For Power Control Patents (Class 398/197)
  • Patent number: 8774643
    Abstract: A driver circuit configured to generate a drive signal for an optical source comprises an overshoot controller that provides an amount of overshoot for a given logic state of the drive signal as a function of a duration of at least one previous logic state of the drive signal. The drive signal may alternate between a first logic state associated with a first operating mode of the optical source and a second logic state associated with a second operating mode of the optical source. The overshoot controller may be configured to provide amounts of overshoot for respective instances of the first logic state that are proportional to the durations of their respective immediately preceding second logic states. The driver circuit may be implemented in a heat-assisted magnetic recording system in which the optical source alternates between on and off states associated with respective magnetic write and magnetic read modes.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 8, 2014
    Assignee: LSI Corporation
    Inventors: Jason P. Brenden, Xuemin Yang, Cameron C. Rabe
  • Patent number: 8774568
    Abstract: Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is less than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tak Han, Jang Uk Shin, Sang-Pil Han, Sang Ho Park, Yongsoon Baek
  • Publication number: 20140186056
    Abstract: Systems and methods are provided for a low frequency AC comparison circuit. The low frequency AC comparison circuit includes circuitry configured to receive a monitoring signal generated by an optical detector, the monitoring signal being proportional to an amount of light generated by an optical transmission device that transmits based on a data signal that is received by an optical driver. The comparison circuit is further configured to generate a modulation current control signal that is transmitted to the optical driver based on a comparison of a low frequency AC component of the monitoring signal and a correlated low frequency AC component of the data signal.
    Type: Application
    Filed: August 27, 2013
    Publication date: July 3, 2014
    Inventor: Jonah Nuttgens
  • Patent number: 8768166
    Abstract: Adaptive power setting techniques for optical transceivers are provided. Optical signals are received at a first optical transceiver device that are transmitted from a second optical transceiver device. A receive power of the optical signals received at the first optical transceiver device from the second optical transceiver device is determined. A characteristic of optical signals transmitted by the first optical transceiver device to the second optical transceiver device is modulated to indicate to the second optical transceiver device a disparity of the receive power with respect to a target receive power level at the first optical transceiver device. Conversely, the first optical transceiver device adjusts a power level of optical signals transmitted by the first optical transceiver device to the second optical transceiver device based on a characteristic of the optical signals received at the first optical transceiver device.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: July 1, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Mahan Movassaghi, Norman Tang, Liang Ping Peng
  • Patent number: 8768179
    Abstract: A power management arrangement for low power optical transceiver such as those that may be integrated into a personal computer or server may periodically put itself into a power conservation or sleep mode which assures the transceiver is available upon wake-up.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 1, 2014
    Assignee: Intel Corporation
    Inventors: Hui-chin Wu, Miaobin Gao, Hengju Cheng
  • Patent number: 8750714
    Abstract: Monolithic single and/or dual detector structures are fabricated on the emitting surface of a VCSEL and/or on a lens or glass substrate configured to be positioned along the axis of emission of an optical light source. Each monolithic detector structure includes one or two PIN detectors fabricated from amorphous silicon germanium with carbon doping or amorphous germanium with hydrogen doping. The monolithic detectors may additionally include various metallization layers, buffer layers, and/or anti-reflective coatings. The monolithic detectors can be grown on 1550 NM VCSELs used in optical transmitters, including lasers with managed chirp and TOSA modules, to reduce power and real estate requirements of the optical transmitters, enabling the optical transmitters to be implemented in long-reach SFP+ transceivers.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 10, 2014
    Assignee: Finisar Corporation
    Inventors: Henry M. Daghighian, Kevin J. McCallion
  • Patent number: 8750711
    Abstract: Systems and methods for performing closed-loop diagnostics in optical transceiver. The TOSA of an optical receiver includes a primary transmit module and a secondary receiver module. The transmit module transmits a data signal to a ROSA of another optical transceiver. The ROSA has a secondary transmit module that can transmit a diagnostic data signal back to the secondary receiver module of the TOSA. The TOSA can use the diagnostic data received from the ROSA to automatically adjust itself and perform closed-loop feedback functions. The closed loop diagnostics can be implemented in a network where one transceiver may be connected with more than one other transceiver in a multi-node configuration.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: June 10, 2014
