Fault Detection Patents (Class 398/17)
  • Patent number: 7266297
    Abstract: A bit-rate-transparent electrical space-division switching matrix is employed in an optical cross-connect and the input/output stage is constructed from simple, broadband optical receivers and transmitters. Since the switching matrix operates in unclocked manner, i.e. its switching function is not based on internal bit timing and frame timing, arbitrary signals can be switched though transparently at almost any bit rate, independently of the protocol-type being used. The inputs and outputs likewise operate fully independently of bit rate and protocol, since they only implement an O/E conversion or O/E conversion. By virtue of this structure, a simply constructed but extremely powerful optical cross-connect is created that can be employed equally for all types of optical signals within the stipulated wavelength-range.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: September 4, 2007
    Assignee: Alcatel
    Inventors: Udo Schafer, Thoams Diehl, Hermann Zoll
  • Patent number: 7260324
    Abstract: An automatic optical power management system for use with an optical communications system includes a light source residing in a first circuit pack and adapted to emit light at a nominal power level only absent receipt of an indicator signifying a loss of signal resulting from a fiber discontinuity relating to the first optical fiber, wherein the nominal power level is of sufficient magnitude to violate laser safety guidelines in the event of the fiber discontinuity. A redundant detection system includes a first optical detector residing in the first circuit pack, and a second optical detector residing in a second circuit pack that is optically adjacent to the first circuit. A redundant response system communicates an indicator signifying loss of signal from the first and second optical detectors to the light source upon detection of loss of signal by either detector.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: August 21, 2007
    Assignee: Altera Corporation
    Inventors: Chris Passier, David Atkinson, Carl Krentz, Madhu Krishnaswamy, Jean Guy Chauvin, Andrew Robinson, Rajkumar Nagarajan
  • Patent number: 7260325
    Abstract: A network component (3d) for an optical network (1) is described, including a coupling device (2; 4, 5) for optical coupling of the network component (3d) to the optical network (1), the coupling device (2; 4, 5) having a receiving module (4) and a transmitting module (5); a first data processing device (8, 9) which is unidirectionally connected to the receiving module (4); a second data processing device (10, 11) which is unidirectionally connected to the transmitting module (5); the first data processing device (8, 9) being unidirectionally connected to the second data processing device (10, 11) for transmitting data to the second data processing device; a detection device (4) for detecting the network status; and a two-way switch (23) for switching of the input of the first data processing device (8, 9) between the receiving module (4) and the output (19) of the second data processing device (10, 11) as a function of the network status detected.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: August 21, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Ansgar Meroth, Dietmar Meyer, Franz-Joseph Petry
  • Patent number: 7257323
    Abstract: This invention offers a signal-off detection circuit allowing arbitrary setting of an issuing time (response time) of a signal disconnection alarm without being affected by a time constant of a direct current feedback circuit giving an offset voltage to an amplifier for amplifying a data signal. Input data signals per a fixed time determined by a timer is counted by a counter, and a count value is compared with a predetermined set value in a comparator. A configuration is made such that a signal disconnection alarm may be issued by detecting a disconnection state of the data signal according to a comparison result. Thereby, an issuing time of a signal disconnection alarm can be set without being affected by a time constant of a direct current feedback circuit giving an offset voltage to an amplifier for amplifying a data signal of a preceding stage.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: August 14, 2007
    Assignee: NEC Corporation
    Inventors: Hidemi Noguchi, Tetuo Tateyama, Madoka Kimura
  • Patent number: 7248797
    Abstract: The invention concerns a transmitter-receiver device (A, B) which comprises a receiver unit (RXA) arranged to receive light and optical signals from a transmitter unit (TXA) arranged to transmit light and optical signals. The device also comprises a supervising unit (CUA) which prevents the transmitter unit (TXA) from continuously transmitting light when the supervising unit (CUA) detects that the receiver unit (RXA) does not receive light. The supervising unit (CUA) is arranged to, when it detects that the receiver unit (RXA) does not receive light, change to a test mode where the transmitter unit (TXA) is controlled to intermittently transmit short light pulses the supervising unit has an output (109) where a status signal indicates whether the transmitter-receiver device is in said test mode. The invention also concerns a communication system which comprising at least two such transmitter-receiver devices.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: July 24, 2007
    Assignee: Transmode Systems AB
    Inventor: Gunnar Forsberg
  • Patent number: 7248799
    Abstract: A device (D) is dedicated to controlling the power of optical signals in a transparent switching node of an optical communication network that switches bands of wavelengths. The device includes, firstly, a controller (12) for comparing input optical power measurements to a selected first threshold and generating instructions representative of the comparison result, secondly, a measuring device (10A) for delivering measurements representative of the input optical power of the optical signals at one output at least of the switch (4), and thirdly, a processor between the switch (4) and the multiplexer (6) of the node and which control the optical power of the signals coming from the switch (4) as a function of the instructions they receive, so that the optical power of the signals at the input of the multiplexer (6) is maintained substantially constant.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: July 24, 2007
