle; and several up/down link optical telescopes (206) for optical communication with multiple ground sites. As the constellation passes a given ground site, some of the up/down-link telescopes of a given satellite are configured to track at least two respective ground optical telescopes of the given ground site and send data to the ground optical telescope with the clearest line of sight to the given satellite. Moreover, each of the satellites includes optical circuitry (208, 210, 212, 216) for optically processing and switching incoming and outgoing optical signals without converting the optical signals into electrical signals.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 16, 2014
    Assignee: Raytheon Company
    Inventors: Gary D. Coleman, C. Thomas Hastings, Jr., Duane Smith, John F. Silny
  • Patent number: 8909063
    Abstract: A method for regenerating and amplifying optical signals includes determining a source optical signal, adding a first pump optical signal and a second pump optical signal to the source optical signal to yield an intermediate optical signal, duplicating the intermediate optical signal to yield a first duplicate signal and a second duplicate signal, phase-shifting the first duplicate signal, passing the phase-shifted first duplicate signal and the second duplicate signal bi-directionally through a nonlinear optical element, and performing degenerate phase-sensitive amplification on the phase-shifted first duplicate signal and the second duplicate signal.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 9, 2014
    Assignee: Fujitsu Limited
    Inventors: Jeng-Yuan Yang, Youichi Akasaka, Motoyoshi Sekiya, Inwoong Kim
  • Patent number: 8909062
    Abstract: A method for regenerating optical signal includes determining a source optical signal to be regenerated, adding a first pump optical signal and a second pump optical signal to the source optical signal to yield an intermediate optical signal, creating a first conjugate optical signal and a second conjugate optical signal from the intermediate optical signal, and performing degenerate phase-sensitive amplification utilizing the first conjugate optical signal, the second conjugate optical signal and the source optical signal to yield an output optical signal. The source optical signal is modulated with a multilevel modulation format. Each conjugate optical signal has a phase that is a conjugate of a multiple of the phase of the source optical signal.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: December 9, 2014
    Assignee: Fujitsu Limited
    Inventors: Jeng-yuan Yang, Youichi Akasaka, Motoyoshi Sekiya, Inwoong Kim
  • Patent number: 8873950
    Abstract: In accordance with the present disclosure, disadvantages and problems associated with transmitting high capacity (e.g., 400 G) optical signals may be reduced. In accordance with an embodiment of the present disclosure a method for regenerating an optical signal comprises receiving an optical signal at a network element and measuring a performance characteristic of the optical signal. The method further comprises determining that the optical signal needs regeneration based on the performance characteristic of the optical signal. The method additionally comprises performing signal regeneration of the optical signal based on the determination that the optical signal needs regeneration.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Limited
    Inventor: Youichi Akasaka
  • Patent number: 8873956
    Abstract: Optical regenerators and amplifiers are expensive to implement and maintain. A method or corresponding apparatus in an example embodiment of the present invention relates to an optical planning tool that plans an optical network configuration by determining a plurality of costs for maintaining signal strength in corresponding network configurations including (i) a configuration of regenerators, (ii) a configuration of pre-or post-amplifiers, and (iii) a configuration of pre- and post-amplifiers in candidate locations and regenerator modules. The candidate locations for placing pre-or post-amplifiers are determined based on loss in each span, expected traffic patterns, and proposed regeneration locations along paths of expected traffic. The regeneration modules are located in locations determined based on the candidate locations. The example embodiment selects a configuration from among the network configurations as a function of the plurality of costs, helping reduce the cost of network deployment.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: October 28, 2014
    Assignee: Tellabs Operations, Inc.