    Assignee: Finisar Corporation
    Inventor: John Hsieh
  • Patent number: 8750707
    Abstract: In general, a system and method provides secure communications between optical transceivers in an optical communication system. Two or more optical transceivers may be provisioned with one or more passcodes assigned to the transceivers, which may be used to indicate that received data traffic is intended for the transceivers. The transceivers may be configured to format data traffic with a secure version of the passcode in the overhead of the outbound signal and may be configured to determine if an inbound signal includes a secure version of the passcode provisioned in that transceiver. A transceiver may prevent data traffic from being read when the transceiver is not provisioned to receive data traffic with the embedded secure passcode and may insert an alternative maintenance signal (AMS) into an outbound signal in an opposite direction, at least temporarily, until the inbound signal includes the appropriate passcode.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: June 10, 2014
    Assignee: Tyco Electronics Subsea Communications LLC
    Inventors: Sameh A. Sabet, Jonathan M. Liss
  • Patent number: 8676063
    Abstract: A quantum correlated photon pair generating device includes a nonlinear optical medium that generates quantum correlated photon pairs from excitation light by spontaneous parametric fluorescence and generates auxiliary idler light from the excitation light and auxiliary signal light by stimulated parametric conversion. The excitation light and auxiliary signal light are generated separately, combined, and input simultaneously to the nonlinear optical medium. An optical demultiplexer separates the auxiliary signal light and the auxiliary idler light output from the nonlinear optical medium. The intensities of the output auxiliary signal light and auxiliary idler light are detected, and the intensity or wavelength of the excitation light or the temperature of the nonlinear optical medium is controlled to maintain the ratio of the detected intensities at a preset value. The rate at which the quantum correlated photon pairs are generated is thereby held steady.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: March 18, 2014
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Shin Arahira
  • Patent number: 8670676
    Abstract: The invention relates to an optical modulator control system implemented in an optical burst mode transmitter, said control system comprising means for measuring a plurality of optical power sample values and associated optical wavelength data values from a modulator at a first sampling rate, wherein an average power table is generated from said values for each sample period and stored in a memory. The control system also comprises means for performing a control error calculation from two or more stored average power tables at a second sampling rate to calculate a single error value to provide gain and/or bias control signals, wherein the second sample rate is sampled at a slower rate than the first sample rate. The control system described optimises the modulator performance over temperature and lifetime in an optical network.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 11, 2014
    Assignee: Intune Networks Limited
    Inventor: Richard Oberland
  • Patent number: 8660437
    Abstract: A fiber optic network reduces distortion present in modulated optical signals received at an optical receiver from an optical transmitter via a fiber optic link. The optical receiver analyzes a received modulated optical signal, where the wavelength of the received signal is periodically varied at the transmitter around a center wavelength over a wavelength range. Based on the analysis, the receiver generates a link transmission curve indicative of the optical power of the received signal over the wavelength range. The network disclosed herein subsequently uses the link transmission curve to reduce the distortion caused by misalignment between the operating wavelength of a transmitter laser and a peak power wavelength at the peak power of the link transmission curve. For example, the transmitter may adjust the laser operating wavelength based on a control signal received from the receiver and generated at the receiver based on the link transmission curve.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: February 25, 2014
    Assignee: Emcore Corporation
    Inventor: Henry A. Blauvelt
  • Patent number: 8660435
    Abstract: A system for delivering optical power over optical conduits includes more than one optical power source and an optical power distribution node configured for selectively delivering optical power to multiple optical power sinks.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: February 25, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Alistair K. Chan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Lowell L Wood, Jr.
