Chirping Patents (Class 398/199)
  • Patent number: 9369207
    Abstract: A manner of providing an energy-efficient two-stage PON using a multistage-PON repeater to forward data traffic and other communications between the first stage and the second stage. The multistage-PON repeater receives BI-PON transmission frames from and OLT and decimates them, forwarding data intended for end devices of the second stage. The multistage-PON repeater rate adapts the transmissions so that faster speeds may be associated with PON first stage communications and slower speeds are associated with PON second stage communications. Many though not all of the multistage-PON components are configured to operate at the slower clock speed, conserving energy. Upstream transmissions from the end devices of the second stage are buffered in the multistage-PON repeater and forwarded to the OLT according to an allocation schedule received from the OLT in a BI-PON frame.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: June 14, 2016
    Assignee: Alcatel Lucent
    Inventors: Dusan Suvakovic, Hungkei K. Chow, Man-Fai Lau, Peter J. Vetter
  • Patent number: 9291509
    Abstract: Systems and methods are provided for ultrafast optical waveform sampling based on temporal stretching of an input signal waveform. Temporal stretching is performed using a time lens based on four-wave mixing in a nonlinear medium. The signal is passed through an input dispersive element. The dispersed signal is sent into the time lens, which comprises a chirped pump pulse and a nonlinear medium. The chirped pump pulse is combined with the signal. The four-wave mixing process occurs in the nonlinear device or medium, which results in the generation of a signal at a new optical frequency (idler). The idler is spectrally separated from the signal and pump pulse using a bandpass filter and sent into an output dispersive element. The output dispersive element is longer than the input dispersive element and the temporal stretching factor is given by the ratio between the dispersions of these two elements.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 22, 2016
    Assignee: Cornell University
    Inventors: Michal Lipson, Alexander Gaeta, Reza Salem, Mark Foster, David Geraghty, Amy Foster
  • Patent number: 8909050
    Abstract: An optical network unit (10) comprising a reflective semi-conductor optical amplifier (R-SOA) 12 and a driver 14. The R-SOA has a large optical confinement factor and is arranged to receive a portion of a downstream optical signal having a signal wavelength and a signal power. The driver is arranged to generate a drive signal 16 to drive the R-SOA. The drive signal is arranged to cause the R-SOA to operate in saturation at the signal power. The drive signal is further arranged to cause the R-SOA to apply a return-to-zero line code to said portion of the downstream optical signal to form an upstream optical signal at the signal wavelength. The drive signal is further arranged to cause the R-SOA to apply a phase modulation to the upstream optical signal.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: December 9, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Marco Presi, Ernesto Ciaramella, Fabio Cavaliere, Luca Banchi
  • Patent number: 8897654
    Abstract: A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 25, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Diego F. Pierrottet, Larry B. Petway, Farzin Amzajerdian, Bruce W. Barnes, George E. Lockard, Glenn D. Hines
  • Patent number: 8786930
    Abstract: Embodiments of the invention provide apparatuses and methods for phase correlated seeding of parametric mixer and for generating coherent frequency combs. The parametric mixer may use two phase-correlated optical waves with different carrier frequencies to generate new optical waves centered at frequencies differing from the input waves, while retaining the input wave coherent properties. In the case when parametric mixer is used to generate frequency combs with small frequency pitch, the phase correlation of the input (seed) waves can be achieved by electro-optical modulator and a single master laser. In the case when frequency comb possessing a frequency pitch that is larger than frequency modulation that can be affected by electro-optic modulator, the phase correlation of the input (seed) waves is achieved by combined use of an electro-optical modulator and injection locking to a single or multiple slave lasers.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: July 22, 2014
    Assignee: Ram Photonics, LLC
    Inventor: Ping Piu Kuo
  • Patent number: 8774568
    Abstract: Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is less than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tak Han, Jang Uk Shin, Sang-Pil Han, Sang Ho Park, Yongsoon Baek
  • Patent number: 8554087
    Abstract: A method for imaging objects through turbid media includes generating a repetitive pulsed light beam under control of a pulse shaper, propagating the light beam through turbid media, and receiving and imaging the light beam at a sensor. Propagation through turbid media causes scattering of the light, and the sensor captures scattered pulses to produce an image. The pulse shaper controls pulse width, frequency, repetition rate and chirp of the generated light pulses according to a feedback signal received from the sensor, to improve image quality. A system for imaging objects through turbid media includes a laser for generating a light beam; a pulse shaper for controlling said light beam, and a sensor, in communication with the pulse shaper, for capturing the image of said light beam through a turbid medium. Pulse width is less than 250 femtoseconds to reduce attenuation of the light beam through the turbid medium.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 8, 2013
