Including Specific Optical Elements Patents (Class 398/201)
  • Patent number: 10367583
    Abstract: There is provided a driver circuit including a variable current-source configured to include, a first current-source coupled to a first input node to which a first signal is input from an external, a second current-source coupled to a second input node to which a second signal as an inversion of the first signal is input from the external, a first bypass circuit coupled between the first current-source and the first input node, the first bypass circuit being switched according to the second signal, and a second bypass circuit coupled between the second current-source and the second input node, the second bypass circuit being switched according to the first signal, and a terminal circuit configured to be terminated for an optical device driven by a drive signal according to the first signal, the drive signal being output from an output node coupled between the terminal circuit and the variable current-source.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: July 30, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Yuuki Ogata, Toshihiko Mori, Yasufumi Sakai
  • Patent number: 10038502
    Abstract: A lighting device includes: a DC power supply circuit which supplies a light-emitting element with a first voltage; a signal generation circuit which generates a control signal based on a visible light communication signal; a current control element which is connected in series to the light-emitting element and turned on and off based on the control signal; a DC power supply control circuit which causes a second voltage at a first node between the light-emitting element and the current control element to be a constant value, by controlling the DC power supply circuit based on the second voltage; and a first feedback circuit which supplies the DC power supply control circuit with the second voltage. The first feedback circuit supplies the DC power supply control circuit with a predetermined voltage in a period in which the current control element is off.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: July 31, 2018
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Keisuke Seki
  • Patent number: 9590741
    Abstract: According to one embodiment, a current-mode driver provides pre-emphasis for a transmitter. The current-mode driver includes a filtering circuit comprising a resistor, an inductor, and a capacitor. The filtering circuit is operable to receive a data signal and produce a filtered data signal. The filtering circuit may be tuned to produce a ringing frequency with an underdamped transient decay in the filtered data signal that compensates for signal degradation caused by the optical transmitter. The current-mode driver may also include a current source coupled to the filtering circuit. The current source may be operable to generate a compensation signal based on the filtered data signal that is capable of driving the transmitter.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: March 7, 2017
    Assignee: Fujitsu Limited
    Inventor: Samir Parikh
  • Patent number: 9385806
    Abstract: A variable impedance circuit (2) has an impedance device and is connected in series with a light source (A1). A switch circuit (Q1) is connected in parallel with the variable impedance circuit (2). A first controller (3) is configured to perform ON and OFF control of the switch circuit (Q1) and thereby to modulate an intensity of an illumination light emitted from the light source (A1). An impedance-varying circuit (Q2) is connected with the variable impedance circuit (2). The second controller (4) is configured to control the impedance-varying circuit (Q2) to change the impedance of the variable impedance circuit (2). The first controller (3) and the second controller (4) share a common hardware.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: July 5, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Shojirou Kido
  • Patent number: 9042740
    Abstract: Disclosed is a transmitter optical module which includes a first package generating an optical signal; a second package bonded with the first package by using chip-to-chip bonding, having a silicon optical circuit platform structure, and amplifying the optical signal; and an optical waveguide forming a transmission path of the optical signal from the first package to the second package.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: May 26, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young-Tak Han, Jang Uk Shin, Sang Ho Park, Oh Kee Kwon, Dong-Hun Lee, Yongsoon Baek
  • Publication number: 20150132009
    Abstract: An optical transmission device includes a receiver that receives first light, a transmitter that outputs second light, a memory, a processor coupled to the memory, configured to control a first optical level of the second light in such a way that a second optical level calculated based on an optical level of the received first light and an optical level of the second light that is output from the transmitter becomes a predetermined target value, a combiner that combines the received first light and the second light for which the first optical level is controlled by the processor, and an amplifier that amplifies the combined light.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 14, 2015
    Applicant: Fujitsu Limited
    Inventors: Masahiro Yuki, Norifumi Shukunami, Kosuke Komaki
  • Publication number: 20150125163
    Abstract: Filters shaped differently from those commonly used in WDM Mux/DeMux optical devices are described. Different from the prior art devices that commonly use filters shaped in cuboid, the filters in the embodiment of the present invention are shaped in parallelepiped. In other words, a cross section of such filter is not in parallelogram. According to one embodiment of the present invention, a filter is so cut that a cross section thereof presents a cutting angle not being 90 degrees. As a result, the filter is fully used in WDM Mux/DeMux optical devices. Such filters are advantageously used in compact optical modules.