  • Patent number: 8611761
    Abstract: New method to control the optical transmitter is disclosed. The optical transmitter provides both of the ATC feedback loop and the APC feedback loop. When a failure occurs in the ATC feedback loop and the temperature sensor is unable to output an adequate signal any longer, the optical transmitter cuts the APC loop and operates the LD in constant conditions. The output of the monitor PD is transferred to the ATC loop to control the TEC based on the optical output of the LD.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: December 17, 2013
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventors: Ryutaro Takei, Takeshi Irie, Tomoki Ito, Kazuhisa Ozaki, Masatsugu Togasaki
  • Patent number: 8588622
    Abstract: An optical device includes a light source, a controller that supplies control information to the light source and controls an output level of the light source, a monitor that outputs an operation state of the optical output as a monitor output, and an auxiliary controller that records the monitor output and the control information. When the controller stops supplying the control information, the auxiliary controller outputs the control information to the light source in accordance with the relation between the recorded monitor output and the recorded control information.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 19, 2013
    Assignee: Fujitsu Optical Components Limited
    Inventor: Shiyuuichi Yasuda
  • Patent number: 8571420
    Abstract: An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Hyun Cho, Han-Hyub Lee, Jie-Hyun Lee, Jong-Hoon Lee, Eun-Gu Lee, Eui-Suk Jung, Sang-Soo Lee
  • Patent number: 8565616
    Abstract: A polarized-wave-multiplexing optical transmitter including: an optical combiner generating a polarized-wave-multiplexed optical signal by polarized-wave-multiplexing a first optical modulation signal and a second optical modulation signal; an optical power fluctuation portion fluctuating optical power of the first optical modulation signal and the second optical modulation signal periodically; a total-optical-power detection portion detecting fluctuation amount of total optical power of the polarized-wave-multiplexed optical signal; and an optical power controller reducing an optical power difference between the first optical modulation signal and the second optical modulation signal based on detection result of the total-optical-power detection portion.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: October 22, 2013
    Assignee: Fujitsu Limited
    Inventors: Toshiki Tanaka, Yuichi Akiyama, Masato Nishihara
  • Patent number: 8565619
    Abstract: An apparatus for preventing collision of upstream signals is provided. The apparatus is suitable for a time division multiplexing (TDM) passive optical network (PON). The apparatus includes an optical coupler device, an optic-electron converter (O/E), a control system, and an optical signal switch module. The O/E is coupled to the optical coupler device, the control system is coupled to the O/E, and the optical signal switch module is coupled to the optical coupler device and the control system. The optical coupler device receives a first optical signal and splits the first optical signal into a second optical signal and a third optical signal. The O/E converts the second optical signal into a first electrical signal. The control system generates a control signal according to the first electrical signal. The optical signal switch module determines whether to stop the third optical signal from passing the apparatus according to the control signal.
    Type: Grant
    Filed: December 25, 2007
    Date of Patent: October 22, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-Hung Yeh, Sien Chi
  • Patent number: 8565615
    Abstract: An optical modulation apparatus includes a first modulator, a second modulator, a multiplexer, a detector and an adjustor. The first modulator modulates light emitted by a light source using a first input signal and outputs a first modulated signal. The second modulator modulates the light using a second input signal and outputs a second modulated signal. The multiplexer multiplexes the first and second modulated signals and outputs a multiplexed signal. The detector is configured to detect a dip where power in a waveform of the multiplexed signal is equal to or smaller than a predetermined value. The adjustor is configured to adjust a delay of the first and second input signals based on power at the dip.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: October 22, 2013
    Assignee: Fujitsu Limited
    Inventors: Masato Nishihara, Tomoo Takahara, Takeshi Hoshida
  • Patent number: 8559824
    Abstract: A parallel optical transceiver module is provided that has a balanced laser driver arrangement. The balanced laser driver arrangement of the invention includes at least two laser diode driver ICs, which preferably are located on opposite sides of a laser diode IC. Each laser diode driver IC drives a subset (e.g., half) of the total number of laser diodes of the laser diode IC. Because each laser diode driver IC drives a subset of the total number of laser diodes of the laser diode IC, the pitch (i.e., distance) between the high-speed signal pathways within the laser diode driver ICs can be increased. Increasing the pitch between the high-speed signal pathways provides several advantages, including, for example, reducing the potential for electrical cross-talk and inductive coupling between adjacent wire bonds that connect the output driver pads on the driver IC to the respective input pads on the laser diode IC.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 15, 2013
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Laurence R. McColloch, Frederick W. Miller
