Including Polarization Patents (Class 398/205)
  • Patent number: 7480091
    Abstract: In a method of phase adjustment for the demodulator 1 of the present invention, the phase adjustment is performed by driving any one of the heaters on the two waveguides 10 and 11 in the Mach-Zehnder interferometer (MZI) 6 and on the two waveguides 14 and 15 in the MZI 7. In case that an initial phase difference between the MZIs 6 and 7 smaller than a required phase difference as ?/2 therebetween, the heaters C and D are driven, that are formed on the first waveguide 10 in the MZI 6, and the heaters G and H are driven, that are formed on the second waveguide 15 in the MZI 7. In case that the initial phase difference is larger than the required phase difference (?/2) therebetween, the heaters A and B formed on the second waveguide 11 in the MZI 6, and the heaters E and F formed on the first waveguide 14 in the MZI 7 are driven.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: January 20, 2009
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Junichi Hasegawa, Kazutaka Nara
  • Patent number: 7466923
    Abstract: Methods and systems for PMD compensation in an optical communication system are implemented by transmitting multiple optical signals through a common optical conduit to an optical compensator that adjustably rotates the polarization states of the multiple optical signals and transmits the rotated optical signals to an optical receiver. The receiver, upon sensing an excessive error condition, commands the optical compensator to change the polarization state of rotation, which changes the PMD profile of the received optical signals.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: December 16, 2008
    Assignee: AT&T Corp.
    Inventors: Michael Herbert Eiselt, Jonathan A. Nagel
  • Patent number: 7466929
    Abstract: A system and method for superheterodyne detection in accordance with the invention. The system comprises a first conversion unit for performing a first heterodyne operation on an optical input signal to generate an electrical IF signal. A second conversion unit is electrically or optically coupled to the first conversion unit. The second conversion unit performs a second heterodyne operation to generate an electrical output signal suitable for signal processing.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: December 16, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: Douglas M. Baney, Tun S. Tan, Bogdan Szafraniec
  • Patent number: 7447436
    Abstract: A transmitter subsystem generates an optical signal which contains multiple subbands of information. The subbands have different polarizations. For example, in one approach, two or more optical transmitters generate optical signals which have different polarizations. An optical combiner optically combines the optical signals into a composite optical signal for transmission across an optical fiber. In another aspect, each optical transmitter generates an optical signal containing both a lower optical sideband and an upper optical sideband (i.e., a double sideband optical signal). An optical filter selects the upper optical sideband of one optical signal and the lower optical sideband of another optical signal to produce a composite optical signal.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 4, 2008
    Assignee: Forster Energy LLC
    Inventors: Ting K. Yee, Peter H. Chang, Chin-Sheng Tarng, Gregory M. Cutler, Slava Yazhgur, Ji Li, Laurence J. Newell, James F. Coward, Michael W. Rowan, Norman L. Swenson, Matthew C. Bradshaw
  • Publication number: 20080232816
    Abstract: By using low-frequency signals, an optical transmitting unit modulates one of a wavelength, a transmission timing, and an intensity of light as a carrier wave. A polarization multiplexer synthesizes the output light signals, modulated by the optical transmitting unit, in polarization states orthogonal to each other and generates polarization-multiplexing signals. A polarization splitter splits by extracting two orthogonal polarization components from the polarization-multiplexing signals. The polarization states of the polarization-multiplexing signals are controlled by a polarization controller in an optical receiving unit. A band-pass filter extracts components transmitting through passbands from output signals of the optical receiving unit and outputs an intensity of the components.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 25, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Takeshi Hoshida, Jens Rasmussen
  • Patent number: 7409166
    Abstract: A device for processing a digital signal of an optical transmission system is described. The device comprises: a polarization beam splitter for receiving the signal, a phase shifter for shifting the phase of the signal at the orthogonal output of the polarization beam splitter, and means for combining the signal at the parallel output of the polarization beam splitter and the shifted signal.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: August 5, 2008
    Assignee: Alcatel
    Inventors: Erwan Corbel, Gabriel Charlet
  • Patent number: 7406269
    Abstract: An optical coherent receiver in one embodiment has a heterodyne configuration, and in another embodiment has a homodyne configuration, in each configuration employs multiple feedback signaling and analog/digital processing to optimize response to a modulated optical input signal, the provision of both individual RF I and RF Q channel outputs.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: July 29, 2008
    Assignee: Discovery Semiconductors, Inc.
