For Noise Or Distortion Patents (Class 398/194)
  • Patent number: 8270846
    Abstract: A plurality of inductors are connected in series between a load resistor and a first transistor, and a plurality of second transistors provided in parallel are connected to the plurality of inductors.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: September 18, 2012
    Assignee: Fujitsu Limited
    Inventor: Yukito Tsunoda
  • Patent number: 8270843
    Abstract: An optical transmission system capable of efficiently reducing waveform distortion of an optical signal. A transmitting-side distortion compensation coefficient storage of a transmitting station stores transmitting-side distortion compensation coefficients for compensating for waveform distortion of an optical signal to be transmitted to a receiving station. A transmit signal processor performs distortion compensation on the optical signal on the basis of a suitable transmitting-side distortion compensation coefficient stored in the transmitting-side distortion compensation coefficient storage. A transmitter transmits the distortion-compensated signal to a transmission path. A receiver of the receiving station receives the optical signal from the transmission path. A receiving-side distortion compensation coefficient storage stores receiving-side distortion compensation coefficients for compensating for waveform distortion of the optical signal received by the receiver.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 18, 2012
    Assignee: Fujitsu Limited
    Inventor: Hiroshi Nakamoto
  • Patent number: 8260138
    Abstract: An optical communication system includes logic to communicate using optical channels set outside a fiber zero dispersion zone, and having channel spacing that decreases with increasing distance from the fiber zero dispersion zone.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: September 4, 2012
    Assignee: ARRIS Solutions, Inc.
    Inventors: Marcel F. Schemmann, Venk Mutalik
  • Patent number: 8260150
    Abstract: An wave division multiplexed (WDM) optical transmitter is disclosed including a directly modulated laser array and a planar lightwave chip (PLC) having a plurality of OSRs that receive outputs of the laser array and increase the extinction ratio of the received light. An optical multiplexer receives the outputs of the OSRs and couples them to a single output port. The multiplexer has transmission peaks through its ports each having a 0.5 dB bandwidth including the frequency of a laser in the array. The optical multiplexer may be embodied as cascaded Mach-Zehnder interferometers or ring resonators.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: September 4, 2012
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Hongmin Chen, Bernd Huebner
  • Publication number: 20120213530
    Abstract: A signal processing apparatus configured to correct a distortion introduced by a signal processing path into a processed signal comprising a transformer that transforms the processed signal into a transformed signal in frequency domain, a processor that determines a first correction function and a second correction function upon the basis of a transfer function of the signal processing path, a first multiplier that multiplies values of the transformed signal with coefficients of the first correction function to obtain a first corrected signal, a signal reverser that reverses an order of values in a copy of the transformed signal to obtain a reversed transformed signal, a second multiplier that multiplies values of the reversed transformed signal with coefficients of the second correction function to obtain a second corrected signal, and an adder that adds the first corrected signal and the second corrected signal to obtain a corrected output signal.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 23, 2012
    Applicant: Huawei Technologies Co., Ltd.
    Inventor: Nebojsa Stojanovic
  • Patent number: 8244141
    Abstract: An apparatus for generating a dispersion compensation signal includes a splitting module for splitting a data signal to be transmitted into N channels of data signals; N pre-processing modules for adjusting in frequency domain the phases and amplitudes of the N channels of data signals and outputting N channels of pre-warped electrical signals; an optical carrier generating module for generating N channels of coherent optical carriers; N electro-optic modulators for modulating the N channels of coherent optical carriers based on the N channels of pre-warped electrical signals and generating N channels of pre-warped optical signals; an optical coupling module for coupling the N channels of pre-warped optical signals into a dispersion compensation optical signal. By pre-processing the data signals, the present disclosure may allow the use of existing devices to generate a dispersion compensation signal so that the bandwidth requirement set by prior art on the electrical device is reduced.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 14, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wei Fu, Zhihui Tao, Yue Liu, Jia Jia
  • Publication number: 20120195598
    Abstract: A communications system comprising at least one light source, a side-emitting fiber light rope into which light emitted from the light source is coupled, and means for sending at least one data carrying optical signal along the light rope.