  • Patent number: 8554086
    Abstract: Disclosed is a method for setting a power control initial value by using an indication light in visible light communications and a transmission/reception (Tx/Rx) apparatus using the method. The method includes the steps of: radiating multiple indication lights having power levels different from one another by a visible light communication transmitter; aligning a communication position simultaneously with measuring Received Signal Strength Indication (RSSI) of the indication light on detecting the indication light, selecting a power level whose RSSI is in a preset threshold range and which is adequate for transmission/receive among the multiple power levels different from one another, and informing the visible light communication transmitter of the adequate power level by a visible light communication receiver; and transmitting data from the visible light communication transmitter to the visible light communication receiver by using a transmitted power initial value according to a selected power level.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: October 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-Hoon Ann
  • Patent number: 8554088
    Abstract: An optical transmission apparatus in an optical transmission system that transmits an optical signal through a transmission fiber includes a measurement device that measures Raman gain efficiency of the transmission fiber; a level determiner that determines an input level of the optical signal based on Raman gain efficiency measured by the measurement device; and a controller that controls a level of the optical signal input to the transmission fiber to become the input level determined by the level determiner.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: October 8, 2013
    Assignee: Fujitsu Limited
    Inventor: Ryosuke Goto
  • Patent number: 8548322
    Abstract: A channel power estimator for estimating the power of each channel in a wavelength division multiplexed (WDM) signal, comprising filter means to select and output a sub-band of an incoming WDM signal, function application means to apply a weighting function at least once to the output from the filter means and then output the weighted signal to reconstruction means, storage means for storing optical characteristic data on at least the function application means, wherein the reconstruction means calculates an estimation of the power distribution of the incoming WDM signal using the weighted signal and the optical characteristic data.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 1, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Gianmarco Bruno
  • Patent number: 8548336
    Abstract: Systems and methods are provided for an optical modulation feedback circuit. The feedback circuit includes a low frequency comparison circuit configured to receive a monitoring signal generated by an optical detector, the monitoring signal being proportional to an amount of light generated by an optical transmission device that transmits based on a data signal that is received by an optical driver. The comparison circuit is further configured to generate a modulation control feedback signal that is transmitted to the optical driver based on a comparison of a low frequency component of the monitoring signal and a low frequency component of the data signal.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: October 1, 2013
    Assignee: Semtech Corporation
    Inventor: Jonah Nuttgens
  • Patent number: 8543004
    Abstract: In one aspect, the present invention embraces a wavelength locking method for causing a narrow-band wavelength spectrum of an optical transmit signal of an optical transceiver device to track a narrow-band wavelength spectrum of an optical receive signal received by the optical transceiver device Further, the present invention embraces a wavelength lockable optical transceiver device, especially for a passive optical transmission network, using this wavelength locking method.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 24, 2013
    Assignee: ADVA Optical Networking SE
    Inventor: Michael Eiselt
  • Patent number: 8543010
    Abstract: An apparatus and method for controlling bias in an optical modulator is disclosed. The method is particularly applicable to controlling multi-wavelength modulators and wavelength-tunable transmitters. At a calibration stage, a desired optical performance of the modulator is achieved, and an amplitude of a peak-to-peak variation of the output optical signal at a pre-determined amount of dither is stored in a memory as a reference. At operating stage, a controller of the optical modulator adjusts a bias voltage of the modulator until the measured peak-to-peak optical signal variation matches the reference value stored at the calibration stage. For multi-wavelength modulators and tunable transmitters, the calibration is repeated at each wavelength, and corresponding peak-to-peak optical signal variations are stored in the memory.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 24, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Yuxin Zhou, Hock Gin Lim
  • Patent number: 8483565
    Abstract: A data transport card comprising an interface to receive high speed data streams from at least one client, and a pluggable conversion module which converts said data streams into optical data signals and couples these optical data signals into at least one wavelength division multiplexing channel for transport of said optical data signals via an optical fiber.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 9, 2013
    Assignee: ADVA Optical Networking SE
    Inventors: Joerg-Peter Elbers, Klaus Grobe
  • Patent number: 8463139