    Type: Application
    Filed: August 4, 2014
    Publication date: May 7, 2015
    Inventors: Dong Gui Gui, Yao Li, Qijun Xiao
  • Publication number: 20150125164
    Abstract: The present invention provides an optical apparatus, which is configured to output image information and comprises a housing; a light source; an optical device; an optical device earner, wherein the optical device is mounted on the optical device carrier and positioned on one side of the optical device carrier; a support plate positioned on the other side of the optical device carrier and being one part of the housing; and a connecting piece, wherein one end of the connecting piece penetrates the support plate and then is connected with the optical device carrier, and the relative positions of the connecting piece and the support plate are fixed.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 7, 2015
    Inventor: Qiang Li
  • Publication number: 20150125162
    Abstract: In one embodiment, an apparatus for optical communication is disclosed. An optical sub-assembly and optical platform may form the apparatus. Lasers contained in the hermetically sealed optical sub-assembly can be coupled to a modulator on the optical platform. The optical modulator can access an optical network using beams of light sent from the laser.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Inventor: Stefan Pfnuer
  • Patent number: 9025241
    Abstract: An optical device includes a gain medium on a substrate. The device also includes one or more laser cavities and an amplifier on the substrate. The one or more laser cavities each guides a light signal through a different region of the gain medium such that each of the light signals is amplified within the gain medium. The amplifier guides an amplified light signal through the gain medium such that the amplified light signal is amplified in the gain medium.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: May 5, 2015
    Assignee: Kotura, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng
  • Publication number: 20150110503
    Abstract: The invention discloses a method for improving luminous intensity adaptability and a device thereof, relating to photo-electronic communication field. In the method, the device is configured with more than one level load resistors, the device collects voltage value and if the device collects predetermined numbers of voltage values which meet some requirement, it computes an average value of all collected voltage values, sets voltage value according to the average value, determines whether the set voltage is satisfied with a predetermined requirement, if yes, collects data according to the set voltage; otherwise, switches the load resistor according to a predetermined rule, in which the load voltage has influence on collecting voltage. The invention has advantages of improving luminous intensity adaptability of a screen when collecting optical signal and reducing rate of error codes.
    Type: Application
    Filed: December 21, 2012
    Publication date: April 23, 2015
    Inventors: Zhou Lu, Huazhang Yu
  • Publication number: 20150099317
    Abstract: A surface emitting semiconductor laser includes a substrate, a first conductivity-type first semiconductor multilayer reflector, an active layer, a semiconductor layer, a second conductivity-type second semiconductor multilayer reflector that includes a current confinement layer, and a heat dissipating metal member. At least the first semiconductor multilayer reflector, the active layer, the semiconductor layer, and the second semiconductor multilayer reflector are stacked in this order on the substrate. A columnar structure having a top portion, a side surface, and a bottom portion is formed from the second semiconductor multilayer reflector to the semiconductor layer. The heat dissipating metal member is connected to the semiconductor layer exposed at the bottom portion of the columnar structure.