    Type: Application
    Filed: August 24, 2010
    Publication date: August 2, 2012
    Applicant: UNIVERSITY COURT OF THE UNIVERITY OF ST ANDREWS
    Inventors: Malcolm Harry Dunn, Donald Walker, David James Mark Stothard
  • Patent number: 8229303
    Abstract: A transmitter reduces or minimizes pulse narrowing. In one approach, an optical transmitter is designed to transmit data over an optical fiber at a specified data rate using on-off keying. The transmitter includes a pre-converter electrical channel and a limiting E/O converter. The pre-converter electrical channel produces a pre-converter signal that drives the limiting E/O converter. The pre-converter electrical channel is designed to reduce pulse narrowing in the pre-converter signal. In one implementation, the pre-converter electrical channel includes a pre-emphasis filter that is designed to minimize pulse width shrinkage.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: July 24, 2012
    Assignee: ClariPhy Communications, Inc.
    Inventor: Thomas A. Lindsay
  • Patent number: 8224190
    Abstract: Provided is a channel assignment method in a wavelength-division-multiplexed transmission system. The channel assignment method includes obtaining information about signal modulation schemes from a plurality of optical transmitters, and assigning channels to the respective optical transmitters in consideration of the obtained information about the signal modulation schemes. Accordingly, in transmission of channels of different modulation formats, cross phase modulation is minimized, thereby reducing inter-channel interference.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: July 17, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hwan-seok Chung, Sun-hyok Chang, Sang-soo Lee, Kwang-joon Kim
  • Patent number: 8218974
    Abstract: An optical transmitter and an optical transmission method includes a plurality of light-emitting elements, a plurality of light-receiving elements for monitoring optical outputs from the light-emitting elements, a linear operation circuit for calculating optical output monitor signals by removing crosstalk parts from a plurality of photoelectric conversion currents outputted from the light-receiving elements, and a drive circuit for driving individually currents to apply to the light-emitting elements based on the optical output monitor signals.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: July 10, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventor: Keita Hattori
  • Patent number: 8213798
    Abstract: An optical transmission apparatus for suppressing deterioration of transmission quality due to XPM in a wavelength division multiplexing optical communication system in which an intensity modulation optical signal and a phase modulation optical signal exist in a mixed form. The apparatus has an intensity inversion signal light output section which outputs light having an intensity pattern obtained by inverting intensity changes of the intensity modulation optical signal near a wavelength of the intensity modulation optical signal in arrangement on wavelength axis of optical wavelengths that can be multiplexed as a wavelength division multiplexed signal as intensity inversion signal light, and a wavelength division multiplexed optical signal output unit which wavelength-division-multiplexes the intensity modulation optical signal, the phase modulation optical signal and light from the intensity inversion signal light output section and outputs a wavelength division multiplexed optical signal.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 3, 2012
    Assignee: Fujitsu Limited
    Inventors: Hiroki Ooi, Hiroshi Onaka, George Ishikawa
  • Publication number: 20120163833
    Abstract: A device is provided for use with a dither tone signal and an information signal. The device includes a laser diode, an electro-optic modulator, a first filter and a second filter. The laser diode can output a first light signal, whereas the electro-optic modulator can transmit a second light signal. The first filter can generate a first filtered signal based on the information signal. The second filter can generate a second filtered signal based on the dither tone signal. The first light signal is based on the dither tone signal, the information signal and the first filtered signal. The second light signal is based on the first light signal, the information signal, the dither tone signal and the second filtered signal. The filtered signals reduce or cancel the undesired leaked/interfering signals.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: GENERAL INSTRUMENT CORPORATION
    Inventors: Jun Wang, Richard A. Meier
  • Patent number: 8208814
    Abstract: An optical transceiver calibration system and manufacturing method to fabricate a dual closed loop control transceiver are provided. The calibration system and method includes measuring an operating temperature and determining operational parameters based upon the operating temperature. The operational parameters may include, for example, a target power for transmitting a digital one, a target power for transmitting a digital zero, a modulation current, and a bias current. A bias may be added to the temperature to account for the difference between the temperature at the temperature sensor and the optical equipment. The operational parameters are preferably calculated independently of each other and are used as initial values during operating modes and allow the control loop to converge more quickly. The optics data is may be scanned electronically via bar code or some other electronic format prior to test. The software residing on the module then calibrates and configures the transceiver.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: June 26, 2012