    Assignee: The Trustees of Dartmouth College
    Inventor: Ulf Osterberg
  • Patent number: 8538272
    Abstract: A method of encrypting an optical communications signal involves determining an encryption function, filtering an electrical input signal using the encryption function to generate an encrypted electrical signal, and modulating an optical source using the encrypted electrical signal to generate a corresponding encrypted optical signal. This is then transmitted through an optical communications system. The encryption is selected such as to substantially remove symbol definition from the optical signal. This method provides digital signal processing of an electrical input signal in order to derive a signal for controlling an optical modulator in such a way that the optical signal transmitted over the link is a continuous analogue signal rather than a series of discrete symbols which alternate between well-defined signal values. This makes it difficult for a third party to derive the binary bit sequence encoded by the optical signal.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: September 17, 2013
    Assignee: Ciena Corporation
    Inventors: Alan Robinson, Adrian Sparks, Robin Rickard
  • Patent number: 8498543
    Abstract: An optical communication system and method of use are described. The system comprises an optical source adapted to receive a digitally encoded data signal comprising sequences of data at a data rate (B) and comprising two signal levels representing a first state and a second state of the data signal, the optical source being adapted to produce an optical signal substantially frequency modulated with frequency excursion ?? comprising a first instantaneous frequency (?0) associated to the first state and a second instantaneous frequency (?1) associated to the second state; an optical converter adapted to receive the substantially frequency modulated optical signal, the optical converter having an optical transfer function varying with frequency and including at least one pass band, the at least one pass band having a peak transmittance and at least a low-transmittance region.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 30, 2013
    Assignee: Mosaid Technologies Incorporated
    Inventors: Marco Romagnoli, Paola Galli
  • Patent number: 8463138
    Abstract: Provided is a multi-value optical transmitter in which a DC bias may be controlled to be stabilized so as to obtain stable optical transmission signal quality in multi-value modulation using a dual-electrode MZ modulator. The multi-value optical transmitter includes: D/A converters for performing D/A conversion on first and second modulation data which are set based on an input data series, so as to generate a first and a second multi-value signal, respectively; a dual-electrode MZ modulator including phase modulators for modulating light from a light source based on the first multi-value signal and the second multi-value signal, so as to combine optical signals from the phase modulators to output the optical multi-value signal; an optical output power monitor for detecting average power of the optical multi-value signal; and a DC bias control unit for controlling a DC bias for the dual-electrode MZ modulator, so as to maximize the average power.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Sugihara, Soichiro Kametani, Takashi Mizuochi
  • Patent number: 8451528
    Abstract: Embodiments of the invention provide apparatuses and methods for phase correlated seeding of parametric mixer and for generating coherent frequency combs. The parametric mixer may use two phase-correlated optical waves with different carrier frequencies to generate new optical waves centered at frequencies differing from the input waves, while retaining the input wave coherent properties. In the case when parametric mixer is used to generate frequency combs with small frequency pitch, the phase correlation of the input (seed) waves can be achieved by electro-optical modulator and a single master laser. In the case when frequency comb possessing a frequency pitch that is larger than frequency modulation that can be affected by electro-optic modulator, the phase correlation of the input (seed) waves is achieved by combined use of an electro-optical modulator and injection locking to a single or multiple slave lasers.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 28, 2013
    Assignee: Ram Photonics, LLC
    Inventor: Ping Piu Kuo
  • Patent number: 8447155
    Abstract: An optical device for generating a frequency comb includes an optical source and a first waveguide comprising a nonlinear optical medium operable to mix at least two input optical waves to generate a plurality of first optical waves. The optical device also includes a second waveguide concatenated to the first waveguide and characterized by a first dispersion characteristics and operable to compress the waveforms of the plurality of first optical waves and to reduce a frequency chirp introduced by the first waveguide. The optical device additionally includes a third waveguide concatenated to the second waveguide. The third waveguide comprises a nonlinear optical medium and is operable to mix the plurality of first optical waves to generate a plurality of second optical waves and to increase a total number of second optical waves with respect to a total number of first optical waves.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 21, 2013