    Inventors: Donald A. Becker, Daniel R. Mohr, Christoph T. Wree, Abhay M. Joshi
  • Publication number: 20080152362
    Abstract: A method for operating an optical receiver includes at each of a sequence of sampling times, producing a first 2D complex digital signal vector whose first component is indicative of a phase and amplitude of one polarization component of a modulated optical carrier and whose second component is indicative of a phase and amplitude of another polarization component of the carrier. For each one of the sampling times, the method includes constructing a second 2D complex digital signal vector that is a rotation of the first 2D complex digital vector for the one of sampling times. The rotation compensates a polarization rotation produced by transmission of the modulated optical carrier between an optical transmitter and the optical receiver.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventor: Ut-Va Koc
  • Publication number: 20080152361
    Abstract: A method for determining symbols PSK modulated on an optical carrier includes interfering a first polarization component of the modulated optical carrier and a reference optical carrier in a first optical mixer and interfering the first polarization component of the modulated optical carrier and the reference with a different relative phase in a second optical mixer. The method also includes sampling the interfered carriers from the first optical mixer to produce first digital sampled values and sampling the interfered carriers from the second optical mixer to produce second digital sampled values. The first and second digital sampled values of a sampling period form a first complex sampling value thereof. The method also includes offsetting a phase of a complex signal value corresponding to each first complex sampling value to correct for a phase error caused by a frequency offset between the modulated and reference optical carriers.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: Young-Kai Chen, Noriaki Kaneda, Ut-Va Koc, Andreas Bertold Leven
  • Publication number: 20080145066
    Abstract: A coherent optical receiver of the invention combines local oscillator light having orthogonal polarization components in which the optical frequencies are different to each other, and received signal light, in an optical hybrid circuit, and then photoelectrically converts this in two differential photodetectors. Then this is converted to a digital signal in an AD conversion circuit, and computation processing is executed in a digital computing circuit using the digital signal, to estimate received data. At this time, the optical frequency difference between the orthogonal polarization components of the local oscillator light is set so as to be smaller than two times the signal light band width, and larger than a spectrum line width of the signal light source and the local oscillator light source. As a result, it is possible to realize a small size polarization independent coherent optical receiver that is capable of receiving high speed signal light.
    Type: Application
    Filed: September 27, 2007
    Publication date: June 19, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Takeshi Hoshida
  • Patent number: 7376360
    Abstract: An optical device extracts an information bearing sideband such as an FSK or SCM signal (label) from a composite signal that includes the sideband and an orthogonally modulated signal such as an intensity modulated signal (payload) by employing polarization beam splitting and polarization transformation. Polarization transformation is accomplished by splicing the optical signal into a polarization maintaining fiber at a desired angle so that it is separated into two orthogonal polarizations that experience differential group delay in the fiber. The fiber is characterized by a beat length Lbeat and the fiber is designed to have a length substantially equal to (Lbeat×fc)/2?f, wherein the sidebands of the composite signal are separated by a wavelength difference ?f and fc is the nominal center frequency of the composite signal. This device has been shown to be useful for extracting GMPLS LSC level wavelength labels from either an FSK/IM composite signal or an SCM/IM composite signal.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: May 20, 2008
    Assignee: Lucent Technologies Inc.