    Assignee: IPhotonixs, LLC
    Inventors: Samir Sheth, Andy James Filtness
  • Publication number: 20120148232
    Abstract: In accordance with embodiments of the present disclosure, a method for compensation of noise in an optical device is provided. The method may include calculating noise present in an optical carrier signal. The method may also include generating quadrature amplitude modulation input signals, the quadrature amplitude modulation input signals each including a term for compensation of the noise based on the calculated noise. The method may further include modulating the optical carrier signal to generate a modulated optical signal based on quadrature amplitude modulation input signals.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Inventors: Inwoong Kim, Olga I. Vassilieva
  • Patent number: 8175465
    Abstract: Examples of apparatus and methods are provided for controlling a bias in an optical modulator. An exemplary apparatus may comprise an optical modulator operable to modulate an optical signal. The optical modulation apparatus may comprise a photodetector disposed to receive at least a portion of the modulated optical signal. The optical modulation apparatus may comprise a bias controller coupled to both the optical modulator and the photodetector. The bias controller may be configured to receive a dither signal and to produce a bias feedback signal for the optical modulator. The bias feedback signal may be based on a ratio between an odd order harmonic signal of the modulated optical signal and an even order harmonic signal of the modulated optical signal.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: May 8, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Leah Wang, Anthony C. Kowalczyk
  • Patent number: 8165474
    Abstract: A modulated optical system with anti-clipping reduces or corrects clipping that might occur in the laser as a result of negative spikes or peaks in a multichannel RF signal. The system generally detects an envelope of the RF signal to generate an anti-clipping signal that follows at least a portion of the envelope and prevents one or more negative peaks from causing clipping by adjusting a bias current in response to the anti-clipping signal. The system may also reduce cross modulation by clamping the anti-clipping signal at an anti-clipping limit during lower power periods of the RF signal.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: April 24, 2012
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Jun Zheng, Brian Ishaug
  • Patent number: 8165475
    Abstract: A system for reducing clipping may be used between a multichannel RF source and a laser to reduce or correct clipping that might occur in the laser as a result of negative spikes or peaks in a multichannel RF signal. The system generally includes a clipping correction circuit that receives the multichannel RF signal and responsive to the RF signal, prevents one or more of the negative peaks in the RF signal from causing clipping. The clipping correction circuit may either detect an envelope of the RF signal and/or may detect one or more peaks in the RF signal. One or more negative peaks may be prevented from causing clipping by adjusting a bias current provided by a bias control circuit and/or by modifying the RF signal with one or more clipping correction pulses coinciding with one or more negative peaks.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: April 24, 2012
    Assignee: Applied Optoelectronics
    Inventor: Jun Zheng
  • Patent number: 8160455
    Abstract: An optical transmitter is disclosed wherein a signal processor receives a data stream and outputs a drive signal for a laser, where the drive signal encodes each bit of the data stream according to the values of adjacent bits effective to compensate for spreading of bits within the fiber. The output of the laser is input to an optical spectrum reshaper that outputs a signal having an enhanced extinction ratio.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 17, 2012
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Thelinh Nguyen, Xueyan Zheng, Sunil Priyadarshi
  • Patent number: 8155531
    Abstract: Photonic integrated circuits (PICs) may include transmit and receive PICs that include individually tunable optical elements. In one implementation, a device may include a number of optical elements that form a number of optical channels. Tuners may be used to modify a property associated with the at least one of the optical elements where the modified properties of the optical elements adjust a frequency grid of the optical channels.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: April 10, 2012
    Assignee: Infinera Corporation
    Inventors: Sanjeev Murthy, Mark J. Missey, Mehrdad Ziari, Fred A. Kish, Jr., Masaki Kato, Radhakrishnan L. Nagarajan
  • Patent number: 8145066
    Abstract: Predistortion logic for an optical communications laser or optical modulator, includes predistortion logic embodied in a field programmable gate array (FPGA). A first analog to digital converter (ADC) provides a representation of an RF signal at an input of the FPGA. A digital to analog converter provides a representation of an output of the FPGA to a laser or modulator.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: March 27, 2012
    Assignee: ARRIS Group, Inc.