    Assignee: Ram Photonics, LLC
    Inventors: Ping Piu Kuo, Yauheni Myslivets
  • Patent number: 8311416
    Abstract: This present disclosure provides an optical transmission method and system. The system includes a pre-coder for pre-coding an input signal into a first pre-coded signal, an encoder/separator coupled to the first pre-coded signal and arranged to encode the first and second pre-coded signals into a first encoded signal with 0 degree phase shift and a second encoded signal with 180 degree phase shift, and an optical modulator for providing optical modulation to the first and second encoded signals with a light source such that the intensity of an output optical duo-binary (ODB) signal with frequency chirp has identical logic sequence as the input signal.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: November 13, 2012
    Assignee: Futurewei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 8275010
    Abstract: The pulse light source according to the present invention comprises: a seed pulse generator 1 for outputting an input pulse 10 as a seed pulse; a pulse amplifier 2; and a dispersion compensator 3 for dispersion compensating a light pulse output from the pulse amplifier 2. Moreover, the pulse amplifier 2 comprises a normal dispersion medium (DCF 4) and an amplification medium (EDF 5) that are multistage-connected alternately, for changing the input pulse 10 to a light pulse having a linear chirp and outputting the light pulse. Furthermore, an absolute value of the dispersion of the DCF 4 becomes to be larger than the absolute value of the dispersion of the EDF 5.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 25, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita
  • Patent number: 8260150
    Abstract: An wave division multiplexed (WDM) optical transmitter is disclosed including a directly modulated laser array and a planar lightwave chip (PLC) having a plurality of OSRs that receive outputs of the laser array and increase the extinction ratio of the received light. An optical multiplexer receives the outputs of the OSRs and couples them to a single output port. The multiplexer has transmission peaks through its ports each having a 0.5 dB bandwidth including the frequency of a laser in the array. The optical multiplexer may be embodied as cascaded Mach-Zehnder interferometers or ring resonators.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: September 4, 2012
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Hongmin Chen, Bernd Huebner
  • Patent number: 8253508
    Abstract: Embodiments of the present invention provide arrays of electrical circuits having one or more chirped elements or components for providing output signals to corresponding arrays of electro-optic devices. Certain embodiments of the present invention include a plurality of modulator driver circuits, each of the plurality of driver circuits configured to be substantially identical to each other and provide a corresponding one of a plurality of modulator drive signals to a respective one of a plurality of electro-optic modulators, each of the plurality of modulator driver circuits being chirped to provide a desired output to the corresponding electro-optic modulator for enhanced operation.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: August 28, 2012
    Assignee: Infinera Corporation
    Inventors: Jeffrey S. Bostak, Vincent G. Dominic, Parmijit Samra, Michael Kauffman
  • Patent number: 8199785
    Abstract: Thermal chirp compensation in a chirp managed laser. In one example embodiment, a method for thermal chirp compensation in a chirp managed laser (CML) includes several acts. First, a first bias condition and temperature is selected. Next, a first thermal chirp compensation signal is generated. Then, the laser is driven by biasing a first input drive signal with the first thermal chirp compensation signal. Next, a second bias condition and temperature is selected. Then, a second thermal chirp compensation signal is generated. Finally, the laser is driven by biasing a second input drive signal with the second thermal chirp compensation signal.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Finisar Corporation
    Inventors: Xueyan Zheng, Jianying Zhou, Vincent Bu, Daniel Mahgerefteh
  • Patent number: 8160455
    Abstract: An optical transmitter is disclosed wherein a signal processor receives a data stream and outputs a drive signal for a laser, where the drive signal encodes each bit of the data stream according to the values of adjacent bits effective to compensate for spreading of bits within the fiber. The output of the laser is input to an optical spectrum reshaper that outputs a signal having an enhanced extinction ratio.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 17, 2012
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Thelinh Nguyen, Xueyan Zheng, Sunil Priyadarshi
  • Patent number: 8150271
    Abstract: A chirped pulse amplification (CPA) system and method is described wherein the dispersion of the system is tuned by actively tuning one or more system components, for example, using a temperature or strain gradient, or using actinic radiation. In other embodiments, an additional element, such as a modulator, is added to the CPA system to actively to tune the pulse. A pulse monitor is added to the system to measure an output pulse and provide feedback to one or more active tuning elements.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: April 3, 2012
    Assignee: Raydiance, Inc.