    Inventor: Jean Gerardus Leonardus Jennen
  • Patent number: 7373091
    Abstract: The inventors propose herein a switch fabric architecture that allows broadcasting and fast channel access in the ns-range. In various embodiments of the present invention, 10 Gb/s receiver modules are based on a novel heterodyne receiver and detection technique, which is tolerant to moderate wavelength drifts of a local oscillator. A gain clipped electrical amplifier is used in the novel receiver as a rectifier for bandpass signal recovery.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: May 13, 2008
    Assignee: Lucent Technologies Inc.
    Inventor: Lothar Benedict Erhard Josef Moeller
  • Patent number: 7343100
    Abstract: This application describes techniques for optical multiplexing and demultiplexing in optical communication systems based on polarization multiplexing of different signal channels.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 11, 2008
    Assignee: General Photonics Corporation
    Inventor: X. Steve Yao
  • Patent number: 7315575
    Abstract: A method is provided for an equalization strategy for compensating channel distortions in a dual-polarization optical transport system wherein the received signal includes a complex signal of a first transmitted polarization component and a complex signal of a second transmitted polarization component. In a first step, a blind self recovery mode used a blind adaptation algorithm in calculating and modifying multiple complex equalizer transfer function coefficients to enables recovery of only the complex signal of the first transmitted polarization component. In a second step, equalization is performed in a training mode for recovery of the complex signals of the first and second transmitted polarization components. In a third step, equalization is performed in a data directed mode. The method is suited for a digital signal processing implementation in a coherent receiver.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: January 1, 2008
    Assignee: Nortel Networks Limited
    Inventors: Han Sun, Kuang Tsan Wu
  • Patent number: 7315699
    Abstract: An optical device extracts an information bearing sideband such as an FSK or SCM signal (label) from a composite signal that includes the sideband and an orthogonally modulated signal such as an intensity modulated signal (payload) by splicing the composite signal into a polarization maintaining fiber at a desired angle so that the composite signal is separated into two orthogonal polarizations that experience differential group delay in the fiber. The polarized output signals from the fiber are then coupled to a polarization beam splitter at an equivalent or complementary angle to the desired angle so that one sideband of the composite signal appears at a first output of the beam splitter while another sideband appears at a second output of the beam splitter. The sidebands can then be converted to an electrical data signal by using an appropriate receiver, such as a balanced receiver for FSK signals.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: January 1, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Jean Gerardus Leonardus Jennen, Kyriakos Vlachos
  • Patent number: 7295781
    Abstract: Methods and systems for PMD compensation in an optical communication system are implemented by transmitting multiple optical signals through a common optical conduit to an optical compensator that adjustably rotates the polarization states of the multiple optical signals and transmits the rotated optical signals to an optical receiver. The receiver, upon sensing an excessive error condition, commands the optical compensator to change the polarization state of rotation, which changes the PMD profile of the received optical signals.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: November 13, 2007
    Assignee: AT&T Corp.
    Inventors: Michael Herbert Eiselt, Jonathan A. Nagel
  • Patent number: 7280770
    Abstract: A receiver and method for using the same to process optical signals is disclosed. The receiver includes an optical coupler and a polarization dependent beam splitter. The optical coupler combines an input signal and a local oscillator signal into a first combined signal. The optical coupler includes a polarization filter that operates on the local oscillator to provide a linearly polarized signal having a predetermined LO polarization direction.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: October 9, 2007
    Assignee: Agilent Technologies
    Inventors: Tun S. Tan, Doug Baney, William Ian McAlexander, Richard P. Tella
  • Patent number: 7269359