    Inventors: Dean Painchaud, Zhijian Sun, Marcel F. Schemmann
  • Patent number: 8135288
    Abstract: A photonic system and method are provided. The system includes an optical source configured to generate a carrier signal; and a modulator configured to modulate the carrier signal with a radio frequency, (“RF”) input signal to generate a modulated signal. The system also includes an optical filter configured to filter the modulated signal to generate a vestigial sideband modulated signal; and an optical detector configured to demodulate the vestigial sideband signal to generate an RF output signal. The system further includes a wavelength controller module configured to set an operating parameter of the optical source.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: March 13, 2012
    Assignee: The Boeing Company
    Inventor: James D. Franklin
  • Patent number: 8131155
    Abstract: There is provided an optical signal transmission apparatus having a stable dispersion compensation function without unnecessarily controlling a compensation value even when a main signal quality is deteriorated due to a factor other than dispersion or in the case of a transmission failure. When it is determined that a signal quality is deteriorated due to dispersion of a fiber by determining a control mode of a variable dispersion compensator by means of optical noise information and received power information in addition to bit error information of a received signal, a compensation value of the variable dispersion compensator is varied and a compensation value other than the dispersion of the optical fiber is held to an existing set value.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: March 6, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Yasuyuki Fukashiro, Eita Miyasaka
  • Patent number: 8131157
    Abstract: An optical transmitter is disclosed wherein a modulating signal, such as an NRZ signal, encoding data is combined with a time derivative of the modulating signal and coupled to a directly modulated laser in order to generate artificial transient chirp in the output of the laser effective to substantially compensate for dispersion experienced by the output of the laser traveling through a dispersive medium such as an optical fiber. In some embodiments, the time derivative is added to the modulating signal only at the falling edges of the modulating signal.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: March 6, 2012
    Assignee: Finisar Corporation
    Inventors: Fred L. Heismann, Daniel Mahgerefteh, Parviz Tayebati
  • Patent number: 8131158
    Abstract: Provided is an optical transmission circuit capable of realizing a high-quality optical signal waveform with low power consumption. An optical transmission circuit (10) includes: a laser diode (800); a modulator (900) for supplying a differential modulation current to an anode terminal and a cathode terminal of the laser diode (800) through transmission lines (301 to 304); a current source (101) for supplying a forward bias current to the laser diode (800); and a magnetic sheet (wave absorber) (400) disposed so as to cover at least a part of the transmission lines (303 and 304). An impedance of the laser diode (800) is lower than characteristic impedances of the transmission lines (301 to 304) which are formed so that the characteristic impedances thereof are matched to an output impedance of the modulator (900).
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 6, 2012
    Assignee: Opnext Japan, Inc.