    Assignee: Alcatel
    Inventors: Jean-Paul Faure, Franck Pain
  • Patent number: 7242860
    Abstract: A network is protected against interruption of service while one or more faulty switches or optical fiber transmission lines are repaired or replaced, by an interconnecting configuration of small N×N optical input/output switches, where N is 2 or greater than 2. The switches are configured among protection and working transmission lines. The small number of fibers for each switch improves repair and installation connection reliability and permits configurations that flexibly meet differing requirements. Also the fault is monitored with a fault check signal.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 10, 2007
    Assignee: Hitachi America, Ltd
    Inventors: Hiroki Ikeda, Shigeki Kitajima, Shoichi Hanatani
  • Patent number: 7233738
    Abstract: A protection switching architecture is used in a telecommunications system such as a wavelength division multiplexed (WDM) telecommunications system to replace a failed transmission line or a failed wavelength processing device. A spare wavelength processing device transmitter replaces a failed service wavelength processing device transmitter. A spare transmission line replaces a failed service transmission line. A spare wavelength processing device receiver monitors the optical signals, one wavelength at a time, on either the spare transmission line or the service transmission line and replaces one of the service wavelength processing device receivers. Wavelength selection equipment routes either the service transmission line or the service transmission line to the service wavelength processing device receivers and selects wavelengths to be monitored by the spare wavelength processing device receiver.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: June 19, 2007
    Assignee: Tyco Telecommunications (US) Inc.
    Inventor: Franklin W. Kerfoot, III
  • Patent number: 7231145
    Abstract: Optical performance measurements are taken in an optical network and displayed in a form that allows an operator to enter fault information related to the measurements, or to automatically generate fault alarms to the operator, based on processing of the measurements. The optical measurements may be individual power measurements taken for each light-path at various points in each node it traverses, such as amplifiers, multiplexers/demultiplexers or at an interface with another node.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: June 12, 2007
    Assignee: Tellabs Operations Inc.
    Inventors: Ornan A. Gerstel, Glen P. Koste
  • Patent number: 7215883
    Abstract: Methods of determining the performance and the advanced failure of an optical communication channel. Performance of an optical communication channel may be determined by receiving light signals, generating a measure of an average received optical power in the received light signals and monitoring changes in the measure of the average received optical power. Advanced failure of an optical communication channel may be determined by transmitting a light signal at one end of the optical communication channel, propagating the light signal in an optical transmission medium, receiving the light signal at an opposite end of the optical communication channel, generating an electrical signal responsive to the receiving of the light signal. determining a measure of an average received optical power in the received light signal in response to the electrical signal, and monitoring changes in the measure of the average received optical power.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: May 8, 2007
    Assignee: JDS Uniphase Corporation
    Inventor: David K. Lewis
  • Patent number: 7215464
    Abstract: Optical amplifier which can eliminate the need for an optical detection section before an external attenuating medium, can prevent SN degradation, and can reduce power required for pumping light. An attenuation amount detection section detects an amount of signal light attenuation caused by a variable optical attenuator and the external attenuating medium connected in series, by means of a front optical detection section provided before the variable optical attenuator and the external attenuating medium and a back optical detection section provided thereafter. An attenuation amount control section controls the variable optical attenuator such that the amount of signal light attenuation detected by the attenuation amount detection section is kept constant. A connection detection section detects a connection or disconnection of the external attenuating medium in accordance with the amount of signal light attenuation obtained when the amount of attenuation caused by the variable optical attenuator is minimized.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 8, 2007
    Assignee: Fujitsu Limited
    Inventors: Kosuke Komaki, Hiroyuki Itoh
  • Patent number: 7212738
    Abstract: A redundant optical signal transmission and reception system enables information exchange via an optical communications network without data loss in the event of optical transmitter or receiver failure. In one embodiment, the redundant optical signal system includes a primary transmission link comprising a plurality of optical transmitters and a multiplexor for modulating and combining electrical signals into a primary multiplexed optical signal. In the event of failure of an optical transmitter, a backup transmission link is activated to compensate for the malfunctioning transmitter. The backup transmission link utilizes a backup optical transmitter to modulate the electric signal formerly received by the malfunctioning optical transmitter. The backup transmission link combines the backup optical signal with the primary multiplexed optical signal to form a complete optical signal for transmission over the optical network.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: May 1, 2007
    Assignee: Finisar Corporation
    Inventor: Steve Wang
  • Patent number: 7212739