    Abstract: The invention provides a synchronous detector for a unit cell of a read out integrated circuit (ROIC). The synchronous detector includes a bipolar photo-detector formed in a focal plane array (FPA) for sensing light energy. The bipolar photo-detector has one end coupled to a sense node of the unit cell, and another end coupled to a reference generator for biasing the bipolar photo-detector. The bipolar photo-detector is biased by the reference generator, resulting in the light energy sensed by the bipolar photo-detector to be provided to the sense node as a synchronously detected signal. A capacitor is coupled to the sense node for low pass filtering the synchronously detected signal. The reference generator provides alternating positive and negative voltage levels, where the positive voltage level forward biases the bipolar photo-detector and the negative voltage level reverse biases the bipolar photo-detector.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: September 11, 2007
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventor: James Alexander McAdoo
  • Patent number: 7266310
    Abstract: A receiver for an optical transmission system, has a polarization diverse and phase diverse coherent optical receiver, and a digital adaptive equalizer for compensating for distortions in the optical signal introduced by the optical path. The entire field of the optical signal is mapped including phase and polarization information, to enable more complete compensation for impairments such as chromatic dispersion and PMD. Furthermore, it can also reduce the problems which have so far held back coherent optical detection from widespread implementation, such as polarization alignment and phase tracking. This can be applied to upgrade existing installed transmission routes to increase capacity without the expense of replacing the old fiber.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: September 4, 2007
    Assignee: Nortel Networks Limited
    Inventors: Seb J Savory, James Whiteaway
  • Patent number: 7212748
    Abstract: When a PLL circuit is used to extract and recover clock component from an information data signal, where an optical receive signal has been converted into an electrical signal, and to monitor the frequency of a recovered clock, a low frequency section frequency detection circuit having a BPF (band-pass filter) where transmission center frequency has been shifted to higher frequency relative to center frequency of the electrical signal and a high frequency section frequency detection circuit having a BPF where the transmission center frequency has been shifted to lower frequency are provided in parallel. Utilizing a slope on one side of each transmission characteristic of the BPF makes it possible to set detection frequency freely and accurately. Therefore, a frequency detection circuit without using a special device in an optical transmitter/receiver, capable of easily detecting accurate frequency shift of f0±?f or more, and of low price and high performance, can be obtained.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 1, 2007
    Assignee: NEC Corporation
    Inventor: Tadashi Koga
  • Patent number: 7209670
    Abstract: A polarization diversity receiver has an optical section for converting the received optical signal into four or five polarization diverse component optical signals that substantially represent amplitude and polarization state information of the received optical signal, by respective polarization transformations to respective points on a Poincaré sphere, the points being equally spaced apart to maximize polarization diversity, even in the worst case input polarization state. Detectors produce component electrical signals from each of the component optical signals, for electronic processing to compensate for PMD. By reducing the number of component optical signals significant cost and size reductions are enabled. The need for precise polarization tracking in the receiver can be reduced or eliminated completely. Balanced detectors can be used to reduce the number of electrical signals. The electrical processing can use sequence detection.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: April 24, 2007
    Assignee: Nortel Networks Limited
    Inventors: Christopher Fludger, Richard Epworth, Alan Robinson
  • Patent number: 7171129
    Abstract: The present invention comprises an optical communication system, including apparatuses and methods, which use coherence multiplexing to optically multiplex different signals that may have varying protocols or operate at different speeds, onto a single wavelength channel which is dense wavelength division multiplexed with other channels for optical communication. The apparatuses and methods of the optical communication system also enable the dropping and inserting of selected single protocol signals at intermediate sites of a DWDM communication link which is less costly and makes less wasteful use of optical wavelength channels for the communication of lower data rate information.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: January 30, 2007
    Inventors: Steven M. Blair, Larry L. Campbell
  • Patent number: 7167651