    Abstract: An optical transmitter disabling device for controlling an optical transmitter, particularly of an optical network termination node of a passive optical network comprising a monitoring module and a disabling module, the monitoring module being adapted to determine at least when the optical transmitter is active, the disabling module being adapted to be connected to an activation input of the optical transmitter and wherein the disabling module is adapted to interrupt an activation signal to the optical transmitter at least when the monitoring module determines that the optical transmitter is active outside of a predetermined time interval.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: June 11, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventor: Stefan Dahlfort
  • Patent number: 8463138
    Abstract: Provided is a multi-value optical transmitter in which a DC bias may be controlled to be stabilized so as to obtain stable optical transmission signal quality in multi-value modulation using a dual-electrode MZ modulator. The multi-value optical transmitter includes: D/A converters for performing D/A conversion on first and second modulation data which are set based on an input data series, so as to generate a first and a second multi-value signal, respectively; a dual-electrode MZ modulator including phase modulators for modulating light from a light source based on the first multi-value signal and the second multi-value signal, so as to combine optical signals from the phase modulators to output the optical multi-value signal; an optical output power monitor for detecting average power of the optical multi-value signal; and a DC bias control unit for controlling a DC bias for the dual-electrode MZ modulator, so as to maximize the average power.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Sugihara, Soichiro Kametani, Takashi Mizuochi
  • Patent number: 8433200
    Abstract: A quantum key delivery system includes an optical circulator, an optical low-pass filter, optical splitters, and first and second optical couplers arranged for outputting various wavelength components including correlated-photon pair wavelength components outputted from an optical loop path. The first and second optical couplers output light beams, which are sent over first and second quantum channels to first and second recipients, respectively. Other optical splitters are adapted to output light rays, from which first and second control signals are produced. From auxiliary idler light components transmitted over the first and second quantum channels, clock signals are extracted. The system thus extracts a clock signal for detecting arrival of photons, and stably operates with an expected value of the number of generated correlated photon pairs maintained at a substantially constant value.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 30, 2013
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Shin Arahira
  • Patent number: 8406637
    Abstract: A system and method are provided for controlling the pre-emphasis applied to an optical signal, in which the output level of individual transmitters is controlled in order to reach a pre-defined desired value of a quality metric. Transmitters are able to adjust their output power without external control in such a way as to optimise the power distribution across the system.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 26, 2013
    Assignee: Xtera Communications, Inc.
    Inventors: Stephen Michael Webb, David Winterburn, Stephen Debruslais
  • Patent number: 8396374
    Abstract: In a digital signal processing optical transmission apparatus such as a predistortion or OFDM type one, optical transmission at a stable S/N ratio is intended to be able to be made by controlling an output of an optical transmission signal with fixed average power, even if a peak to average power ratio of the optical transmission signal changes. The apparatus is provided with an average power calculation unit (30) that calculates the average power of a digital signal outputted from a digital signal processing circuit (2), and an optical power variable unit (31) that serves to make constant the average power of an optical transmission signal outputted from an optical vector modulator (5).
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 12, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Mizuochi, Yoshiaki Konishi, Tatsuya Kobayashi
  • Patent number: 8391722
    Abstract: A transmission device has a light emitting element for converting an electric signal to an optical signal and transmitting the same, and a drive section for outputting the optical signal from the light emitting element and driving the light emitting element by providing the electric signal to the light emitting element. The electric signal provided by the drive section to the light emitting element is a waveform deformed signal having a waveform in which a time required for a fall is longer than a time required for a rise in a binary signal having a signal of high level and a signal of low level.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 5, 2013
    Assignee: OMRON Corporation
    Inventors: Akira Enami, Keisuke Uno, Kentaro Hamana, Tetsuya Nosaka, Hayami Hosokawa
  • Patent number: 8391715
    Abstract: When a neighbor ONU receives a signal with light intensity high enough to secure communication between an OLT and a remote ONU, the light intensity may be excessively high to damage a receiver of the neighbor ONU. In order to avoid such a problem, each ONU is notified of a downstream signal transmission plan (downstream light intensity map) prior to transmission of a downstream signal. Each ONU receives the downstream light intensity map (light intensity transmission schedule of downstream signal) in advance. Thus, the neighbor ONU can block or attenuate an optical signal addressed to the remote ONU, and the remote ONU can determine normal operation even when the remote ONU cannot receive a signal addressed to the neighbor ONU. Thus, the remote ONU can be prevented from issuing a wrong error signal.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 5, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Masao Niibe, Masahiko Mizutani, Shinya Fujioka