    Abstract: A protection arrangement for an optical switching system includes protection switching for switch planes in the optical core and for ports in the tributary cards. For a multiple layer switch core protection is also provided between layers. A first layer is for switching optical channels. The protection switches used may be 1×N, 2×N or 3×N MEMS optical switches. The 1×N MEMS provides for protection switching. The 2×N MEMS provides protection switching and testing capability. The 3×N MEMS provides for protection switching, testing and backup of the protection switching. Application of these protection switches is shown in lambda plane switch cores, multiple layer switch cores and combined switch cores.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: May 1, 2007
    Assignee: Nortel Networks Limited
    Inventors: Alan F. Graves, Dallas F. Smith
  • Patent number: 7212742
    Abstract: In an optical communication network, optical communication nodes exchange information detailing power level variations to support management and administration of optical communications. This exchange of information permits nodes to determine aggregate power level variations over light paths to support operations such as selection from available light paths and configuration of optical communication characteristics.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: May 1, 2007
    Assignee: Fujitsu Limited
    Inventors: Kumar Vijay Peddanarappagari, Jamil Omar-Hatem El-Reedy, Emir Catovic
  • Patent number: 7212741
    Abstract: Optical signals transmitted through an optical cable are converted into digital data of bits “1” and “0” on the basis of a reference voltage, and errors generated during transmission of the optical signals are corrected using Forward Error Correction (FEC). A method includes extracting numbers of occurrence of errors for bits “1” and “0” recovered through the FEC. Thereafter, the extracted numbers of occurrence of errors for bits “1” and “0” are compared with each other. A reference voltage used to judge levels of the signals to be level “1” or “0” is controlled if the numbers of occurrence of errors for bits “1” and “0” are not equal to each other. The current reference voltage is maintained if the numbers of occurrence of errors for bits “1” and “0” are rendered equal to each other.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: May 1, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung Il Myong, Jyung Chan Lee, Je Soo Ko
  • Patent number: 7212740
    Abstract: The invention concerns a transmitter-receiver device (A, B) which comprises a receiver unit (RXA) for receiving optical signals and transmitter unit (TXA) for transmitting optical signals. Furthermore, the transmitter-receiver device (A, B) comprises a supervising unit (CUA) which supervises the functions of the receiver unit (RXA) and the transmitter unit (TXA). Furthermore, the transmitter-receiver device (A, B) comprises a transmitter circuit which transmits optical communication signals in response to a balanced electric input signal. The invention also concerns a communication system comprising two transmitter-receiver devices (A, B). Through the structure of the invention is by relatively simple means a well functioning device achieved, which, inter alia, makes it possible to supervise the status of the two transmitter-receiver devices (A, B) in an advantageous manner.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: May 1, 2007
    Assignee: Transmode Systems AB
    Inventor: Gunnar Forsberg
  • Patent number: 7209656
    Abstract: In an optical communication network, optical communication nodes exchange information detailing power level variations to support management and administration of optical communications. This exchange of information permits nodes to determine aggregate power level variations over light paths to support operations such as selection from available light paths and configuration of optical communication characteristics.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: April 24, 2007
    Assignee: Fujitsu Limited
    Inventors: Kumar Vijay Peddanarappagari, Jamil Omar-Hatem El-Reedy, Emir Catovic
  • Patent number: 7209655
    Abstract: In an optical communication network, optical communication nodes exchange information detailing power level variations to support management and administration of optical communications. This exchange of information permits nodes to determine aggregate power level variations over light paths to support operations such as selection from available light paths and configuration of optical communication characteristics.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: April 24, 2007
    Assignee: Fujitsu Limited
    Inventors: Kumar Vijay Peddanarappagari, Jamil Omar-Hatem El-Reedy, Emir Catovic
  • Patent number: 7200328
    Abstract: A monitoring system includes first and second evaluation sections for obtaining an averaged Q-factor parameter and a waveform distortion parameter from an optical signal amplitude histogram collected from optical signals under measurement. The monitoring system further includes a third evaluation section for determining both averaged Q-factor parameter and waveform distortion parameter, and for making a decision as to whether the main factor of the optical signal quality degradation is waveform distortion or not by comparing the averaged Q-factor parameter and waveform distortion parameter with their initial values or initial characteristics which are obtained when no optical signal quality degradation is present.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: April 3, 2007
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Ippei Shake, Hidehiko Takara, Kentaro Uchiyama
  • Patent number: 7187862
    Abstract: A method, a system and a module are proposed for detecting and locating faults in an optical multi channel network composed of network nodes. The method includes assigning different sub-carrier pilot tones to a number of the nodes comprising Network Elements (NE), applying the different sub-carrier pilot tones to any signal added to the network via the respective nodes, checking presence of one or more of the sub-carrier pilot tones at one or more points of the network, and, based on results of the checking, locating a faulty section of the network in case a fault occurred.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: March 6, 2007
    Assignee: ECI Telecom Ltd.