    Inventors: Shigeru Tokita, Hiroo Matsue, Akira Kuwahara
  • Publication number: 20120045222
    Abstract: The invention relates to a method of operating an optical transmission system (100), wherein an optical signal (s, s1) is transmitted (200) through at least one component (102) of said optical transmission system (100) which exhibits spectral phase ripple, and wherein a phase of at least one frequency component of said optical signal (s, s1) is altered (210) by phase influencing means (110) to at least partly compensate for said phase ripple of said at least one component (102), whereby a phase ripple compensated signal (s2) is obtained.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Inventors: Mark Filer, Sorin Tibuleac
  • Patent number: 8121493
    Abstract: A distortion compensation circuit compensates for distortion generated by one or more non-linear elements such as a laser device. The distortion compensation circuit may be used in an optical transmitter, such as a laser transmitter used for forward path CATV applications. The distortion compensation circuit may include a primary signal path and a secondary signal path that receive an input signal. The secondary signal path produces distortion of a magnitude corresponding to the magnitude of, but at an opposite phase to, the distortion generated by the non-linear amplifier. The secondary signal path includes a plurality of distortion sub-paths with each of the distortion sub-paths configured to produce intermodulation distortion products of the same distortion order but for different frequency dependent orders in a time dependent series representative of the distortion produced by the non-linear amplifier.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: February 21, 2012
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Jun Zheng, Brian Ishaug
  • Patent number: 8112001
    Abstract: A method of transmitting information over a non-linear optical channel includes the step (152) of generating an information-bearing signal, preferably an OFDM signal, which includes a plurality of closely-spaced sub-carriers in the frequency domain. A time-varying phase modulation is determined (154), which is a first function, and preferably a linear function, of the transmitted optical power corresponding with the information-bearing signal. The information-bearing signal and the time-varying phase modulation are applied (156) to an optical source in order to generate a corresponding transmitted optical signal having substantially the stated transmitted optical power characteristic. The first function of transmitted optical power is selected so as to mitigate the effect of the non-linearity of the optical channel upon the transmitted optical signal.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 7, 2012
    Assignee: Ofidium Pty, Ltd.
    Inventors: Arthur James Lowery, Liang Bangyuan Du
  • Publication number: 20120027421
    Abstract: Methods, systems and computer program products for countering the effects of four wave mixing are described. In one implementation, a controller can be used to shift an operating wavelength of an optical transmitter away from a zero-dispersion wavelength through which signals of the optical transmitter are transmitted. The controller can perform the shifting process while allowing sufficient margin for division multiplexing and minimal dispersion. The controller may determine an appropriate offset to be used for shifting the operating wavelength without subjecting the signals to a significant increase in undesirable effects such as dispersion, crosstalk and signal distortion which can impact the overall bit-error rate.
    Type: Application
    Filed: October 3, 2011
    Publication date: February 2, 2012
    Inventors: Li-Ping Chen, Paul Meyrueix, Wei Huang
  • Patent number: 8107826
    Abstract: A method of communicating digital information over a dispersive optical channel includes encoding the digital information into a plurality of data blocks, each of which includes a number of bits of the information. A time-varying electrical signal is generated which corresponds with each of said data blocks. The time-varying electrical signal is applied to an optical transmitter (122) to generate an optical signal which includes an asymmetrically amplitude limited transmitted signal modulated onto an optical carrier. The optical signal is then transmitted over the dispersive optical channel (106). At a receiving apparatus (104) the optical signal is detected to produce an electrical signal which corresponds with the asymmetrically amplitude limited transmitted signal.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: January 31, 2012
    Assignee: Ofidium Pty Ltd.