    Inventors: James Francis Brennan, III, Laurent Vaissié, Michael Marshall Mielke
  • Patent number: 8131157
    Abstract: An optical transmitter is disclosed wherein a modulating signal, such as an NRZ signal, encoding data is combined with a time derivative of the modulating signal and coupled to a directly modulated laser in order to generate artificial transient chirp in the output of the laser effective to substantially compensate for dispersion experienced by the output of the laser traveling through a dispersive medium such as an optical fiber. In some embodiments, the time derivative is added to the modulating signal only at the falling edges of the modulating signal.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: March 6, 2012
    Assignee: Finisar Corporation
    Inventors: Fred L. Heismann, Daniel Mahgerefteh, Parviz Tayebati
  • Patent number: 8064778
    Abstract: A fiber-optic transmission system includes a transmitter having a designed chirp value. The transmitter has first and second inputs for receiving first and second input signals, respectively, used to produce a modulated output signal. An optical fiber is responsive to the transmitter for receiving the output signal. A circuit asymmetrically drives the first and second input signals so as to change the designed chirp value of the transmitter to another value. Methods of controlling the chirp of a commercially available transmitters are also disclosed. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: November 22, 2011
    Assignee: Emcore Corporation
    Inventor: Stephen Krasulick
  • Patent number: 8064776
    Abstract: An optical communication system and method of use are described. The system comprises an optical source adapted to receive a digitally encoded data signal comprising sequences of data at a data rate (B) and comprising two signal levels representing a first state and a second state of the data signal, the optical source being adapted to produce an optical signal substantially frequency modulated with frequency excursion ?? comprising a first instantaneous frequency (?0) associated to the first state and a second instantaneous frequency (?1) associated to the second state; an optical converter adapted to receive the substantially frequency modulated optical signal, the optical converter having an optical transfer function varying with frequency and including at least one pass band, the at least one pass band having a peak transmittance and at least a low-transmittance region.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 22, 2011
    Assignee: PGT Photonics, S.p.A
    Inventors: Marco Romagnoli, Paola Galli
  • Patent number: 8059969
    Abstract: A method and apparatus for modulating an RF signal. The RF signal is supplied to a grating modulator having a grating, and light of at least a first wavelength is supplied as a first optical carrier to the grating modulator. The first carrier light is modulated by the grating modulator, wherein the first wavelength of the first carrier coincides with a null in the third derivative of a transmittance spectrum of the grating. Optionally, light of at an additional, second wavelength as a second optical carrier, is supplied to the grating modulator which modulates the second carrier light. The second wavelength of the second carrier coincides with another null, but different than the first mentioned null, in the third derivative of a transmittance spectrum of the grating.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: November 15, 2011
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 8027593
    Abstract: The frequency chirp modulation response of a directly modulated laser is described using a small signal model that depends on slow chirp amplitude s and slow chirp time constant ?s. The small signal model can be used to derive an inverse response for designing slow chirp compensation means. Slow chirp compensation means include electrical compensation, optical compensation, or both. Slow chirp electrical compensation can be implemented with an LR filter or other RF circuit coupled to a direct modulation source (e.g., a laser driver) and the directly modulated laser. Slow chirp optical compensation can be implemented with an optical spectrum reshaper having a rounded top and relatively large slope (e.g., 1.5-3 dB/GHz). The inverse response can be designed to under-compensate, to produce a flat response, or to over-compensate.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: September 27, 2011
    Assignee: Finisar Corporation
    Inventors: Jianying Zhou, Xueyan Zheng, Kevin J. McCallion, Daniel Mahgerefteh, Hongmin Chen, Guoxi Sun, Parviz Tayebati
  • Patent number: 8005371
    Abstract: A multiple wavelength signal generation device of the present invention is a multiple wavelength signal generation device having an optical comb generator for obtaining an input light and a group of lights shifted from the input light by predetermined frequencies; and an optical adjusting portion adjusting lights to be inputted to the optical comb generator; wherein the optical comb generator is composed of an optical fiber loop (105) which is provided with an optical SSB modulator (101), an optical amplifier (102) for compensating a conversion loss at the optical SSB modulator, an optical input port (103) for inputting lights from the light source, and an optical output port (104) for outputting lights, and the optical adjusting portion is composed of a phase modulator, an intensity modulator, or a frequency modulator.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: August 23, 2011
    Inventors: Tetsuya Kawanishi, Masayuki Izutsu
  • Patent number: 7991291