    Inventor: Uri Mahlab
  • Patent number: 7184660
    Abstract: The invention describes methods and systems for monitoring the performance of an optical network by marking a group of optical signals with a set of identification tags which are unique to network characteristics. In the preferred embodiments, fiber identification (FID) and bundle identification (BID) tags are encoded into optical signals by marking an optical signal with low frequency dither tones whose frequencies are unique to the fiber section and to a bundle of fibers respectively. Detecting of the FID and BID tones provides more effective and accurate monitoring of performance of the optical network and allows determining of the network topology, e.g. paths of optical channels and traffic load through different fiber sections in the network. Other sets of hierarchically arranged identifiers encoded into optical signals have also been proposed, including band, conduit, city, region, country, etc. identifiers, as well as identifiers related to network security and service characteristics.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: February 27, 2007
    Assignee: Tropic Networks Inc.
    Inventors: Wen Liu, Paul David Obeda, Niranjan Vethanayagam, Dan Oprea
  • Patent number: 7181137
    Abstract: The spectrum of a received WDM band or subband is analyzed to detect failure of, e.g., fiber or amplifiers along a line. In one implementation, measurements are taken within the optical spectrum at locations of expected data-carrying optical signals and at two locations just outside the wavelength range occupied by these signals. Magnitudes of adjacent measurements are compared to obtain differences. If none of the differences exceed a threshold, a fault may be determined.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: February 20, 2007
    Assignee: Cisco Technology, Inc.
    Inventors: Mario Tamburello, Stefano Simone Turzi, Stefano Vanoli
  • Patent number: 7170859
    Abstract: There is provided media converter having an integrated local information transmission function and a fault alarm signal communication system for transmitting local information using a frequency outside the communication frequency bands for data signals. In the subscriber's media converter, based on input local information, a control section sets a transmission frequency outside the communication frequency bands and outputs a signal instructing that a transmission be made. A media independent interface section receives this signal and transmits the signal in the instructed frequency. In the station media converter, a media independent interface section detects the frequency in which the local information is transmitted from the received signal. A control section then generates local information using the detected frequency and outputs it to an SNMP unit.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: January 30, 2007
    Assignee: Fujikura Ltd.
    Inventors: Naoshi Yamada, Fumio Yajima, Yoshiharu Unami, Katsuyuki Arai, Yasushi Nakamura, Shoji Yoshino
  • Patent number: 7158477
    Abstract: A data communication apparatus having a plurality of working ports for exchanging data traffic with network elements and a plurality of protection ports. The data communication apparatus further includes at least one protection switching functional element operative to perform a plurality of protection switching processes in parallel for switching data traffic from failed working ports to respective protection ports.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: January 2, 2007
    Assignee: Nortel Networks Limited
    Inventors: Dino B. Fatica, Pierre Coll
  • Patent number: 7155123
    Abstract: Method and apparatus for fault localization in an optical network using time trend correlation of end node performance parameters and intermediate node performance parameters, such as QoS and quasi-Q factors, respectively. The method and apparatus are bit-rate and protocol independent, enabling testing for each channel of a diverse dense wavelength division multiplexed traffic system using a single set of hardware.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: December 26, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: David S. Levy, Peter H. Mitev
  • Patent number: 7155120
    Abstract: A link based network protection path calculation mechanism wherein a protection route is calculated that is guaranteed not to traverse the link it is intended to protect. The mechanism takes advantage of the fact that the same color cannot pass twice through the same optical fiber. The protection path is determined by eliminating all colors from the logical topology of the network except for the color corresponding to the link to be protected before executing the search algorithm. This serves to guarantee that the protection path calculated will not traverse the same physical fiber as the link to be protected. Virtual colors can be assigned to the links running through fiber bundles such that they do not pass through the same fiber/bundle twice.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 26, 2006
    Assignee: Atrica Israel Ltd.