    Inventors: Jean Armstrong, Arthur James Lowery
  • Patent number: 8095018
    Abstract: In a quaternary phase modulator including two phase modulators disposed in parallel and a phase adjuster that adjusts a phase difference when the outputs of the two phase modulators are combined, there are provided a second light source that introduces light propagated in a backward direction, a first controller that controls the bias of the two phase modulators so that the intensity of the backward light is a minimum on the input side of the quaternary phase modulator, and a second controller that controls the bias of the phase adjuster so that a result monitored by a photodiode having a bandwidth not exceeding the bit rate on the output side of the quaternary phase modulator is a minimum, the first controller being implemented after the second controller is implemented.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 10, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kenro Sekine, Nobuhiko Kikuchi, Shinya Sasaki
  • Patent number: 8086110
    Abstract: An optical communication system comprising a transmitter including a data register having a plurality of outputs, each output comprising a separate data channel, a plurality of signal processors, each signal processor corresponding to a data, a plurality of laser modules, each laser module coupled to an output of a corresponding signal processor, wherein each laser module modulates the modified signal from its corresponding data channel onto an optical carrier having a selected wavelength, and an optical multiplexer coupled to an output of all the laser modules.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: December 27, 2011
    Assignee: Intel Corporation
    Inventors: Phillip Watts, Robert Killey, Madeleine Glick
  • Patent number: 8081883
    Abstract: A method and an apparatus are provided for use in a parallel optical transmitter or transceiver to compensate for variations in optical crosstalk in an optical output power monitoring system that are caused by lasers being enabled and/or disabled. In particular, the method and apparatus cause adjustments to be made to the reference value of each optical channel based on determinations of whether one or more lasers of the other optical channels have been disabled or enabled. By making these adjustments, the average optical output power level of each laser of each channel can be maintained at a desired or required level even if one or more of the lasers of one or more of the other channels is enabled or disabled.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: December 20, 2011
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd
    Inventors: Guobin Liu, Jianping Su, An-Nien Chen, Poorya Saghari, Hui Xu
  • Patent number: 8073340
    Abstract: A distortion compensation circuit compensates for distortion generated by one or more non-linear elements such as a laser device and may include a primary signal path for carrying an input signal and one or more secondary signal paths for generating distortion. The distortion compensation circuit may also include one or more controllable phase inverters on at least one of the paths. For example, the secondary signal path may include a distortion generator to produce distortion products from the input signal and a signal controlled phase inverter that inverts the phase of the distortion products. The distortion generator and phase inverter may be combined as an invertible distortion generator. The phase inversion may be controlled in response to a phase inversion control signal generated based on one or more parameters such as temperature. The secondary signal path may also include separate distortion sub-paths to produce frequency independent distortion products and frequency dependent distortion products.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: December 6, 2011
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Brian Ishaug, Jun Zheng
  • Patent number: 8073334
    Abstract: The present invention relates to an optical modulation method and optical modulation system of a wavelength locked Fabry Perot-Laser Diode (FP-LD) by injecting a broadband light source (BLS) using mutual injection of FP-LDs. More specifically, the present invention relates to a novel modulation technology which embodies a wavelength locked FP-LD capable of being used as an economic light source in an optical network based on a wavelength-division multiplexing passive optical network (WDM-PON).
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: December 6, 2011
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Chang-Hee Lee, Ki-Man Choi
  • Patent number: 8068745
    Abstract: A circuit controlling the gain of an amplifier in an optical transmitter used for optical communication, including a detection circuit for measuring the power of the RF input to a laser; a gain controller or controlling a gain of an amplifier, and a switch connected to the gain controller, wherein the gain controller is adapted, in response to an activation of a switch, to: (i) automatically vary gain of the amplifier, and (ii) set the gain of the amplifier at a level corresponding to a reduction in the noise and/or distortion associated with the transmitter.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: November 29, 2011
    Assignee: Emcore Corporation
    Inventors: Todd Edward Olson, Nghia Kha, Hy Thai, Todd Kellison, Frank Berardi
  • Patent number: 8064777
    Abstract: A system includes a laser generator, and a signal distortion generator circuit inline with the laser generator modulation signal and configured to generate distortion vectors in any of four distortion vector quadrants.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 22, 2011
    Assignee: ARRIS Group, Inc.
    Inventors: Venkatesh Gururaj Mutalik, Marcel Franz Christian Schemmann, Long Zou
  • Patent number: 8041212
    Abstract: According to the invention, various noise currents are added to the electrical data signal after the opto-electric conversion of an optical data signal, and an optimum decision threshold for the electrical data signal equipped with this noise current is determined for each noise current. Values for a median signal current and for a median noise current of the amplified spontaneous emission are subsequently determined from the value pairs of the optimum decision threshold and the added noise current in accordance with a computation rule that is based on a noise model, and the optimum signal-to-noise ratio is calculated from their quotient. The method may also be advantageously implemented by means of simple expansions of common receiver devices.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 18, 2011
    Assignee: Nokia Siemens Networks GmbH & Co.