    Abstract: A system for optical communication forms a family of orthogonal optical codes modulated by a data stream. The orthogonal codes are formed by creating a stream of evenly spaced-apart pulses using a pulse spreader circuit and modulating the pulses in amplitude and/or phase to form a family of orthogonal optical code words, each representing a symbol. A spreader calibration circuit is used to ensure accurate timing and modulation. Each code word is further modulated by a predetermined number of data bits. The data modulation scheme splits a code word into H and V components, and further processes the components prior to modulation with data, followed by recombining with a polarization beam combiner. The data-modulated code word is then sent, along with others to receiver. The received signal is detected and demodulated with the help of a symbol synchronization unit which establishes the beginning and end of the code words.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: January 23, 2007
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Michael Tseytlin, Yaakov Achiam, Aviv Salamon, Israel Smilanski, Olga Ritterbush, Pak Shing Cho, Li Guoliang, Jacob Khurgin, Yehouda Meiman, Alper Demir, Peter Feldman, Peter Kinget, Nagendra Krishnapura, Jaijeet Roychowdhury, Joseph Schwarzwalder, Charles Sciabarra
  • Patent number: 7146103
    Abstract: A transmitter subsystem generates an optical signal which contains multiple subbands of information. The subbands have different polarization. For example, in one approach, two or more optical transmitters generate optical signals which have different polarization. An optical combiner optically combines the optical signals into a composite optical signal for transmission across an optical fiber. In another aspect, each optical transmitter generates an optical signal containing both a lower optical sideband and an upper optical sideband (i.e., a double sideband optical signal). An optical filter selects the upper optical sideband of one optical signal and the lower optical sideband of another optical signal to produce a composite optical signal.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 5, 2006
    Assignee: Forster Energy LLC
    Inventors: Ting K Yee, Peter H Chang, Shin-Sheng Tarng, Gregory M Cutler, Slava Yazhgur, Ji Li, Laurence J Newell, James F Coward, Michael W Rowan, Norman L Swenson, Matthew C Bashaw
  • Patent number: 7110677
    Abstract: The present invention relates to a receiver for receiving a time division multiplexed (TDM) optical signal, which is formed of a plurality of interleaved optical pulse streams. Each optical pulse stream includes a plurality of optical pulses. The receiver includes a detector for detecting at least a first optical pulse stream of the optical signal and an optical hybrid for coherently mixing the first optical pulse stream with a reference pulse stream. The first optical pulse stream and the reference pulse stream impinge simultaneously upon the detector.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: September 19, 2006
    Assignee: CeLight, Inc.
    Inventors: Nadejda Reingand, Jacob Khurgin, Pak Shing Cho
  • Patent number: 7103279
    Abstract: An apparatus for a wireless transmission of high data rate signals such as received from an optical interface including gigabit fiber channel or a sonet. The architecture combines direct detection of the optical signal with clock and data recovery circuit and a differential signal encoder which is preferably a differential quadrature phase shift encoder and modulator pair. A millimeter wave, local oscillator and up conversion chain converts the optical input signal to a microwave carrier. In the opposite direction, the down converted signal is non-coherently phase detected and fed to a pair of synchronized clock and data recovery circuits to recover I and Q channel signals. These recovered signals are then combined prior to re-timing before they are fed back to the optical transceiver.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: September 5, 2006
    Assignee: YDI Wireless, Inc.
    Inventors: Christopher T. Koh, Wyley Robinson, Myung K. Lee, Eric L. Holzman, Kenneth Michael Pergola
  • Patent number: 7095963
    Abstract: An optical receiver system for processing signals output from a polarization diversity detector that includes a plurality of photodetector cells. Each cell provides an signal that includes a phase generated carrier signal having a modulation frequency ? and a sensor signal that has an in-phase component I and a quadrature phase component Q superimposed on the phase generated carrier signal. A plurality of variable gain amplifiers are arranged to produce a plurality of amplified signals. A feedback circuit is connected to the plurality of variable gain amplifiers for controlling the gains thereof. A plurality of demodulator circuits are arranged to receive the amplified signals. The demodulator circuits are arranged to provide for each photodetector cell an I signal output that indicates an amplitude of the in-phase component I and a Q signal output that indicates an amplitude of the quadrature phase component Q.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: August 22, 2006
    Assignee: Litton Systems, Inc.