    Type: Application
    Filed: May 12, 2014
    Publication date: April 9, 2015
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Junichiro HAYAKAWA, Kazutaka TAKEDA, Akemi MURAKAMI
  • Patent number: 9002214
    Abstract: A wavelength-selectable laser device generally includes an array of laser emitters and a filtered external cavity for filtering light emitted from the laser emitters and reflecting different wavelengths back to each of the laser emitters such that lasing occurs at different wavelengths for each of the laser emitters. Each laser emitter includes a gain region that emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The filtered external cavity may include a dispersive optical element that receives the light from each of the laser emitters at different angles and passes or reflects different wavelengths of the light at different angles such that only wavelengths associated with the respective laser emitters are reflected back to the respective laser emitters. By selectively emitting light from one or more of the laser emitters, one or more channel wavelengths may be selected for lasing and transmission.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 7, 2015
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Jun Zheng, Stefan J. Murry
  • Patent number: 8995845
    Abstract: A multi-laser transmitter optical subassembly may include N number of lasers, where each laser is configured to generate an optical signal with a unique wavelength. The transmitter optical subassembly may further include a focusing lens and a filter assembly. The filter assembly may combine the optical signals into a combined signal that is received by the focusing lens. The filter assembly may include N?1 number of filters. Each of the filters may pass at least one of the optical signals and reflect at least one of the optical signals. The filters may be low pass filters, high pass filters, or a combination thereof.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: March 31, 2015
    Assignee: Finisar Corporation
    Inventors: Tengda Du, Bernd Huebner
  • Patent number: 8989600
    Abstract: A modulating apparatus includes a branch that branches input light; a first modulating unit that modulates the phase of a first branch obtained by the branch; a second modulating unit that modulates a second branch obtained by the branch; a third modulating unit that is connected in series to the first modulating unit, transmits the first branch without branching the first branch, modulates the phase of light transmitted by controlling a refractive index of the light transmitted; a fourth modulating unit that is connected in series to the second modulating unit, transmits the second branch without branching the second branch, and modulates the phase of a light transmitted by controlling a refractive index of the light transmitted; and a coupler that couples the first branch modulated by the first and the third modulating units and the second branch modulated by the second and the fourth modulating units, at different intensities.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Fujitsu Optical Components Limited
    Inventor: Kenichi Nakamoto
  • Publication number: 20150078751
    Abstract: A tunable laser with multiple in-line sections including sampled gratings generally includes a semiconductor laser body with a plurality of in-line laser sections configured to be driven independently to generate laser light at a wavelength within a different respective wavelength range. Sampled gratings in the respective in-line sections have the same grating period and a different sampling period to produce the different wavelengths. The wavelength of the light generated in the respective laser sections may be tuned, in response to a temperature change, to a channel wavelength within the respective wavelength range. By selectively generating light in one or more of the laser sections, one or more channel wavelengths may be selected for lasing and transmission. By using sampled gratings with the same grating period in the multiple in-line sections, the multiple section tunable laser may be fabricated more easily.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventors: Jun Zheng, Klaus Alexander Anselm, Huanlin Zhang, Dion McIntosh-Dorsey
  • Patent number: 8983306
    Abstract: A WDM device having a controller that individually controls the operating parameters of tunable lasers and the temperatures of an optical multiplexer and etalon. The device employs a spectral analyzer to measure the spectral composition of the optical output signal produced by the device. Based on the analyses of the measured spectral composition, the controller sets the temperatures of the tunable lasers, optical multiplexer, and optical etalon to values that cause: (i) middle frequencies of transmission bands of the optical multiplexer to be spectrally aligned with the corresponding frequencies of the specified frequency grid, (ii) each laser line to be properly positioned within the corresponding transmission band, and (iii) transmission resonances of the optical etalon to be properly positioned with respect to the laser lines.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: March 17, 2015
    Assignee: Alcatel Lucent
    Inventors: Pietro A. G. Bernasconi, David T. Neilson
  • Patent number: 8983307
    Abstract: An optical transmitter for an optical communication system includes a light source that outputs optical signals having a plurality of wavelengths, and a wavelength control unit. The wavelength control unit receives an optical signal from the light source, resonates an optical signal having a first wavelength, modulates the optical signal of the first wavelength with a first transmission data signal to obtain an intensity modulated optical signal, and outputs the intensity modulated optical signal. The wavelength control unit may be integrally formed on a semiconductor substrate in which a high thermal conductivity material is used. Alternatively, a trench that intercepts external heat may be formed in a boundary surface of the wavelength control unit, and may be filled with a low thermal conductivity material.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Il Byun, Dong-Jae Shin