  • Patent number: 8391724
    Abstract: Included are a first modulator, a second modulator, a first optical amplifier that amplifies an output of the first modulator at an amplification factor based on a first bias signal, a second optical amplifier that amplifies an output of the second modulator at an amplification factor based on a second bias signal, an optical phase adjuster that phase-rotates an output of the second optical amplifier, an optical multiplexer that multiplexes an output of the first optical amplifier with an output of the optical phase adjuster, and a second bias corrector that generates a first pulse signal and a second pulse signal, which are complementary to each other, and obtains a first bias value and a second bias value based on a change of strength of an output signal of the optical multiplexer. The first and second pulse signals are superimposed on the first and second bias signals, respectively.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: March 5, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroshi Aruga, Keita Mochizuki, Atsushi Sugitatsu
  • Patent number: 8346097
    Abstract: A method comprises: receiving an RF signal; providing an RF signal level; setting a DC optical power level at one of at least two levels depending on whether the RF signal level is above or below an RF threshold; and modulating with the RF signal optical output power about the DC optical power level. An apparatus comprises: a light source; an RF detector arranged to receive the RF signal and to provide the RF signal level; an optical power control circuit coupled to the RF detector and to the light source that includes a comparator and is arranged to set the DC optical power level according to the RF signal level; and an optical modulator coupled to the light source and arranged to receive the RF signal and to modulate therewith optical output power about the DC set point.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: January 1, 2013
    Assignee: HOYA Corporation USA
    Inventors: Albert M. Benzoni, Joel S. Paslaski
  • Patent number: 8340525
    Abstract: A method for stabilizing multi-channel optical signal wavelengths includes the following steps. A first detecting signal is stacked on a plurality of driving signals in sequence. A plurality of optical signals generated after being driven by the plurality of driving signals is combined into one optical total signal. A wavelength detection is performed on the optical total signal. A second detecting signal with a frequency band the same as that of the first detecting signal is extracted from the signals obtained after the wavelength detection. The wavelength of the optical signal in the corresponding channel among the multiple channels is controlled according to the second detecting signal. A device for stabilizing multi-channel optical signal wavelengths is also provided. Using the above method or device, the multi-channel optical signal wavelengths can be stabilized, which requires less elements, and has a simple circuit structure, a high integration level, and a low cost.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: December 25, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yusheng Bai, Naisheng Zhang, Changgui Xiao
  • Patent number: 8331787
    Abstract: Even during a protection period in which a state transition is not caused from an ALC state to an ALD state, when an output light level that is inputted is below a threshold for ALC transition read from a memory, a processor causes a transition by switching an internal state from an ALC state to an ALD state. Then, an ALD operation is started, outputting a control voltage to a VAT control unit so as to achieve a predetermined fixed attenuation amount.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 11, 2012
    Assignee: Fujitsu Limited
    Inventors: Takeshi Noma, Haruki Tanaka, Yoshikazu Nakanishi, Makoto Ohtou, Hideaki Sugiya, Ichiro Nakajima, Toshihiro Suzuki
  • Patent number: 8331778
    Abstract: A WDM transmission apparatus to receive or relay WDM light in a WDM transmission system, includes a measuring unit configured to measure an optical level of each channel transmitted by the WDM light; an adjusting unit configured to adjust a resolution of the measuring unit; and a processing unit configured to obtain, for each channel, optical level information which represents an optical level respectively measured with a resolution corresponding to a bit rate of a transmission signal of each channel.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: December 11, 2012
    Assignee: Fujitsu Limited
    Inventor: Yoshihiro Shimizu
  • Patent number: 8320758
    Abstract: A method for estimating optical power in an optical channel includes determining a tunable filter full-width, FWF, by measuring a response of the tunable filter to a known signal and mapping the response to frequency. A portion of an optical channel is coupled to an input of the tunable optical filter. A peak power response, PR, and a full width tunable filter response, FWR, to the optical channel are determined by measuring a response of the tunable filter to the optical channel and mapping the response to frequency. A signal power, PS, is then calculated from the peak power response, PR, and a ratio of the full width tunable filter response, FWR, to the tunable filter full-width, FWF.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 27, 2012
    Assignee: Aegis Lightwave, Inc.