    Inventor: Dion Kwun Kit Leung
  • Patent number: 8787771
    Abstract: The present invention provides an optical networking device for re-amplifying, re-shaping, and re-timing an optical signal, as well as providing distortion compensation and performance monitoring of the optical signal. The optical networking device includes an all-optical regenerator device for one or more of re-amplifying, re-shaping, and re-timing the optical signal; a distortion compensator device for compensating for distortion associated with the optical signal; and a quality-of-signal monitoring device for measuring the quality of the optical signal. Preferably, the all-optical regenerator device, the distortion compensator device, and the quality-of-signal monitoring device are disposed within a single module. The quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation. Alternatively, the quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation and all-optical regeneration.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: July 22, 2014
    Assignee: Ciena Corporation
    Inventor: Michael Y. Frankel
  • Patent number: 8774626
    Abstract: A network component comprising at least one processor configured to implement a method comprising obtaining a wavelength availability information for a path, determining whether to implement a wavelength assignment based on the wavelength availability information, updating the wavelength availability information when the wavelength assignment is to be implemented, and forwarding the wavelength availability information. Also included is a method comprising obtaining a wavelength availability information, comparing a number of wavelengths in the wavelength availability information to a threshold, determining whether to implement wavelength conversion along a path when the number of available wavelengths is less than or about equal to the threshold, and resetting the wavelength availability information when wavelength conversion is to be implemented.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: July 8, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Greg Bernstein, Young Lee
  • Patent number: 8768167
    Abstract: A single step routing and wavelength assignment method and system for automated provisioning of services on DWDM networks is presented. This novel single step solution automates design and assignment of services in DWDM networks. For an automated provisioning platform that can handle the routing and wavelength assignment in a single step, the solution avoids reconfiguration of existing services. It also takes into consideration practical aspects of DWDM transponder availability at termination sites and regeneration sites along the selected route. The methodology includes iterative computation of common channel sets to avoid multiple shortest path computations for each of the wavelengths.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 1, 2014
    Assignee: Telcordia Technologies, Inc.
    Inventors: Harshad Tanna, Sudha Ramesh, Ravi Vaidyanathan
  • Patent number: 8731404
    Abstract: An optical transmission system is provided. The optical transmission system includes a user side optical repeater device (ORD), a central office side ORD, and wavelength multiplexing and wavelength de-multiplexing functions (MUX/DEMUX). The user side optical repeater device (ORD) is to be connected with a user side optical network unit (ONU), transmits data in two ways, and is used for wavelength division multiplexing (WDM). The central office side ORD is to be connected with a central office side optical line terminal (OLT), transmits data in two ways, and is used for WDM. The wavelength multiplexing and a wavelength de-multiplexing functions (MUX/DEMUX), are used for relaying between the user side ORD and the central office side ORD.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 20, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 8725004
    Abstract: Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 13, 2014
    Assignee: Sandia Corporation
    Inventor: Gregory A. Vawter
  • Publication number: 20140119743
    Abstract: A method for regenerating and amplifying optical signals includes determining a source optical signal, adding a first pump optical signal and a second pump optical signal to the source optical signal to yield an intermediate optical signal, duplicating the intermediate optical signal to yield a first duplicate signal and a second duplicate signal, phase-shifting the first duplicate signal, passing the phase-shifted first duplicate signal and the second duplicate signal bi-directionally through a nonlinear optical element, and performing degenerate phase-sensitive amplification on the phase-shifted first duplicate signal and the second duplicate signal.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: FUJITSU NETWORK COMMUNICATIONS, INC.
    Inventors: Jeng-Yuan Yang, Youichi Akasaka, Motoyoshi Sekiya, Inwoong Kim
  • Patent number: 8699888
    Abstract: An optical linear feedback circuit has an optical loop delay path (10) for recirculating a sequence of optical signals, and an output path for outputting delayed optical signals after circulating one or more times around the loop. A selector (50) is provided for selecting one or more of the delayed optical signals from the sequence, and an optical logic circuit (20) is coupled to carry out a logical operation on the selected delayed optical signals to create an optical feedback signal which is coupled to the optical loop delay path, so that the optical feedback signal can be added to the sequence of optical signals already circulating. By recirculating around a loop, each round trip can be regarded as equivalent to a shift of a shift register, so longer sequences can be built up without needing an additional storage cell for each shift function.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: April 15, 2014