    Inventor: Erich Gottwald
  • Patent number: 8027593
    Abstract: The frequency chirp modulation response of a directly modulated laser is described using a small signal model that depends on slow chirp amplitude s and slow chirp time constant ?s. The small signal model can be used to derive an inverse response for designing slow chirp compensation means. Slow chirp compensation means include electrical compensation, optical compensation, or both. Slow chirp electrical compensation can be implemented with an LR filter or other RF circuit coupled to a direct modulation source (e.g., a laser driver) and the directly modulated laser. Slow chirp optical compensation can be implemented with an optical spectrum reshaper having a rounded top and relatively large slope (e.g., 1.5-3 dB/GHz). The inverse response can be designed to under-compensate, to produce a flat response, or to over-compensate.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: September 27, 2011
    Assignee: Finisar Corporation
    Inventors: Jianying Zhou, Xueyan Zheng, Kevin J. McCallion, Daniel Mahgerefteh, Hongmin Chen, Guoxi Sun, Parviz Tayebati
  • Publication number: 20110211846
    Abstract: Frequency peaking is used in the transmitter to improve link performance. In one example, frequency peaking improves the PIED or TWDP. The frequency peaking can result in pulse shapes that have more electrical energy in the receiver (and therefore higher received SNR) than uncompensated pulses. In addition, due to the response of typical fibers, boosting the high frequencies typically will flatten the received spectrum, which will improve the performance of the equalizer in an EDC receiver.
    Type: Application
    Filed: December 13, 2010
    Publication date: September 1, 2011
    Applicant: CLARIPHY COMMUNICATIONS, INC.
    Inventors: Thomas A. Lindsay, Norman L. Swenson
  • Patent number: 8009988
    Abstract: Provided herein are at least one embodiment of a system and method for reducing or eliminating crosstalk and associated distortion in a wavelength-division multiplexed optical signal transmitted over a fiber optic network by inversion of the RF signals that are inputs to the system.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: August 30, 2011
    Inventors: Mary R. Phillips, Kuang-yi Wu, Fernando Xavier Villarruel
  • Patent number: 8005360
    Abstract: A feedback signal indicative of the average RF power of an APol-DPSK optical signal is used by a PMD compensator to adjust the amount of compensation applied to the optical signal.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: August 23, 2011
    Assignee: Alcatel Lucent
    Inventor: Chongjin Xie
  • Patent number: 8005358
    Abstract: A system and method for suppressing beat noise in line monitoring equipment. A wavelength dither generator wavelength modulates a carrier wavelength of a test signal laser transmitter. A test code is modulated on the dithered carrier wavelength to provide a test signal output of the line monitoring equipment.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: August 23, 2011
    Assignee: Tyco Electronics Subsea Communications LLC
    Inventors: Hongbin Zhang, Ralph Brian Jander, Ram M. Engira
  • Patent number: 7983571
    Abstract: The apparatus includes a pulse emitter and at least one line fiber for conveying at least one pulse in the line fiber. A spreader module for linearly spreading pulses is provided including a propagation medium that is dispersive and linear. The propagation medium presents accumulated chromatic dispersion that is high enough to lower the peak power of the pulse to below a predetermined threshold, where a signal above the threshold is subjected to non-linear distortion in the line fiber. The spreader module is disposed between the emitter and the line fiber.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: July 19, 2011
    Assignee: France Telecom
    Inventor: Erwan Pincemin
  • Patent number: 7970288
    Abstract: An electronic system comprises an automatic power control (APC) unit, an adjustment unit, and a calibration unit. The automatic power control (APC) unit receives a first input signal and a second input signal and generates an output signal. An adjustment unit coupled to the first input terminal of the APC unit generates a voltage offset according to an adjustment signal. The calibration unit provides the adjustment signal with a series of values. The calibration unit monitors the output signal until the output signal changes states.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 28, 2011
    Assignee: Mediatek Inc.