    Abstract: Low-cost FP lasers can be implemented in the upstream links of a WDM PON system by configuring them for single-mode operation. In a typical embodiment, an FP laser at a subscriber unit is injection seeded with CW seed light from a DFB laser or an ASE source at a central office to enable single-mode operation of the FP laser. The FP laser is directly modulated and the resulting optical data signal is transmitted upstream to the central office. At the central office, an optical spectrum reshaper/bandpass optical filter is positioned in front of an optical receiver to enhance the extinction ratio of the optical data signal and generate a vestigial sideband. A wavelength locker can also be implemented at the central office to stabilize the wavelength of the master DFB laser and the injection-seeded FP laser.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: August 2, 2011
    Assignee: Finisar Corporation
    Inventors: Yasuhiro Matsui, Kevin McCallion
  • Patent number: 7962045
    Abstract: An optical transmitter is disclosed including a widely tunable laser coupled to a periodic optical spectrum reshaper (OSR) to convert frequency modulated pulses from the laser into amplitude modulated pulses. The laser is tuned to generate pulses corresponding to passbands of the OSR spanning a wide range of frequencies. The laser includes a gain section having an optical path length substantially shorter than the total optical path length of the laser. The laser may be a Y-branch laser having reverse-biased sampled gratings or ring resonator filters tuned by stripe heaters. The laser may also include a reflective external cavity section tunable by modulating the temperature of ring resonators or etalons. The OSR may be integrally formed with the external cavity of the ECL laser.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 14, 2011
    Assignee: Finisar Corporation
    Inventors: Kevin John McCallion, Yasuhiro Matsui, Daniel Mahgerefteh
  • Patent number: 7941057
    Abstract: An optical transmitter is disclosed for transmitting a signal along a dispersive medium to a receiver. The optical transmitter generates adiabatically chirped profile having an initial pulse width and frequency excursion chosen such that high frequency data sequences include one bits that interfere destructively at a middle point of an intervening zero bit upon arrival at the receiver.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: May 10, 2011
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Parviz Tayebati, Xueyan Zheng, Yasuhiro Matsui
  • Patent number: 7912379
    Abstract: A peaking current generating section generates a spire-shaped peaking current that is in synchronism with the transitions of the digital signal, at the rising edge and the falling edge. A light emitting element driving section produces a driving current obtained by combining together a signal amplitude current according to the amplitude of the digital signal and the peaking current. Then, the light emitting element driving section drives a light emitting element by using the driving current. A signal analysis section analyzes the digital signal so as to set a control signal based on the pulse width of the digital signal. A clipping section clips the peaking current of the driving current according to the control signal set by the signal analysis section.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 22, 2011
    Assignee: Panasonic Corporation
    Inventors: Kazutoshi Hase, Hiroyuki Sasai, Tomoaki Ieda
  • Patent number: 7907852
    Abstract: A first peaking current generating section generates a first peaking current in synchronism with the transitions of a digital signal, being positive at the rising edge and negative at the falling edge. A second peaking current generating section generates a second peaking current in synchronism with the transitions of the digital signal, being negative at the rising edge and positive at the falling edge. A first light emitting element driving section produces a first driving current obtained by combining together a signal amplitude current according to the amplitude of the digital signal and a first peaking current. A second light emitting element driving section produces a second driving current obtained by combining together the signal amplitude current according to the amplitude of the digital signal and a second peaking current.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: March 15, 2011
    Assignee: Panasonic Corporation
    Inventors: Kazutoshi Hase, Hiroyuki Sasai, Tomoaki Ieda
  • Patent number: 7894725
    Abstract: A time-multiplexed waveform generator includes a wavelength splitter that receives an input optical signal and spectrally separates the input optical signal into a plurality of frequency components. A plurality of intensity modulators receives each of the frequency components and passes each of the frequency components for a selective time period, and then extinguishes that frequency for the remainder of a chirp time, the plurality of intensity modulators producing a plurality of first output signals. A plurality of adjustable delay lines is positioned after the intensity modulators and receives the first output signals. Each of the adjustable delay lines enables phase control of each of the frequency components associated with the first output signals for compensating any relative drifts of the path lengths and phase coherently stitching a plurality of sub-chirps together. The adjustable delay lines produce a plurality of second output signals.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 22, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Kevin W. Holman, David G. Kocher, Jae H. Kyung, Leaf A. Jiang, Sumanth Kaushik, Richard M. Heinrichs
  • Publication number: 20110002691
    Abstract: Techniques and devices for using a chirped fiber Bragg grating to compress amplified laser pulses.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: Calmar Optcom, Inc.