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mirco Scaffardi, Gianluca Berrettini, Antonella Bogoni
  • Patent number: 8699886
    Abstract: The present invention utilizes external synchronization to generate a completely standardized or functionally standardized optical transmission unit of level k (OTUk[V]) signal providing less jitter and wander build-up through a network of optical transport network (OTN) elements. This increases noise margins of transported signals and payloads. The present invention provides stratum-level synchronization utilizing a standards-based approach. In one embodiment of the present invention, rate adapters are included to provide m/n scaling of OTUk[V] signals to rates common in SONET and SDH synchronizers to provide line and loop distribution of timing through OTUk[V] signals. The present invention provides a choice of external synchronization sources including building integrated timing source (BITS), line, and loop timing sources. In another exemplary embodiment, the present invention provides multiple external references and automated timing protection switching for redundancy and reliability.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: April 15, 2014
    Assignee: Ciena Corporation
    Inventors: Kevin S. Meagher, James M. Allard, Michael S. Brown
  • Patent number: 8693889
    Abstract: An apparatus comprising an optical power splitter, an optical delay line coupled to the optical power splitter, an optical amplifier (OA) coupled to the optical delay line, and an adaptive injection current (AIC) controller coupled to the optical power splitter and the OA. Also disclosed is an apparatus comprising at least one component configured to implement a method comprising converting an optical signal into a voltage signal, calculating an amplitude correction value for the voltage signal, inverting an amplitude of the voltage signal, adjusting the amplitude of the inverted voltage signal according to the amplitude correction value, and converting the adjusted voltage signal into a current signal. Included is a network comprising an optical line terminal (OLT) comprising an optical receiver and an AIC controlled OA coupled to the optical receiver, wherein the AIC controlled OA provides optical power equalization for any upstream optical signals.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventor: Yuxin Dai
  • Patent number: 8682176
    Abstract: The invention provides an optoelectronic processing apparatus and methods for processing constraint information. The optoelectronic processing apparatus is applied to the optical transport network OTN device, and comprises: a 3R regeneration unit for reamplifying, reshaping and retiming a signal; a wavelength conversion unit for performing wavelength conversion to the signal; an interlayer adapting unit for converting the signal between the OCh layer and the ODUk layer; and a dispatching unit for dispatching the 3R regeneration unit, the wavelength conversion unit and the interlayer adapting unit according to a function identification parameter of the optoelectronic processing apparatus so as to process the signal. By the present invention, the management of the OTN device is simplified, and the 3R regeneration, wavelength conversion and optoelectronic interlayer adaptation information are managed uniformly.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: March 25, 2014
    Assignee: ZTE Corporation
    Inventor: Gang Xie
  • Patent number: 8655133
    Abstract: The invention relates to an optical fiber employable in an optical communication system using Raman amplification and adapted to improve OSNR and suppress bending loss at the same time, and the like. The optical fiber is a silica-based optical fiber having a depressed refractive index profile constituted by at least a core, an inner cladding having a low refractive index, and an outer cladding, an effective area Aeff of 110 ?m2 or more at the wavelength of 1550 nm, and a fiber cutoff wavelength ?c of 1.3 ?m or more but 1.53 ?m or less. The depressed refractive index profile is designed such that the ratio Ra(=2b/2a) of the diameter of the inner cladding to the diameter of the core is 2.5 or more but 3.5 or less and that the relative refractive index difference ?? of the inner cladding with respect to the outer cladding is at least the relative refractive index difference ??min where the bending loss at the wavelength for use is minimized but not exceeding (??min+0.06) %.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: February 18, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshinori Yamamoto, Masaaki Hirano
  • Patent number: 8649682
    Abstract: A distribution node of a passive optical network (PON) comprises a first port for receiving a first optical continuous envelope modulated downstream data signal at a first wavelength (?C) from a first optical line termination unit (OLT1) and a second port for receiving a second optical continuous envelope modulated downstream data signal at a second wavelength (?L) from a second optical line termination unit (OLT2). A first converter (FBG-1) performs continuous envelope modulation-to-intensity modulation conversion of the first optical downstream data signal and forwards the converted first optical downstream data signal (?C) to the first group of optical network units (ONU1 . . . N). A second converter (FBG-2) performs continuous envelope modulation-to-intensity modulation conversion of the second optical downstream data signal and forwards the converted second optical downstream data signal (?L) to the second group of optical network units (ONUN+1 . . . 2N).