  • Publication number: 20150063829
    Abstract: A thin-film Light Emitting Diode (LED) and methods of manufacturing the same are disclosed. Specifically, the thin-film LED is provided with an epitaxial layer having a proton implantation that controls the size of the active volume. Controlling the size of the active volume enables the thin-film LED to enjoy decreased rise and fall times, thereby achieving a thin-film LED that is useable for transmission in high transmission rate communication systems.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Nikolaus W. Schunk
  • Publication number: 20150063830
    Abstract: The present application is directed to a laser system using Stimulated Raman Scattering and harmonic conversion to produce a continuous wave ultraviolet wavelength output signal. More specifically, the laser system includes a pump source configured to generate at least one pump signal, a resonant cavity resonant at a Stokes wavelength in optical communication with the pump source, a SRS gain device positioned within the resonant cavity and configured to generate at least one SRS output signal at a Stokes wavelength when pumped with the pump signal, and a harmonic conversion device positioned within the resonant cavity and configured to produce a continuous wave second harmonic output signal of the SRS output signal.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 5, 2015
    Applicant: Newport Corporation
    Inventors: Alan B. Petersen, James D. Kafka
  • Publication number: 20150055962
    Abstract: An optical apparatus comprising an optical source for providing output light for providing input signal light can comprise a pump source for pumping a four wave mixing (FWM) process with light pulses (“FWM pump light”); a FWM element in optical communication with said pump source, said FWM element configured for hosting the FWM process to generate, responsive to the FWM pump light, pulses of FWM signal light and FWM idler light having different wavelengths; and a laser or amplifier optical device comprising a gain material for providing optical gain at a gain wavelength via a process of stimulated emission responsive to optical pumping with pump light, said laser or amplifier optical device in optical communication with said optical source and receiving one of the FWM signal light and the FWM idler light as input signal light having the gain wavelength for optically seeding with input signal light the laser or amplifier optical device.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Inventors: John Redvers Clowes, Michael Yarrow
  • Publication number: 20150055960
    Abstract: A heated laser package generally includes a laser diode, a heating resistor and a transistor in a single laser package. The heating resistor and transistor form a heating circuit and may be located on a submount adjacent to the laser diode. The transistor is configured to control the drive current to the heating resistor and any additional heat generated by the transistor may contribute to the heating of the laser diode and thus increase the thermal efficiency of the system. The heated laser package may be used in a temperature controlled multi-channel transmitter optical subassembly (TOSA), which may be used in a multi-channel optical transceiver. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Application
    Filed: August 26, 2013
    Publication date: February 26, 2015
    Applicant: Applied Optoelectronics, Inc.
    Inventors: Jun Zheng, Yi Wang, I-Lung Ho
  • Patent number: 8953947
    Abstract: In some examples, a transmit assembly is described that may include a first optical transmitter, a second optical transmitter, and a polarizing beam combiner. The first optical transmitter may be configured to emit a first optical data signal centered at a first frequency. The second optical transmitter may be configured to emit a second optical data signal centered at a second frequency offset from the first frequency by a nominal offset n. The polarizing beam combiner may be configured to generate a dual carrier optical data signal by polarization interleaving the first optical data signal with the second optical data signal. An output of the polarizing beam combiner may be configured to be communicatively coupled via an optical transmission medium to a polarization-insensitive receive assembly.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: February 10, 2015
    Assignee: Finisar Corporation
    Inventors: Ilya Lyubomirsky, Yasuhiro Matsui, Daniel Mahgerefteh
  • Patent number: 8934788
    Abstract: An optical apparatus for use in an optical communications network, and a method of operating a network are described. The apparatus includes an input suitable for receiving a first continuous wave optical signal from a remote location on a network, and a modifying unit arranged to modify the first continuous wave optical signal to produce a second continuous wave optical signal having a wavelength which is different from the wavelength of the first continuous wave optical signal. A modulating unit is arranged to modulate the second continuous wave optical signal with data to produce a modulated second continuous wave optical signal.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 13, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Fabio Cavaliere
  • Publication number: 20140355981
    Abstract: An optical transmission device includes a splitter configured to have at least a first port, a second port, and a third port that output branched input light, branching ratios of the first port and the second port being variable, and a controller configured to reduce an optical level of output light from the first port to be monitored and increase an optical level of output light from the second port according to the reduced optical level of output light from the first port by controlling the branching ratios.