    Inventor: Anthony Hong Lin
  • Patent number: 7822347
    Abstract: A chirped pulse amplification (CPA) system and method is described wherein the dispersion of the system is tuned by actively tuning one or more system components, for example, using a temperature or strain gradient, or using actinic radiation. In other embodiments, an additional element, such as a modulator, is added to the CPA system to actively to tune the pulse. A pulse monitor is added to the system to measure an output pulse and provide feedback to one or more active tuning elements.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 26, 2010
    Assignee: Raydiance, Inc.
    Inventors: James Francis Brennan, III, Laurent Vaissié, Michael Marshall Mielke
  • Patent number: 7809280
    Abstract: An optical transmitter comprising: an optical source modulated with an input digital data signal so as to generate a first, frequency-modulated digital signal; and an amplitude modulator, modulated with the logical inverse of the input digital data signal, for receiving the first, frequency-modulated signal and generating a second, amplitude-modulated and frequency-modulated digital signal; wherein the optical source and the amplitude modulator are each configured so as to produce positive transient chirp.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: October 5, 2010
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Yasuhiro Matsui, Xueyan Zheng, Bart Johnson, Duncan J W Walker, Parviz Tayebati
  • Patent number: 7756423
    Abstract: A wavelength division multiplexing optical transmission apparatus for transmitting wavelength division multiplexing optical signals, the apparatus including a plurality of optical transmitting units outputting optical signals having a different wavelength from each other, a plurality of optical intensity modulating units intensity-modulating the optical signals, and a wavelength multiplexing unit multiplexing the optical signals. The plurality of optical intensity modulating units sets the amount of wavelength chirp adapting to each wavelength of the optical signals for the optical signals outputted from each of the plurality of optical transmitting units, and the wavelength multiplexing unit multiplexes the optical signals having the amount of wavelength chirp set respectively and then outputs the multiplexed optical signals.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: July 13, 2010
    Assignee: NEC Corporation
    Inventors: Makoto Yamashita, Mizuyuki Ushirozawa
  • Patent number: 7747175
    Abstract: To compensate a waveform distortion by using a nature that a spectral shape is perfectly retained even if all the linear distortions occur on a time-axis. An optical pulse transmitted from an optical pulse transmitter (1) via an optical fiber transmission line (2) is transmitted. An optical Fourier transformer (3) receives an optical pulse, and optically Fourier-transforms an optical pulse on a time-axis onto a frequency-axis to reproduce the frequency spectrum of an optical pulse on a time-axis be effecting switching between frequency and time, thereby compensating a waveform distortion by a linear effect on the optical fiber transmission line (2). A photodetector (4) receives an optical pulse from the optical Fourier transformer (3) and transforms this into an electrical signal to thereby obtain a pulse waveform before a transmission over the optical fiber transmission line (2).