    Inventors: Ronen Ofek, Lior Shabtay
  • Patent number: 7146098
    Abstract: A method for triggering an optical protection event in an optical layer of a network comprising the following steps: i) monitoring the optical performance of an optical signal transmitted within the optical layer of the network; ii) provisioning optical protection in the event the monitored optical performance falls below a first threshold level; and iii) triggering an optical protection event, in the event the monitored optical performance falls further to below a second threshold level. The monitoring step is performed within the optical layer of the network by using a proxy to determine an optical performance characteristic which corresponds to the transmission quality of electronic signals extracted from said optical layer signal.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: December 5, 2006
    Assignee: Nortel Networks Limited
    Inventor: Kevin Warbrick
  • Patent number: 7139477
    Abstract: A method for diverting communication traffic in an optical network from a first optical link extending between a first and a second locations, to a second optical link extending either directly between the first and the second locations or via a third location, which method comprises the steps of switching traffic at said first location from said first optical link to said second optical link. After determining at the second location that traffic has not been received along the first optical link for a pre-determined period of time, traffic is diverted at the second location to the second optical link.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: November 21, 2006
    Assignee: ECI Telecom Ltd.
    Inventors: Oren Marmur, Ido Gur, Aviv Ben-Zeev
  • Patent number: 7139480
    Abstract: A method and system for multi-level power management in an optical network is provided. They include three levels of power management. The first level of power management dynamically changes equipment settings in each module of equipment so that required module setpoint values in each module are achieved. The second level of power management determines module setpoint values for each module of equipment within each node in the optical link so that required node setpoint values are achieved. The third level of power management determines node setpoint values at each node in the optical link so that the optical link meets predetermined power specifications. If any of the three levels cannot achieve the required setpoint values, an error signal is generated by that level of power management and sent to the level of power management above it, thus initiating a higher level of power management.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: November 21, 2006
    Assignee: Tropic Networks Inc.
    Inventors: Eddie Kai Ho Ng, Derrick Remedios, Colin Geoffrey Kelly, Ping Wai Wan, John Frederick Groves
  • Patent number: 7133611
    Abstract: If a repeater supervisory control (SV), a pre-emphasis automatic adjustment (PE), a receiving side threshold value automatic adjustment (Vth), a transmitting side dispersion compensation value setting (VDC(T)), and a receiving side dispersion compensation value setting (VDC(R)) are executed for an optical main signal, these controls are executed in the above described priority order. Accordingly, if the controls are independently executed, or if two or more controls simultaneously occur, a control with a higher priority is executed. In this way, a transmission quality of an optical signal is prevented from being badly influenced as a result that the controls are simultaneously executed.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: November 7, 2006
    Assignee: Fujitsu Limited
    Inventor: Shinichi Kaneko
  • Patent number: 7130537
    Abstract: A fiber optic communications network includes multiple transmitters and multiple receivers connected by an optical WDM transmission link, the receivers having output channels for providing signals to terminal devices, each receiver including a demodulator to detect and recover a received signal, and the network includes at least one optical amplifier having a shutdown input for actuating the safety shut down of the network upon detecting a disconnect in the transmission line. The system includes circuitry connected to the output of each of the demodulators for sensing the presence of a valid signal and for determining whether a predetermined number of valid signals are present at the demodulators. If the number of valid signals detected is less than the predetermined majority number, the safety shutdown function is actuated.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: October 31, 2006
    Assignee: Alcatel
    Inventor: Kenneth Y. Maxham
  • Patent number: 7123830
    Abstract: A WDM bidirectional self-healing optical ring network is provided in which an outer ring network and an inner ring network can both handle N optical signals. The network includes a node; an optical add/drop multiplexer having a 1×N demultiplexer and a 1×N multiplexer; a pair of optical switching devices each connected to an optical fiber link intervening between the optical add/drop multiplexer and another node on the both ends of the optical add/drop multiplexer; and, a pair of circulators each connected between the optical add/drop multiplexer and a particular optical switching device in the optical switching device pair, each circulator having three ports, two of the three ports being connected to a corresponding optical switching device and remaining one port being connected to the optical add/drop multiplexer.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: October 17, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Kwon Kim, Yun-Je Oh, Ki-Cheol Lee
  • Patent number: 7113698