    Type: Application
    Filed: April 29, 2014
    Publication date: December 4, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Satoshi Miyazaki
  • Publication number: 20140341593
    Abstract: A manner of mitigating the self heating effect of a laser or other light source such as a laser in a network node of a communication network. A self-heating mitigation module is provided, the self-heating mitigation module includes one or both of a self-heating adjustment module to accelerate self heating at the beginning of a transmission and a sub-threshold lasing module that applies a sub-threshold current between transmissions. The self-heating adjustment module and the sub-threshold lasing module are preferable both used together and driven by a common signal, for example the burst_enable signal that facilitates transmission from the light source.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 20, 2014
    Applicants: ALCATEL-LUCENT USA INC., ALCATEL-LUCENT
    Inventors: Doutje T. van Veen, Robert Farah, Peter Vetter, Wolfgang Poehlmann
  • Patent number: 8891976
    Abstract: An interferometer is provided that includes a first path and a second path. The first path is configured to propagate an electro-magnetic signal at a first wavelength. The second path is configured to convert a portion of the electro-magnetic signal from the first wavelength to a second wavelength for processing and is configured to convert the portion of the electro-magnetic signal from the second wavelength back to the first wavelength for interference with the electro-magnetic signal of the first path. The first wavelength may be an optical wavelength or any other suitable wavelength of the electro-magnetic spectrum. The second wavelength, which is different than the first wavelength, also may be any suitable wavelength of the electro-magnetic spectrum.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 18, 2014
    Assignee: Alcatel Lucent
    Inventor: Peter Winzer
  • Publication number: 20140321856
    Abstract: A transmitter optical module is disclosed. The transmitter optical module has optical sources each emitting optical beam with a specific wavelength different from others and lenses corresponding to the optical sources. The optical sources and the lenses are mounted on a carrier. The carrier provides grooves surrounding rectangular areas where each of the lenses is mounted.
    Type: Application
    Filed: October 24, 2013
    Publication date: October 30, 2014
    Inventors: Tomoya Saeki, Munetaka Kurokawa, Kazunori Tanaka
  • Patent number: 8873657
    Abstract: Embodiments of the present invention disclose a data transmission method and a related device and system. A data transmission method includes: A transmitter performs scrambling, constellation modulation, and multiple-input multiple-output precoding processing sequentially on downlink user data to obtain a precoded symbol sequence; performs time-frequency resource mapping on the precoded symbol sequence to obtain frequency domain data of an OFDM symbol; performs conjugate symmetric extension and IFFT on the frequency domain data of the OFDM symbol to obtain a time domain real-number sequence; performs CP insertion processing on the time domain real-number sequence to form a first downlink time domain baseband signal; loads the first downlink time domain baseband signal onto a direct current of a LED lighting circuit to form a LED driving electrical signal; and converts the LED driving electrical signal into a visible beam of the LED for transmission.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 28, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Sheng Liu, Rongdao Yu, Rui Wang
  • Patent number: 8861978
    Abstract: A wave division multiplexing (WDM) system is disclosed which accommodates shifts in the resonant frequency of optical modulators by using at least two carriers per optical communications channel and at least two resonant modulator circuits respectively associated with the carriers within each optical modulator. A first resonant modulator circuit resonates with a first carrier and a second resonates with a second carrier when there is a shift in resonance frequency of the at least two resonant optical modulator circuits. A switch circuit controls which carrier is being modulated by its respective resonant modulator circuit.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: October 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Roy Meade, Gurtej Sandhu
  • Patent number: 8861977
    Abstract: A number of carriers are selected according to a modulation format and symbol rate to realize a superchannel having fixed capacity, for example. At a receive node, the superchannel is optically demultiplexed from a plurality of other superchannels. The plurality of carriers are then supplied to a photodetector circuit, which receives additional light at one of the optical signal carrier wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of the carriers is unnecessary.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 14, 2014