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 29, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Toshihiko Hirooka, Masataka Nakazawa
  • Patent number: 7742705
    Abstract: A system and method for providing chirped light for an optical network. The system includes a light source configured to provide a light. The system additionally includes a driving signal source configured to provide a first driving signal. The system also includes an amplifier configured to receive the first driving signal, amplify the first driving signal, and provide a second driving signal at a predetermined amplification level, the second driving signal being the amplified first signal. Additionally, the system includes a splitter configured to receive the second driving signal and split the second driving signal into a third driving signal and a fourth driving signal. The system also includes a first attenuator configured to receive the third driving signal, attenuate the third driving signal at a first attenuation level, and provide a fifth driving signal, the fifth driving signal being the third driving signal attenuated by the first attenuator.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: June 22, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Fei Zhu
  • Patent number: 7742702
    Abstract: A chirp switching circuit comprises a Mach-Zehnder modulator having a Y-branched part for branching an incoming optical signal into first and second optical signals and an X-branched part merging the first and second optical signals with each other, the Mach-Zehnder modulator causing phase modulation in the first and second optical signals by a modulation signal, and a directional coupling optical switch that switches first and second optical output signals output from the X-branched part of the Mach-Zehnder modulator by merging the first and second output optical signals in response to a chirp switching control signal.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: June 22, 2010
    Assignee: Fujitsu Limited
    Inventor: Motoyoshi Sekiya
  • Patent number: 7715724
    Abstract: The phase modulation in which the frequency chirp becomes 0 at the timing which the user wants to synchronize, and the frequency chirp becomes larger as the time deviates in a positive or negative direction from this timing is applied to the signal light with each wavelength comprising pulse train of different timing. Thus, the optical pulses which deviate from the timing which the user wants to synchronize receive the frequency chirp in accordance with the amount of the timing deviation. The WDM signal light which has been chirped in this way is made to pass a linear dispersive medium, and the dispersion fit for the amount of frequency chirp is made to be given. By adjusting the amount of dispersion, it is possible to obtain the pulses which conform to the timing at which the user wants to synchronize the pulses of each wavelength.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: May 11, 2010
    Assignees: Fujitsu Limited
    Inventors: Shigeki Watanabe, Masataka Nakazawa
  • Publication number: 20100092184
    Abstract: In one example embodiment, a transmitter module includes a header electrically coupled to a chassis ground. First and second input nodes are configured to receive a differential data signal. A buffer stage has a first node coupled to the first input node and a second node coupled to the second input node. An amplifier stage has a fifth node coupled to a third node of the buffer stage and a sixth node coupled to a signal ground that is not coupled to the chassis ground. An optical transmitter has an eighth node coupled to a seventh node of the amplifier stage and a ninth node configured to be coupled to a voltage source. A bias circuit is configured to couple a fourth node of the buffer stage to a bias current source.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 15, 2010
    Applicant: FINISAR CORPORATION
    Inventors: The-Linh Nguyen, Henry Daghighian
  • Patent number: 7676158
    Abstract: Certain aspects of a method and system for optimum channel equalization between a host Serializer-Deserializer (SerDes) and an optical module may compensate and reduce dispersion loss along an electrical transmit path of a transmitter and an optical transmit path coupled to the transmitter via pre-emphasis. The data degradation as a result of the dispersion loss along the electrical transmit path of the transmitter and the optical transmit path coupled to the transmitter may be recovered by equalizing signals received via an electrical receive path of a receiver communicatively coupled to the transmitter.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: March 9, 2010
    Assignee: Broadcom Corporation
    Inventor: Ali Ghiasi
  • Patent number: 7623795
    Abstract: Routers for trunk telecommunication systems currently operate at 2.5 Gb/s. Next generation routers will be required to switch 128 input data streams into 128 output data streams, each data stream being at a data rate of 10 Gb/s. Current routers employ massively parallel electronic switches to route data at 1.25 Gb/s. Such technology is reaching its limit and a new approach to high-speed switching is required. The present invention provides an apparatus and method for enabling such high-speed switching by providing a data compression apparatus which comprises a pulsed chirped laser (226) coupled to a modulator (218, 220), the modulator (218, 220) being coupled to a compressor (228, 230). A chirped laser pulse having the duration of a data packet is modulated with data received on an input channel and then passed through the compressor (228, 230) in order to generate a compressed modulated data pulse for high speed switching.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: November 24, 2009
    Assignee: Roke Manor Research Limited
    Inventor: John Mansbridge
  • Patent number: 7606501
    Abstract: A system and method for generating an optical return-to-zero signal with frequency chirp. The system includes a bit separator configured to receive an electrical non-return-to-zero signal and generate a first input signal and a second input signal. Additionally, the system includes a first driver configured to receive the first input signal and generate a first driving signal. The first driving signal is proportional to the first input signal in signal strength. Moreover, the system includes a second driver configured to receive the second input signal and generate a second driving signal. The second driving signal is proportional to the second input signal in signal strength. Also, the system includes a light source configured to generate a light, and an electro-optical modulator.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: October 20, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7565084