    Inventors: William Christopher Knaack, John Thomson Douglass, IV, Eugene Louis Ferraro
  • Patent number: 7076169
    Abstract: A system for optical communication send optical signals over a plurality of wavelength channels. Each wavelength channel comprises a number of orthogonal subchannel frequencies which are spaced apart from one another by a predetermined amount. Each of the subchannel frequencies is modulated with data from a data stream. The data modulation scheme splits a subchannel frequency code into H and V components, and further processes the components prior to modulation with data. The various data-modulated subchannels are then combined into a single channel for transmission. The received signals are detected and demodulated with the help of a symbol timing recovery module which establishes the beginning and end of each symbol. A polarization mode distortion compensation module at the receiver is used to mitigate the effects to polarization more distortion in the fiber.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: July 11, 2006
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Yehouda Meiman, Michael Tseytlin, Olga Ritterbush, Aviv Salamon, Peter Feldman, Alper Demir, Peter Kinget, Nagendra Krishnapura, Jaijeet Roychowdhury
  • Patent number: 7068944
    Abstract: An optical monitor that generates a signal indicative of at least two optical properties of an input optical signal. The monitor utilizes a polarization dependent beam splitter having a signal input port, a mixing signal input, a first output port and a second output port. The signal input port receives an input optical signal having first and second orthogonal polarization components. The mixing signal input receives an optical mixing signal having a first and second polarization component parallel to the first and second polarization components of the optical input signal, respectively. The polarization dependent beam splitter generates first and second output signals on the first and second output ports, respectively. The output signals are the sum of the like polarization components of the input optical signal and the optical mixing signal.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: June 27, 2006
    Assignees: Agilent Technologies, Inc., Novera Optics, INC
    Inventor: Wayne V. Sorin
  • Patent number: 7042629
    Abstract: A linear optical sampling apparatus, temporally samples a modulated optical signal using the amplitude of the interference of its electric field with the electric field of a laser pulse. The apparatus includes a 90° optical hybrid that combines the optical signal and laser pulse in order to generate two quadratures interference samples SA and SB. A processor compensates for optical and electrical signal handling imperfections in the hybrid, balanced detectors, and A/D converters used in the optical sampling apparatus. The processor numerically scales the two quadratures interference samples SA and SB over a large collection of samples by imposing that the average <SA>=<SB>=0 and <SA2>=<SB2> and then minimizes 2<SA·SB>/(<SA2>+<SB2>) =cos(?B??A)). This is done by adjusting the phase between the two quadratures (ideally either ??/2 or +?/2) so that cos(?B??A)) is zero.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: May 9, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Christopher Richard Doerr, Christophe J. Dorrer, Peter J. Winzer
  • Patent number: 6999688
    Abstract: A receiver system processes a received optical signal that carries user information. The receiver system includes a splitter, a first converter, a second converter, and a detection system. The splitter splits the received optical signal based on polarization into a first optical signal and a second optical signal. The first converter converts the first optical signal into a corresponding first electrical signal. The second converter also converts the second optical signal into a corresponding second electrical signal. The detection system applies radio frequency detection to the first electrical signal to generate a third electrical signal. The detection system applies radio frequency detection to the second electrical signal to generate a fourth electrical signal. The detection system then combines the third electrical signal and the fourth electrical signal to form a fifth electrical signal that carries the user information.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: February 14, 2006
    Assignee: Sprint Communications Company L.P.
    Inventors: Rongqing Hui, Christopher T. Allen, Kenneth Robert Demarest
  • Patent number: 6941081
    Abstract: A method and apparatus for polarization measurements. A polarization state of an optical signal can be determined using a polarization analyzer comprising a polarization controller, a polarizer, a wavelength dispersive element and a photo-detector. The method and apparatus can be applied to polarization and polarization mode dispersion measurements in wavelength division multiplexed communication systems.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: September 6, 2005
    Assignee: Fitel USA Corp.