    Assignee: Infinera Corporation
    Inventors: John D. McNicol, Matthew L. Mitchell, David F. Welch
  • Patent number: 8861960
    Abstract: The present disclosure provides systems and methods for the compensation of signal distortion in fiber optic communication systems and the like. More specifically, the present disclosure provides an orthogonal polarization detection and broadband pilot (OPDBP) technique for the compensation of nonlinear cross polarization (i.e. nonlinear cross polarization modulation) (XPolM) induced noise and nonlinear nonlinear cross phase modulation (XPM) induced noise in a high data rate polarization multiplexed (PM) multilevel-quadrature amplitude modulated (M-QAM) channel due to neighboring channels. This approach allows for the compensation of both XPolM and XPM simultaneously, providing several dBs of optical reach extension. The approach uses a pilot tone based orthogonal polarization detection scheme with broadband (i.e. a few GHz wide) filtering of the pilot tones.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: October 14, 2014
    Assignee: Ciena Corporation
    Inventors: Vladimir S. Grigoryan, Michael Y. Frankel
  • Patent number: 8843001
    Abstract: An optical transmitter is disclosed. An optical modulator outputs an optical signal by modulating light being input, and has an optical absorption characteristic which changes a degree of optical absorption depending on a bias voltage being applied and includes a first characteristic region and a second characteristic region in which the degree of the optical absorption is greater than the first characteristic region. An power source applies an electric field generated by applying a predetermined shutdown bias voltage corresponding to the second characteristic region to electrodes provided in two interference optical guides formed in the optical modulator, when an output of the optical signal from the optical modulator is shut down to be less than or equal to a desired amount.
    Type: Grant
    Filed: October 30, 2011
    Date of Patent: September 23, 2014
    Assignee: Fujitsu Optical Components Limited
    Inventor: Ryoji Nagase
  • Patent number: 8842997
    Abstract: Return To Zero (RZ) shaping is performed for a first I/Q modulator whose output corresponds to a first polarization component using a first two digital-to-analog convertors (DACs), each of which is sampled at approximately twice a modulation symbol rate or more and has an output with a first interleaving order that interleaves one of a first pair of intended drive signal patterns and zeros. RZ shaping is also performed for a second I/Q modulator whose output corresponds to a second polarization component using a second two DACs, each sampled at approximately twice the modulation symbol rate or more and having a second interleaving order that interleaves zeros and one of a second pair of intended drive signal patterns, the second interleaving order opposite the first interleaving order. The first polarization and the second polarization may be combined, thereby forming an Interleaved Return To Zero (IRZ) Polarization Division Multiplexed (PDM) signal.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: September 23, 2014
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan
  • Patent number: 8837954
    Abstract: A system includes a beacon device including a communication strip having a plurality of directed light emitters distributed along the communication strip. The beacon device can transmit a directed light signal via the directed light emitters. The system further includes a tag including a processor, a radio frequency transmitter coupled to the processor, a directed light receiver coupled to the processor, and a lens having first and second major surfaces and a side surface, the tag to receive the directed light signal via the side surface and to transmit a radio frequency tag message via the radio frequency transmitter. The system also includes a radio frequency reader to receive the radio frequency tag message.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: September 16, 2014
    Assignee: RF Code, Inc.
    Inventors: Michael R. Primm, Ronald B. Graczyk, Ryan D. Joy, Matthew C. Blackledge
  • Patent number: 8834040
    Abstract: Cable adapters and connectors receive electrical signals and output optical signals. A cable adapter can receive various data signals in multiple interface protocols at a first electrical connector and provide an optical signal at a second connector. The conversion of electrical signals to optical signals may be achieved at various locations in the cable adapter. A connector can include an optical transmitter for converting electrical signals into optical signals. Such a connector can be provided on an output end of a cable adapter to provide optical signals corresponding to electrical signals received at an input connector of the cable adapter.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: September 16, 2014
    Assignee: Apple Inc.