    Abstract: A system for detecting faults in an optical network having switching nodes and amplifier nodes is provided. According to one aspect of the system, one or more amplifier nodes are coupled between two switching nodes. Each amplifier node is capable of detecting a fault condition, such as a loss-of-signal (LOS) condition, on an incoming line. Upon detecting the LOS condition, the amplifier node generates a fault report which is then forwarded to a switching node. The switching node uses information from the fault report to initiate switching actions, if any, to restore traffic. According to another aspect of the system, each amplifier node is configured to receive a fault report received from another amplifier node and forward such fault report to a switching node. Each amplifier node is further configured to prioritize a fault condition identified in a fault report received from another amplifier node and the fault condition detected on its incoming line.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: September 26, 2006
    Assignee: CIENA Corporation
    Inventors: Kent Ryhorchuk, Sichao Wang
  • Patent number: 7113699
    Abstract: A system and method for forwarding fault information in an optical network is disclosed. Responsive to a fault being detected at a node, the fault information is forwarded to the destination node in the form of a loss-of-signal condition by turning off laser transmitters used to propagate the signal towards its destination. Thus, a node or other network element not capable of generating an alarm signal consistent with an established alarm signaling protocol, such as a SONET alarm indication signal (AIS) or an SDH multiplexer section alarm indication signal MS-AIS, may still forward the fault condition to a downstream element.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: September 26, 2006
    Assignee: CIENA Corporation
    Inventors: Anuradha Bhate, Denis Houle
  • Patent number: 7110678
    Abstract: A hybrid wireless optical and radio frequency (RF) communication link utilizes parallel free-space optical and RF paths for transmitting data and control and status information. The optical link provides the primary path for the data, and the RF link provides a concurrent or backup path for the network data, as well as a reliable and primary path for the control and status information. When atmospheric conditions degrade the optical link to the point at which optical data transmission fails, the hybrid communication link switches to the RF link to maintain availability of data communications. The switch may occur automatically, based on an assessment of the quality of the optical signal communicated through the optical path.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: September 19, 2006
    Assignee: LightPointe Communications, Inc.
    Inventors: Heinz Willebrand, Maha Achour
  • Patent number: 7106965
    Abstract: A wavelength division multiplex transmission system with substantial functions for avoidance of defects is provided. The system comprises an optical transmission device and an optical receiving device. The optical transmission device comprises an operating-system optical transmission unit and a standby-system optical transmission unit, and distributes transmission signals to be transmitted among a plurality of wavelength components, converts the signals into WDM signals, and transmits the WDM signals to a WDM transmission network. The optical receiving device comprises an operating-system optical receiving unit and a standby-system optical receiving unit, and restores WDM signals from the WDM transmission network into transmission signals.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: September 12, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Mikiya Suzuki
  • Patent number: 7099583
    Abstract: A bit-rate-transparent electrical space-division switching matrix is employed in an optical cross-connect and the input/output stage is constructed from simple, broadband optical receivers and transmitters. Since the switching matrix operates in unclocked manner, i.e. its switching function is not based on internal bit timing and frame timing, arbitrary signals can be switched though transparently at almost any bit rate, independently of the protocol-type being used. The inputs and outputs likewise operate fully independently of bit rate and protocol, since they only implement an O/E conversion or O/E conversion. By virtue of this structure, a simply constructed but extremely powerful optical cross-connect is created that can be employed equally for all types of optical signals within the stipulated wavelength-range.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: August 29, 2006
    Assignee: Alcatel
    Inventors: Udo Schäfer, Thomas Diehl, Hermann Zoll
  • Patent number: 7099581
    Abstract: A method is provided for using optical time-domain reflectometry (OTDR) with a bi-directional optical transmission system that includes a plurality of terminals interconnected by first and second unidirectional optical transmission paths having at least one repeater therein. The method begins by transmitting a probe signal from a first terminal through the repeater over the first optical transmission path. A returned OTDR signal is received over the first optical transmission path in which status information concerning the first optical transmission path is embodied. The returned OTDR signal is transformed to a digitized electrical signal and the digitized electrical signal is transformed to an optical data signal. Finally, the optical data signal is transmitted over the second optical transmission path to the first terminal for extracting the status information embodied therein.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: August 29, 2006
    Assignee: Red Sky Subsea Ltd.