    Abstract: A robustly stabilized communication laser can output a multimode optical signal remaining aligned to a coordinate of a dense wavelength division multiplexing (“DWDM”) grid while responding to a fluctuating condition or random event, such as, without limitation, exposure to a temperature fluctuation, stray light, or contamination. Responsive to the fluctuating condition, energy can transfer among individual modes in a plurality of aligned longitudinal modes. Modes shifting towards a state of misalignment with the DWDM coordinate can attenuate, while modes shifting towards a state of alignment can gain energy. Fabrication processes and systems and light management, such as beam steering, epoxy scaffolds, spectral adjustments, mode matching, thermal expansion control, alignment technology, etc. can facilitate nano-scale control of device parameters and can support low-cost fabrication.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: July 21, 2009
    Inventor: Michael L. Wach
  • Patent number: 7555225
    Abstract: An optical communication system which has an optical signal source adapted to receive a base binary signal and produce a first signal, said first signal being frequency modulated; and an optical spectrum reshaper adapted to reshape the first signal into a second signal, said second signal being amplitude modulated and frequency modulated in which the frequency characteristics of said first signal, and the optical characteristics of said optical spectrum reshaper, being such that the frequency characteristics of said second signal are configured so as to increase the tolerance of the second signal to dispersion in a transmission fiber.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: June 30, 2009
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Yasuhiro Matsui, Xueyan Zheng, Bart Johnson, Duncan Walker, Parviz Tayebati
  • Patent number: 7542685
    Abstract: An apparatus and method for transmitting a signal for optical network applications with automatic chromatic dispersion compensation. The apparatus includes a first optical transmitter. The first optical transmitter includes a first light source configured to generate a first laser signal in response to a first laser drive signal, a first data modulator configured to receive the first laser signal and a first data drive signal and output a first chirped return-to-zero signal, and a first signal source configured to generate a first non-return-to-zero signal. Additionally, the apparatus includes a first clock and data recovery system, a first data driver, a first adjustment system, and a first control system.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: June 2, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Rong Zhang
  • Publication number: 20090097863
    Abstract: An optical transmitter using a chirp managed laser is disclosed. The optical transmitter compares, in advance to the ATC operation, the phases of the signal corresponding to the original output of the LD and the signal corresponding to that reflected by the filter. When the two signals are in phase, the transmitter lowers the target temperature of the ATC loop to shift the emission wavelength of the LD shorter until the two signals are out of phase.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 16, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Hirotaka Oomori
  • Patent number: 7486436
    Abstract: An all-fiber chirped pulse amplification (CPA) system and method is provided that utilizes a hollow core photonic bandgap fiber as a pulse compressor and a dispersion compensating optical fiber as a pulse stretcher that are matched with respect to both the amount and slope of dispersion to avoid peak power-limiting pulse distortion. The CPA system includes a rare earth ion-doped optical fiber amplifier having an input and an output that amplifies optical pulses having a center wavelength of ?c, a pulse compressing length L1 of hollow core photonic bandgap fiber having a dispersion value D1 and a dispersion slope S1 that varies over a wavelength ? of the pulses that is optically connected to the output of the fiber amplifier and having a k-parameter defined by a ratio of D1 over the slope of the function D1(?) that is larger than about 50, and a pulse stretching length L2 of dispersion compensating optical fiber connected to the input of the fiber amplifier having a dispersion value D2 and dispersion slope S2.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: February 3, 2009
    Assignee: Corning Incorporated
    Inventors: Dmitri Vladislavovich Kuksenkov, Shenping Li
  • Publication number: 20090022501
    Abstract: A fiber-optic transmission system includes a transmitter having a designed chirp value. The transmitter has first and second inputs for receiving first and second input signals, respectively, used to produce a modulated output signal. An optical fiber is responsive to the transmitter for receiving the output signal. A circuit asymmetrically drives the first and second input signals so as to change the designed chirp value of the transmitter to another value. Methods of controlling the chirp of a commercially available transmitters are also disclosed. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
    Type: Application
    Filed: March 20, 2008
    Publication date: January 22, 2009
    Inventor: Stephen Krasulick
  • Patent number: 7433605
    Abstract: The invention, in one form, is a fiber optic system having an optical signal source adapted to produce a frequency and amplitude modulated optical digital signal and a semiconductor optical amplifier adapted to receive the frequency and amplitude modulated optical digital signal and generate negative transient chirp at the transitions between bits. In another form, the invention is a fiber optic system having an optical source adapted to generate a frequency modulated signal, a semiconductor optical amplifier adapted to receive and amplify the frequency modulated signal, and an optical spectrum reshaper adapted to receive the amplified frequency modulated signal and to utilize the amplified frequency modulated signal to increase the amplitude modulation of the signal.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: October 7, 2008
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Parviz Tayebati