    Inventors: Mathias Schmidt, Stan Rabu
  • Patent number: 8824900
    Abstract: A method for generating an optical single sideband signal comprising the steps of splitting an optical field into two parts and introducing a relative phase delay of +/??/4 radians in each direction of transmission to one of the parts, intensity reflection-modulating each part with electrical signals having a relative phase delay of +/??/2 radians and then recombining the reflection-modulated signals.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: September 2, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Peter Healey, David William Smith, Graeme Douglas Maxwell
  • Patent number: 8818208
    Abstract: A laser mux assembly generally includes a back reflector selectively coupled to one of the input ports of an optical multiplexer, such as an arrayed waveguide grating (AWG), and at least one laser emitter coupled to an output port. The laser emitter may include a gain region that emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The emitted light is coupled into the output port and the AWG or optical multiplexer filters the emitted light from the laser emitter at different channel wavelengths. The back reflector reflects the filtered light at the respective channel wavelength such that lasing occurs at the channel wavelength(s) of the reflected, filtered light. The laser mux assembly may be used, for example, in a tunable transmitter, to generate an optical signal at a selected channel wavelength.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: August 26, 2014
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Jun Zheng, Stefan J. Murry
  • Patent number: 8805205
    Abstract: Data security of a multi-dimensional code system is increased. An optical device is provided with a single input port; a splitter splitting an input light from the input port into a plurality of lights; a plurality of phase shifters each shifting one of the lights split by the splitter; a multi-port encoder/decoder inputting the lights whose phases are shifted by the phase shifters and generating spectral encoded codes; and a plurality of output ports outputting the spectral encoded codes generated by the multi-port encoder/decoder.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: August 12, 2014
    Assignee: National Institute Of Information And Communications Technology
    Inventors: Naoya Wada, Gabriella Cincotti, Xu Wang, Kenichi Kitayama
  • Patent number: 8798474
    Abstract: A method and apparatus for communicating information content by modulation of light in an illumination system via a liquid lens optically coupled to the illumination system and capable of modulation of light thereof, using resonant modes of the liquid lens. A modulation control system operatively coupled to the liquid lens and to the information content is configured to represent at least a portion of the information content as a time-varying configuration of the liquid lens, the time-varying configuration substantially including one or more of said one or more resonance modes. A receiver system optically coupled to the liquid lens is configured to reconstruct at least a portion of the information content from light modulated by the time-varying configuration of the liquid lens.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 5, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Ian Ashdown
  • Patent number: 8792792
    Abstract: [PROBLEM] Providing an optical source that outputs optical frequency modulated light having a constant output optical intensity. [MEANS FOR SOLVING THE PROBLEM] Provided is a light source apparatus that outputs an optical signal having an optical frequency corresponding to a frequency control signal, the light source apparatus including a laser light source section that outputs laser light having an optical frequency corresponding to the frequency control signal; and an optical intensity adjusting section that compensates for intensity change of the laser light to output laser light in which the intensity change caused by a change in the optical frequency is restricted.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: July 29, 2014
    Assignee: Advantest Corporation
    Inventors: Shin Masuda, Kazunori Shiota
  • Patent number: 8787772
    Abstract: A laser package may include a semiconductor laser and a memory device integrated into the laser package for storing parameters associated with the laser. The parameters may include laser manufacturing, operational and/or user parameters. For example, the semiconductor laser may be tunable and the memory device may store tuning parameter data. One example of the laser package is a tunable transmitter optical sub-assembly (TOSA) package.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: July 22, 2014
    Assignee: Applied Optoelectronics, Inc.