    Inventors: Stephen G. Evangelides, Jr., Jay P. Morreale, Michael J. Neubelt
  • Patent number: 7099578
    Abstract: A communication network includes first and second terminals, nodes, and links. The first node is coupled to the first terminal through the first link, and coupled to the second terminal through the second link and the second node. The first node preferably includes communication paths, each coupled to one corresponding first link and to the second link, through a multiplexing device, and routing signals between the links. The first node also preferably includes an alternate communication path coupled through the multiplexing device to the second link, a switch coupled to the alternate path, and a detector detecting failure of a communication path. A controller is responsive to the detector detecting a failure in a communication path and controls the switch to couple the alternate path to a corresponding first link, thereby enabling a signal to be routed between that first and second links through the alternate path.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: August 29, 2006
    Assignee: Tellabs Operations Inc.
    Inventor: Ornan A. Gerstel
  • Patent number: 7092630
    Abstract: The present invention implements open fiber control in an optical transceiver. During normal operation, the transceiver transmits signals through a connection to an optical network. When the connection is intact, the total power transmitted can be greater than the eye-safety limit. When the connection breaks, the transceiver detects the loss of signal and disables transmissions over all channels except for one. The transceiver continues transmission on the single enabled channel at an eye-safe level. When the connection is fixed and a signal reappears, the transceiver detects the signal reappearance and re-enables all channels that had previously been disabled. By allowing the transceiver to transmit with greater optical power when the connection is intact, an increased data rate and longer transmission distances can be achieved. At the same time, safety is preserved, because transmissions drop to acceptable power levels whenever a break is detected.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: August 15, 2006
    Assignee: Avago Technologies Fiber IP(Singapore) Ptd. Ltd.
    Inventors: David G Cunningham, Frederick Miller, Jing Wang, Janet Yun
  • Patent number: 7079764
    Abstract: A method is provided for isolating faults in an optical network having a plurality of partial regenerators. The method includes: transmitting an optical signal through the optical network; determining an error rate for the optical signal at an egress point of the optical network; sequentially introducing a dither control signal into the optical signal at each of the plurality of partial regenerators; and monitoring the error rate for the optical signal at the egress point of the optical network; thereby isolating where a fault occurs in the optical network.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: July 18, 2006
    Inventor: Ross Saunders
  • Patent number: 7058298
    Abstract: An optical transmission device in which optical signal switching is performed to allow the device to be reduced in size and also which is capable of efficient recovery from fault, thereby improving system expansibility and communication quality. Overhead terminating section converts an optical signal to an electric signal and performs an overhead process including extraction of fault information and setting of status information. Optical switch section performs a process of switching the optical signal between active and standby lines, and switching control section provides a switching command to the optical switch section in accordance with the fault information.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: June 6, 2006
    Assignee: Fujitsu Limited
    Inventors: Hideaki Koyano, Masato Kobayashi, Kazumaro Takaiwa, Maki Hiraizumi, Akio Takayasu
  • Patent number: 7058297
    Abstract: In an optical network having a plurality of nodes, administrative information for one node is persistently stored at another node in the network. The network includes a first node having persistent storage memory for storing administrative information from a second node. The nodes communicate the administrative information over an optical signaling channel that travels on a path including one or more optical transmission media between the nodes. Also described is an optical network having a plurality of nodes in which an administrative node processor module at a first node performs administrative control functions for a second node. Also described is a signaling channel module in each node that controls the communication or transfer of administrative information over the optical signaling channel.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: June 6, 2006
    Assignee: CIENA Corporation
    Inventor: Stewart K. Hester
  • Patent number: 7054558
    Abstract: A method for the protection of fiber optic ring-shaped transport networks, the networks including network elements connected by spans, optical paths being installed between the network elements, the method including the steps of providing each network element with information concerning the network architecture; providing each network element with information concerning configuration data of the network elements; providing each network element with information concerning criteria for triggering the mechanism; establishing an information exchange protocol comprising a set of messages and of rules; establishing a traffic rerouting method, wherein the configuration data include the ring map, the traffic map, the wavelength and the bit rate concerning every path.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: May 30, 2006
    Assignee: Alcatel
    Inventors: Claudio De Girolamo, Mariangela Conti, Sergio Belotti