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 11, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Marco Presi, Fabio Cavaliere, Ernesto Ciaramella
  • Patent number: 8638814
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: January 28, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Publication number: 20140010555
    Abstract: An amplifier circuit in a PON and a method for using the same. The amplifier circuit may be used, for example in an ONU of the PON. In order to deal with varying customer requirements and the possibility of the ONUs or similar devices being installed at varying distances from the CO, a dynamically adjustable amplifier bias voltage is determined and applied to at least one amplifier in the amplifier circuit. The dynamic bias voltage is preferably a function of the input power to the ONU or the circuit output quality, or both. More than one dynamic bias voltage may be determined and applied in this fashion.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 9, 2014
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Travis Lentz, James J. Stiscia
  • Patent number: 8615172
    Abstract: A method for arranging relay stations in an optical transmission system including relay stations arranged so that optical signals at a first transmission speed can be transmitted from a transmission end to a reception end, includes: judging whether a transmission of optical signals at a second transmission speed different from the first transmission speed in a section connecting arbitrary two of the relay stations where a regenerative repeater station capable of regenerating optical signals can be arranged is possible; determining a combination of sections judged to be capable of performing transmission that enables a transmission of optical signals from the transmission end to the reception end; and making both ends of respective sections of the determined combination be the relay stations where the regenerative repeater station is arranged, wherein the judging includes a judgment condition which is satisfied in a section including sections but unsatisfied in one of the sections.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 24, 2013
    Assignee: Fujitsu Limited
    Inventor: Takuya Miyashita
  • Patent number: 8611752
    Abstract: An optical transmission system is described. The transmission system comprises a plurality of modules that include signal repeaters at each end. Within each module, optical signals are propagated between the repeaters through free space. Adjacent modules are connected by optical fibers to enable optical transmission therebetween. Adjacent modules are mechanically coupled with a flexible joint.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: December 17, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8599478
    Abstract: A method is provided for all-optical regeneration of intensity modulated optical signals. A DFB laser diode is selected such that it has a gain bandwidth comprising the signal wavelength, the signal wavelength being outside the stopband of the DFB laser diode. Furthermore, the DFB laser diode is selected such that it can have a bistable amplification characteristic for the signal wavelength showing a hysteresis with an ascending branch and a descending branch, the ascending branch located at a higher input power level than the descending branch. The DFB laser diode is driven such that it operates in the bistable amplification regime, the descending branch of the hysteresis curve located at an input power level above the lower power level of the optical signal pulses and the ascending branch of the hysteresis curve located at an input power level below the upper power level of the optical signal pulses.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: December 3, 2013
    Assignees: IMEC, Universiteit Gent
    Inventors: Geert Morthier, Koen Huybrechts
  • Patent number: 8594515
    Abstract: An optical phase conjugator that can be deployed within a long-haul fiber-optic link of an optical WDM system to improve the system's tolerance to intra- and inter-channel nonlinear effects. In one embodiment, the optical phase conjugator has a digital signal processor configured to perform, in the digital electrical domain, a phase-conjugation transformation for various components of a WDM signal so that certain signal distortions imposed on that signal in the front portion of the fiber-optic link are reduced in the back portion of the link. Advantageously, the optical phase conjugator is flexibly configurable to employ an input-to-output carrier-frequency-mapping configuration that is most beneficial under particular operating conditions. mapping configuration that is most beneficial under particular operating conditions.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 26, 2013
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan, Robert W. Tkach
  • Patent number: 8571415
    Abstract: The method of placing regenerators along a trail connecting a source network node with a destination network node of an automatically switched optical network first identifies N tentative regeneration sites and n+1 optical paths along the trail. Wavelengths are assigned to each optical path; and the performance of the trail is assessed based on regenerator placement data and wavelength assignment data. The data identifying this regenerator path, namely regenerator placement data, the wavelength assignment data and the performance parameter of the trail are stored in a list, if the performance parameter is over a threshold. Selection of the tentative sites is revised whenever the initial placement fails due to a reach problem, a wavelength-blocking problem or a path quality problem. If the time for revising the initial placement, or the cost of a regenerator path is unacceptable, the regenerator path is abandoned and a further placement is initiated.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: October 29, 2013
    Assignee: Alcatel Lucent
    Inventors: Douglas Clayton Rider, James Craig Slezak, Anthony Vernon Walker Smith
  • Publication number: 20130272702
    Abstract: A method for regenerating optical signal includes determining a source optical signal to be regenerated, adding a first pump optical signal and a second pump optical signal to the source optical signal to yield an intermediate optical signal, creating a first conjugate optical signal and a second conjugate optical signal from the intermediate optical signal, and performing degenerate phase-sensitive amplification utilizing the first conjugate optical signal, the second conjugate optical signal and the source optical signal to yield an output optical signal. The source optical signal is modulated with a multilevel modulation format. Each conjugate optical signal has a phase that is a conjugate of a multiple of the phase of the source optical signal.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 17, 2013
    Applicant: FUJITSU NETWORK COMMUNICATIONS, INC.