    Inventor: Chan Chih Chen
  • Patent number: 8774568
    Abstract: Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is less than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tak Han, Jang Uk Shin, Sang-Pil Han, Sang Ho Park, Yongsoon Baek
  • Patent number: 8750721
    Abstract: A light source control section 15 selects a first light emitting device arrangement (color combination device group) in which LEDs 19 make a particular visible light color by color synthesis and form one optical communication channel, and then causes the first light emitting device arrangement to emit light, and selects a second light emitting device arrangement so that a light quantity of a light source 18 as a whole becomes uniform, and then causes the selected second light emitting device arrangement to emit light when the first light emitting device arrangement does not emit light. As a result, upon performing optical communication, an optical transmitting apparatus and an optical communication system that can emit an illumination light at a uniform light quantity without generating a flicker of illumination can be realized.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: June 10, 2014
    Assignee: Kyocera Corporation
    Inventor: Yasuyuki Irie
  • Patent number: 8737846
    Abstract: An optical source uses feedback to maintain a substantially fixed spacing between adjacent wavelengths in a set of wavelengths in a wavelength comb output by the optical source. In particular, a set of light sources in the optical source provide optical signals having the set of wavelengths. Moreover, the optical signals are output at diffraction angles of an optical device in the optical source (such as an echelle grating), and optical detectors in the optical source determine optical metrics associated with the optical signals. Furthermore, control logic in the optical source provides control signals to the set of light sources based on the determined optical metrics.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: May 27, 2014
    Assignee: Oracle International Corporation
    Inventors: Xuezhe Zheng, Ying Luo, Guoliang Li, Ashok V. Krishnamoorthy
  • Patent number: 8725004
    Abstract: Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 13, 2014
    Assignee: Sandia Corporation
    Inventor: Gregory A. Vawter
  • Patent number: 8718486
    Abstract: In various embodiments, a monolithic integrated transmitter, comprising an on-chip laser source and a modulator structure capable of generating advanced modulation format signals based on amplitude and phase modulation are described.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 6, 2014
    Assignee: Freedom Photonics, LLC.
    Inventors: Jonathon Barton, Leif Johansson, Milan Mashanovitch
  • Patent number: 8712252
    Abstract: To efficiently apply jitter to an optical signal using a simple configuration, provided is an optical signal output apparatus that outputs an optical pulse pattern signal including jitter, the optical signal generating apparatus comprising a light source section that outputs an optical signal having an optical frequency corresponding to a frequency control signal; an optical modulation section that modulates the optical signal output by the light source section, according to a designated pulse pattern; and an optical jitter generating section that delays an optical signal passed by the optical modulation section according to the optical frequency, to apply jitter to the optical signal.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 29, 2014
    Assignee: Advantest Corporation
    Inventors: Shin Masuda, Kazunori Shiota
  • Publication number: 20140112668
    Abstract: A stamped metal optic is provided that is a unitary, or integrally formed, part that includes at least a bench for holding at least one optoelectronic component and a reflector for folding an optical pathway. The stamped metal optic is formed of a piece of metal that is shaped using known metal stamping techniques. The stamped metal optic preferably has at least one fiducial mark formed therein that is used for placement of the optoelectronic device on the bench to ensure that the optoelectronic device is precisely aligned with the reflector. Because metal objects can be formed relatively inexpensively with high precision using known stamping techniques, the stamped metal optics can be manufactured with high precision at relatively low cost.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd .
    Inventor: Laurence R. McColloch
  • Patent number: 8693878
    Abstract: The invention relates to an illumination device connectable to an AC voltage source for applying an alternating voltage during a series of time intervals. The illumination device comprises at least a first light source and a second light source, arranged to be connected in series to the AC voltage source, to generate a luminance output in response to the alternating voltage. Selection means are provided configured for selectively applying the alternating voltage over the first light source or the first and second light source. A controller is provided for controlling the selection means in response to a data signal comprising data symbols such that one or more of the data symbols are contained in said luminance output. The invention also relates to a method of embedding one or more data symbols in the luminance output of such an illumination device, an optical receiver and an illumination system.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: April 8, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Tim C. W. Schenk, Lorenzo Feri, Peter Deixler