    Inventor: Michael Cahill
  • Patent number: 8320775
    Abstract: The present invention discloses a method and device for the bias control of an MZ modulator. The method comprises: during startup of an MZ modulator, inputting a linearly changing bias control voltage to the bias electrode of the MZ modulator and obtaining the output optical power of the MZ modulator so as to determine a bias control voltage corresponding to a preset operating point; then enabling a communication electrical signal to be input to the radio frequency electrode of the MZ modulator, carrying out an amplitude modulation on the communication electrical signal by a low-frequency sinusoidal pilot signal, and inputting the determined bias control voltage to the bias electrode simultaneously; and sampling the output optical signals of the MZ modulator, comparing the sampled optical signal with the pilot signal, and adjusting the bias control voltage input to the bias electrode according to the result of the comparison.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 27, 2012
    Assignee: ZTE Corporation
    Inventor: Jianqing Shen
  • Patent number: 8306419
    Abstract: Techniques for controlling a light source in a wavelength division multiplexed passive optical network (WDM-PON) are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for controlling a light source in a wavelength division multiplexed passive optical network (WDM-PON). The apparatus may include a digital signal processing device configured to output a pilot tone signal. The apparatus may also include an amplifier configured to modulate a modulation current and the pilot tone signal, and output an amplitude modulated signal. The apparatus may further include a capacitor configured to AC couple the amplitude modulated signal to a bias current applied to a light source; and a monitoring photodiode configured to detect an output optical signal of the light source and transmit the detected output optical signal to the digital signal processing device to control the output optical signal of the light source.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: November 6, 2012
    Assignee: LG-Ericsson Co., Ltd.
    Inventors: Tom Luk, John Bainbridge
  • Patent number: 8301035
    Abstract: An optical communication apparatus includes an optical signal transmitter for outputting an optical signal, an optical switch device for switching a route of the optical signal, a drive controller for supplying a drive current for controlling a route switching to the optical switch device, a cooling device for cooling the optical switch device on the basis of a control signal, a temperature controller for transmitting the control signal to the cooling device in order to keep a measured temperature at a specific temperature, where the measured temperature is related to a temperature of the optical switch device.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 30, 2012
    Assignee: Fujitsu Limited
    Inventors: Keisuke Harada, Taku Yoshida, Yoshiyuki Maeda
  • Patent number: 8249465
    Abstract: A light transmitting apparatus of the invention includes: a light transmitting section having a light source and an EA modulator, and a control section that controls the optical output power of the light transmitting section to be constant, based on a monitor value of EA photoelectric current. The control section uses a reference value corresponding to a wavelength of the light source, from amongst reference values of the EA photoelectric current that are different for each wavelength, and feedback controls the light transmitting section depending on a difference between the reference value and the monitor value. As a result it is possible to reliably suppress fluctuations in the optical output power due to changes in the wavelength of the light source.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: August 21, 2012
    Assignee: Fujitsu Limited
    Inventor: Kenichi Nakamoto
  • Patent number: 8244141
    Abstract: An apparatus for generating a dispersion compensation signal includes a splitting module for splitting a data signal to be transmitted into N channels of data signals; N pre-processing modules for adjusting in frequency domain the phases and amplitudes of the N channels of data signals and outputting N channels of pre-warped electrical signals; an optical carrier generating module for generating N channels of coherent optical carriers; N electro-optic modulators for modulating the N channels of coherent optical carriers based on the N channels of pre-warped electrical signals and generating N channels of pre-warped optical signals; an optical coupling module for coupling the N channels of pre-warped optical signals into a dispersion compensation optical signal. By pre-processing the data signals, the present disclosure may allow the use of existing devices to generate a dispersion compensation signal so that the bandwidth requirement set by prior art on the electrical device is reduced.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 14, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wei Fu, Zhihui Tao, Yue Liu, Jia Jia
  • Patent number: 8233808