    Inventors: Kuo-Hao Chao, Po-Ching Huang
  • Patent number: 7962045
    Abstract: An optical transmitter is disclosed including a widely tunable laser coupled to a periodic optical spectrum reshaper (OSR) to convert frequency modulated pulses from the laser into amplitude modulated pulses. The laser is tuned to generate pulses corresponding to passbands of the OSR spanning a wide range of frequencies. The laser includes a gain section having an optical path length substantially shorter than the total optical path length of the laser. The laser may be a Y-branch laser having reverse-biased sampled gratings or ring resonator filters tuned by stripe heaters. The laser may also include a reflective external cavity section tunable by modulating the temperature of ring resonators or etalons. The OSR may be integrally formed with the external cavity of the ECL laser.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 14, 2011
    Assignee: Finisar Corporation
    Inventors: Kevin John McCallion, Yasuhiro Matsui, Daniel Mahgerefteh
  • Patent number: 7962044
    Abstract: An optical transmitter is disclosed having a temperature stabilization system for an optical filter for maintaining constant the frequency response of the filter. The filter is mounted within a housing having a substantially higher thermal conductivity. The housing may include a copper-tungsten alloy and extend along the optical axis of the filter. The housing is in thermal contact with a thermo-electric cooler (TEC) and a temperature sensor. The TEC and temperature sensor are electrically coupled to a controller which adjusts the temperature of the TEC according to the output of the temperature sensor.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: June 14, 2011
    Assignee: Finisar Corporation
    Inventors: Kevin McCallion, Michael Deutsch, Parviz Tayebati, Saeid Azemati
  • Patent number: 7962046
    Abstract: The present application is directed to an apparatus and method for the automated compensation of dispersion over a broad wavelength range for coherent optical pulses. In one embodiment, the present application discloses an automatic dispersion compensating optical apparatus configured to change chirp introduced into an optical signal by an optical system in optical communication with the dispersion compensating optical apparatus and includes at least one wavelength-tunable source of coherent optical pulses configured to output at least one optical signal, at least one dispersion compensation device configured to receive the optical signal from the coherent source, and at least one controller in communication with the dispersion compensation device and configured to adjust chirp introduced into the optical signal by the dispersion compensation device as the wavelength of the optical signal is varied.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 14, 2011
    Assignee: Newport Corporation
    Inventors: Dmitri A. Oulianov, Stefan Marzenell, Richard Boggy
  • Patent number: 7945172
    Abstract: An improved precompensation circuit includes a greatly improved differentiator in the dispersion precompensation path, a preprocessor in the dispersion precompensation path for reducing f2?f1 type Composite Second Order (CSO) distortion, and a broadband phase shifter for compensating undesired vector interaction between the laser predistortion and dispersion compensation.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: May 17, 2011
    Assignee: Harmonic, Inc.
    Inventors: Wei Huang, Thomas C. Lam, Li-Ping Chen
  • Patent number: 7936997
    Abstract: A directly modulated optical transmitter for use with a fiber optical communications system operating in the 1550 nm wavelength band exhibits very low chirp. The chirp inherently present in a directly modulated laser is cancelled by a phase modulator which optically modulates the directly modulated laser light beam by applying a 180° phase delay to a split-off portion of the input radio frequency signal. This provides a low cost transmitter capable of operating in the 1550 nm band and with laser chirp effectively cancelled or substantially reduced, thereby avoiding distortions due to laser chirp interactions with the downstream optical fiber.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: May 3, 2011
    Assignee: Innotrans Communications, Inc.
    Inventors: Mani Ramachandran, Hermann Gysel, Chandra Jasti
  • Patent number: 7929862
    Abstract: After implementing a scrambler upon an electric signal of digital signals to be transmitted to a user terminal, this electric signal is converted into a digital optical signal, and an analog optical signal and this digital optical signal are multiplexed by wavelength division multiplexing, thereby reducing influence of cross-talk interference that is exerted on the analog optical signal by the digital optical signal.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: April 19, 2011
    Assignee: Fujitsu Limited
    Inventors: Katsuhiko Hakomori, Hiroshi Nishimoto, Akihiko Ichikawa