  • Patent number: 7046929
    Abstract: An apparatus and method for fault detection and isolation in an optical network is disclosed in which each node determines an appropriate response to a line fault or an equipment fault, obviating the need for a central computer to coordinate the actions of each node in response to a fault. Each network node includes a local controller and restoration elements for detecting and responding to faults. Each local controller correllates a first set of optical characteristics measured by optical detectors with the local node with a second set of optical characteristics for the channels reported to the local node from an upstream optical element, such as a neighboring upstream node, to determine if a line switch or equipment switch is required. In a preferred embodiment, each node is communicatively coupled to its neighboring node via an optical supervisory channel, with the neighboring nodes communicating status messages and data on channel characteristics via the optical supervisory channel.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: May 16, 2006
    Assignee: CIENA Corporation
    Inventors: Stewart Kevin Hester, Todd Beine, Rainer Robert Irasehko, Kent Wilfred George Ryhorchuk
  • Patent number: 7035544
    Abstract: Channels in an optical network that carry optical signals are evaluated using signal characteristics and suitable channels are compared to identify the channels that represent a single conversation using matching criteria. In another aspect, only channels that carry optical signals representing conversations of interest are compared.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: April 25, 2006
    Assignee: McAfee, Inc.
    Inventor: King L. Won
  • Patent number: 7020393
    Abstract: The present invention is directed to a method of synchronizing data transmission through optical links between first and second communications components. Each of the first and second communications components include an optical laser for transmitting and receiving laser signals to and from each other through the optical links. In an embodiment, the method comprises the steps of: (a) initializing each of the first and second communications components; (b) enabling the optical lasers and optical sensors; (c) exchanging idle packets between the first and second communications components to establish a datapath across the optical links; (d) exchanging test data packets across the datapath established in step (c) to verify connection of the optical links; and (e) upon verification of connection of said optical links in step (d), enabling data flow between said first and second communications components.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: March 28, 2006
    Assignee: Alcatel Canada Inc.
    Inventors: William Schaller, Derrick A Nagy, Brian Campbell
  • Patent number: 7011453
    Abstract: Methods and apparatus for detecting degradation of a fiber optic connector. In a preferred embodiment, the method includes transmitting a optical pulse in a first direction along the fiber optic cable such that a first portion of the optical pulse is either absorbed or reflected by the degradation. The method also includes determining the degradation's location within at most two connectors of the cable based on the first portion of the optical pulse. If the at most two connectors is two connectors then the method includes transmitting a second optical pulse in a second direction along the cable so that a portion of the second optical pulse is either absorbed or reflected by the degradation. A determination is made of the location of the degradation within one of the two connectors based on the first portion and the second portion of the optical pulses.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: March 14, 2006
    Assignee: The Boeing Company
    Inventor: Daniel N. Harres
  • Patent number: 7010233
    Abstract: The invention concerns an interface device for a fiberoptic communication network. The interface device comprises an electric circuit arrangement 32, a first receiving section 34 for receiving a first transceiver module 24 and a second receiving section 36 for receiving a second transceiver module 26. The interface device also comprises a switching unit 54 for switching said electric circuit arrangement between at least a first and a second state. Furthermore, the interface device includes a controller 56 arranged to automatically control the switching unit 54 in response to at least one control signal such that said first or second states are selected depending on whether at least one control signal is received indicating either that no transceiver module 26 is attached to said second receiving section 36 or that no optical signal above a certain signal level is received by a transceiver module 26 attached to said second receiving section 36.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: March 7, 2006
    Assignee: Transmode Systems AB
    Inventor: Tommy Lindblad
  • Patent number: 6999677
    Abstract: A protection arrangement for an optical switching system includes protection switching for switch planes in the optical core and for ports in the tributary cards. For a multiple layer switch core protection is also provided between layers. A first layer is for switching optical channels. The protection switches used may be 1×N, 2×N or 3×N MEMS optical switches. The 1×N MEMS provides for protection switching. The 2×N MEMS provides protection switching and testing capability. The 3×N MEMS provides for protection switching, testing and backup of the protection switching. Application of these protection switches is shown in lambda plane switch cores, multiple layer switch cores and combined switch cores.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: February 14, 2006
    Assignee: Nortel Networks Limited
    Inventors: Alan F. Graves, Dallas F. Smith