    Abstract: An optical transmission system based on four-wave mixing and configured in a WDM-PON topology where a signal light between an optical line terminal and each of optical network units is multiplexed and demultiplexed at a WDM. The optical line terminal transmits downlink signal light having wavelengths ?d1, . . . , ?dN and pumping lights having wavelengths ?p1, . . . , ?pN which are different by a predetermined wavelength difference ?? from the wavelengths of the downlink signal lights. Each of the optical network units demultiplexes the downlink signal lights to receive a portion of the downlink signal lights, generates an uplink signal light to be transmitted from each of the optical network unit to the optical line terminal by using a portion of the downlink signal lights and the four-wave mixing from the pumping lights, and outputs a modulated uplink signal light.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: July 31, 2012
    Assignees: Fujikura Ltd., Shibaura Institute of Technology
    Inventor: Norio Kashima
  • Patent number: 8218974
    Abstract: An optical transmitter and an optical transmission method includes a plurality of light-emitting elements, a plurality of light-receiving elements for monitoring optical outputs from the light-emitting elements, a linear operation circuit for calculating optical output monitor signals by removing crosstalk parts from a plurality of photoelectric conversion currents outputted from the light-receiving elements, and a drive circuit for driving individually currents to apply to the light-emitting elements based on the optical output monitor signals.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: July 10, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventor: Keita Hattori
  • Patent number: 8218973
    Abstract: Provided are an optical transmitter device and an optical transmitter module which are capable of reducing the optical transmitter module size while maintaining a state where an excellent optical transmission waveform quality is obtained over a wide range of frequencies. The optical transmission module (2) includes a semiconductor laser diode device (10), an optical modulator device (12), and a first termination resistor circuit (14-1). A printed circuit board (4) includes a driver IC (16) and a second termination resistor circuit (14-2). A lower cutoff frequency of the first termination resistor circuit (14-1) and an upper cutoff frequency of the second termination resistor circuit (14-2) correspond to each other. An impedance of the first termination resistor circuit (14-1) in a pass frequency band thereof and an impedance of the second termination resistor circuit (14-2) in a pass frequency band thereof correspond to each other.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 10, 2012
    Assignee: Opnext Japan, Inc.
    Inventors: Osamu Kagaya, Satoshi Motohiro, Masahiro Hirai
  • Patent number: 8208814
    Abstract: An optical transceiver calibration system and manufacturing method to fabricate a dual closed loop control transceiver are provided. The calibration system and method includes measuring an operating temperature and determining operational parameters based upon the operating temperature. The operational parameters may include, for example, a target power for transmitting a digital one, a target power for transmitting a digital zero, a modulation current, and a bias current. A bias may be added to the temperature to account for the difference between the temperature at the temperature sensor and the optical equipment. The operational parameters are preferably calculated independently of each other and are used as initial values during operating modes and allow the control loop to converge more quickly. The optics data is may be scanned electronically via bar code or some other electronic format prior to test. The software residing on the module then calibrates and configures the transceiver.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: June 26, 2012
    Assignee: IPhotonixs, LLC
    Inventors: Samir Sheth, Andy James Filtness
  • Patent number: 8190033
    Abstract: An apparatus for detecting wavelength drift and a system and method for locking wavelengths are disclosed herein so that multiple optical modules can share a wavelength locking apparatus without any wavelength selecting module. The output signals of only one optical module are scrambled at a time, and the identifier information carried in the optical signals output by different optical modules is the same, for example, the same frequency is applied to scrambling of every optical signal. Therefore, the scrambling apparatus is simplified, and the interference between scrambling signals is eliminated. Because no mechanical or electrical apparatus is used for controlling the wavelength switching, the cost is reduced, the locking speed is increased, the accuracy of signal processing is improved, and the precision of wavelength locking is enhanced.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: May 29, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Minhai Tu
  • Patent number: RE44647
    Abstract: An optical transmitter for generating a modulated optical signal for transmission over a fiber optic link to a remote receiver including a laser; an input coupled to the laser for directly amplitude modulating the laser with an analog RF signal to produce an output optical signal including an amplitude modulated information-containing component; and a phase modulator coupled to the output of the laser for reducing the distortion present in the received optical signal at the remote receiver.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: December 17, 2013
    Assignee: Emcore Corporation
    Inventor: John Iannelli