    Inventors: Jeng-yuan Yang, Youichi Akasaka, Motoyoshi Sekiya, Inwoong Kim
  • Patent number: 8538274
    Abstract: An optical relay system is provided, which includes a first optical signal distribution device (101), a phase detection device (103), an amplitude regeneration device (102), and a phase regeneration and load device (104). An optical relay method is further provided, which includes the following steps. A received input signal is divided into two paths; phase information of one path of the input signal is extracted, and is converted to an amplitude modulated signal; an amplitude of the other path of the input signal is restored, so as to generate an amplitude regenerated signal; a phase is loaded on the amplitude regenerated signal by using the amplitude modulated signal, so as to generate a phase regenerated signal. The system and method eliminate a phase noise of the signal in a transmission process, improve a transmission performance of the signal, and realize a simple implementation method.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: September 17, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Lijun Li, Qianjin Xiong
  • Patent number: 8526812
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 3, 2013
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8488977
    Abstract: Provided is a time division multiple access over wavelength division multiplexed passive optical network (TDM-over-WDM-PON) system. According to the TDM-over-WDM-PON system, a downstream optical signal is separated according to a wavelength in a remote node, transmitted to an optical amplifying device located in subscriber equipment, amplified in the optical amplifying device, transmitted back to the remote node, and then transmitted to the subscriber equipment. Also, an upstream optical signal is transmitted to a wavelength converting device located in the subscriber equipment from the remote node, wavelength-converted in the wavelength converting device, returned back to the remote node, and then transmitted to a central office.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: July 16, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Han Hyub Lee, Bong Tae Kim
  • Patent number: 8463135
    Abstract: A relay apparatus including: a first interface 11 that branches an optical signal that is input in a first direction from one side of the optical transmission line, and directs the optical signal to a first path and a second path, the first path being a processing path of an optical signal having a first transmission speed, the second path being a processing path of an optical signal having a second transmission speed that is different from the first transmission speed; a processing section 12 that executes processing on an optical signal propagating through each of the paths in accordance with a corresponding transmission speed; and a second interface 13 that binds the first path and the second path of the optical signal on which the processing is executed by the processing section, by means of wavelength multiplexing and directs to the other end of the optical transmission line.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 11, 2013
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, Yutaka Kai, George Ishikawa, Susumu Kinoshita
  • Patent number: 8463136
    Abstract: A burst mode optical repeater is provided. The burst mode optical repeater receives optical signals, which are transmitted from a plurality of optical network units (ONUs) in a passive optical network (PON) to a central office using a time division multiplexing access (TDMA) method, and relays the received optical signals using an optical-electrical-optical (OEO) method. Since the burst mode optical repeater can be installed anywhere between an optical line terminal (OLT) and the ONUs, the number of subscribers and transmission range that can be supported by a corresponding network can be increased.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: June 11, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mun-seob Lee, Byung-tak Lee, Jong-deog Kim, Bin-yeong Yoon, Dong-soo Lee, Jai-sang Koh, Hark Yoo
  • Patent number: 8428470
    Abstract: A waveform shaping apparatus includes a quantum dot optical amplifier in which an amplification factor of input signal beams saturates if the optical power of the signal beams is equal to or greater than a predetermined value; and a quantum dot saturable absorber in which an absorption factor of the input signal beams saturates if the optical power of the signal beams is under a predetermined value. The quantum dot optical amplifier and the quantum dot saturable absorber are connected in series with a transmission path of the signal beams, and shape the waveform of the signal beams. Voltages applied to the quantum dot optical amplifier and the quantum dot saturable absorber, respectively, are adjusted based on the optical power of the signal beams.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Fujitsu Limited
    Inventors: Fumio Futami, Shigeki Watanabe
  • Patent number: 8340521
    Abstract: An optical transmission system is provided. The optical transmission system includes a user side optical repeater device, a central office side optical repeater device, and wavelength multiplexing and wavelength de-multiplexing functions. The user side optical repeater device is to be connected with a user side optical network unit, transmits data in two ways, and is used for wavelength division multiplexing. The central office side optical repeater device is to be connected with a central office side optical line terminal, transmits data in two ways, and is used for wavelength division multiplexing. The wavelength multiplexing and wavelength de-multiplexing functions are used for relaying between the user side optical repeater device and the central office side optical repeater device.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: December 25, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 8306432
    Abstract: The invention relates to an optical regenerator for a differential phase modulated data signal which comprises, in addition to a unit for bit-by-bit gauge leveling, a unit for the regeneration of the phase of individual symbols of the differential phase modulated data signal. After the bit-by-bit gauge leveling, the data signal that is preset in amplitude is divided into a first and a second data signal. Phase errors of individual signals are detected for the first data signal in a phase error detection unit, are transformed into a correction signal, and are conveyed to a phase error correction unit. The second data signal is corrected in the phase error correction unit, depending on the correction signal conveyed thereto in the phase of said data signal, in such a way that a differential phase modulated data signal, regenerated in amplitude and in phase, is delivered at the output of the correction unit.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: November 6, 2012
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Erich Gottwald, Beate Oster
  • Patent number: 8285138
    Abstract: An optical correlation apparatus is described which forms first and second parallel optical signals in response to a serial input data stream. The first parallel optical signal is arranged to have bright pulses represent binary 1 and the second parallel optical signal is arranged to have bright pulses represent binary 0. A channel select means, such as an optical switch or amplitude modulator, deselects or blocks channels in the first parallel optical signal which correspond to binary 1 in a reference data string and also deselects or blocks channels in the second parallel optical signal which correspond to binary 0 in the reference data string. The remaining optical signals are combined at one or more detectors. Where the input data matches the reference data string each bright pulse in the first and second parallel optical signals is deselected and the detector registers zero intensity. However when there is any mismatch at least one channel will pass a bright pulse to the detector.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 9, 2012
    Assignee: Qinetiq Limited
    Inventors: Andrew Charles Lewin, David Arthur Orchard, Martin James Cooper
  • Patent number: 8280261
    Abstract: The invention relates to a device for regenerating the phase of an optically modulated signal with phase changes and based on two and three replicas, wherein the replicas refer to the number of identical signals that are obtained form the input signal. This regenerator is capable of regenerating the phase and period of any format of modulation of optical communications systems which are differential modulation with phase changes, such as: DISK, DQPSK, RZ-DQPSK, RZ-DQPSK, D8PSK, D8PSK, RZ-D16PSK, D16PSK. The regenerator design presented involves the regenerator being placed alter the multiplexer of a communications system and before the signal modulators and/or decoders. Thus the regenerator receives the signal leaving the multiplexer and this signal is input in an amplitude modulator.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 2, 2012
    Assignee: Instituto Technologico y de Estudios Superiores de Monterrey
    Inventors: Gerardo Antonio Castanon Avila, Ivan Aritz Aldaya Garde
  • Patent number: 8275010
    Abstract: The pulse light source according to the present invention comprises: a seed pulse generator 1 for outputting an input pulse 10 as a seed pulse; a pulse amplifier 2; and a dispersion compensator 3 for dispersion compensating a light pulse output from the pulse amplifier 2. Moreover, the pulse amplifier 2 comprises a normal dispersion medium (DCF 4) and an amplification medium (EDF 5) that are multistage-connected alternately, for changing the input pulse 10 to a light pulse having a linear chirp and outputting the light pulse. Furthermore, an absolute value of the dispersion of the DCF 4 becomes to be larger than the absolute value of the dispersion of the EDF 5.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 25, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita
  • Patent number: 8270837
    Abstract: A device capable of equalizing optical powers of optical signals in a passive optical network, the device comprising a first optical coupler for receiving optical signals having different optical power levels, an optical circulator capable of directing the optical signals from the first optical circulator, a laser diode capable of generating equalized optical signals having a predetermined range of optical power levels in response to the optical signals directed from the optical circulator, and a second optical coupler for receiving the equalized optical signals.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: September 18, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-Hung Yeh, Dar-Zu Hsu, Sien Chi