    Inventors: Lothar B. Moeller, Paul Stephen Westbrook
  • Patent number: 6862413
    Abstract: A receiver employs non-linear threshold compensation to adjust input sample values from a single mode fiber to mitigate effects of polarization mode dispersion. A difference S between values for i) a decision for the current input sample and ii) a decision for the previous input sample is generated that indicates whether a transition between logic values occurred in the input data and the direction of transition (sign/phase). Two values are generated to determine a magnitude c of correction combined with the sign/phase (difference S) to generate a correction value. An error value e is generated as the magnitude of the difference between i) the decision for the input sample and ii) the input sample. A value d is calculated as the magnitude of the difference between i) the current input sample and ii) the previous input sample is also generated. The value d represents a relative “closeness” in value between two consecutive input samples.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 1, 2005
    Assignee: Agere Systems Inc.
    Inventor: Anthony Bessios
  • Patent number: 6850710
    Abstract: A method and apparatus are provided for transmitting and receiving multiple RF/microwave subcarriers on a single optical wavelength over an optical link. The method includes the steps of modulating a plurality of RF/microwave subcarrier frequencies with a respective communication signal and modulating an optical carrier wave with the plurality of modulated RF/microwave subcarrier frequencies.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: February 1, 2005
    Assignee: TIP Group, LLC
    Inventor: Bradley N. Mells
  • Publication number: 20040218933
    Abstract: A polarization diversity receiver has an optical section for converting the received optical signal into four or five polarization diverse component optical signals that substantially represent amplitude and polarization state information of the received optical signal, by respective polarization transformations to respective points on a Poincaré sphere, the points being equally spaced apart to maximise polarization diversity, even in the worst case input polarization state. Detectors produce component electrical signals from each of the component optical signals, for electronic processing to compensate for PMD. By reducing the number of component optical signals significant cost and size reductions are enabled. The need for precise polarization tracking in the receiver can be reduced or eliminated completely. Balanced detectors can be used to reduce the number of electrical signals. The electrical processing can use sequence detection.
    Type: Application
    Filed: April 29, 2003
    Publication date: November 4, 2004
    Inventors: Christopher Fludger, Richard Edward Epworth, Alan Robinson
  • Patent number: 6782211
    Abstract: Implemented in both coherent and non-coherent optical systems, a receiving device including a cross polarization interference canceler (XPIC) is described. For these embodiments, the XPIC optimizes bandwidth efficiency of an optical communication link by enabling the reconstruction of two optical signals transmitted with generally orthogonal polarization states and routed over a single fiber optic transmission medium in the same frequency band.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: August 24, 2004
    Inventor: Mark T. Core
  • Patent number: 6782212
    Abstract: A coherent optical communication receiver of a satellite optical communication system, having a telescope, an automatic frequency control circuit and a frequency shift keying demodulator. The automatic frequency control circuit has a local oscillating laser, a light polarization controller, a optical coupler, a photo-detector, a microwave matching network, a microwave mixer, a frequency discriminator and a low pass frequency filter. The coherent optical communication receiver can receive a frequency control signal of a distant laser signal to perform a heterodyne receiving between the emitter and the receiver distant away from each other. With the consideration of the decay of vibration and atmosphere, the quality of the satellite optical communication can still be maintained. The structure and fabrication of the receiver are simple with a low fabrication cost, and the receiver is suitable for being applied to high speed satellite communication system.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: August 24, 2004
    Assignee: National Science Council
    Inventors: Shyh-Lin Tsao, Hao-Chih Yu, Yi-Chih Lin
  • Patent number: 6717706
    Abstract: State of polarization detectors and polarization control systems are disclosed. For example, the invention features an integrated optical assembly including: (i) a series of polarization-sensitive interfaces defining an optical beam path for an input optical beam to pass through the assembly, wherein each polarization-sensitive interface derives a sample beam from the input beam; and (ii) one or more retardation layers each positioned between a different pair of the polarization-sensitive interfaces, wherein the retardation layers are integrally coupled with the polarization-sensitive interfaces, and wherein the retardation layers and polarization-sensitive interfaces cause each sample beam to have an intensity that provides different information about the state of polarization of the input beam.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 6, 2004
    Assignee: Cambridge Research and Instrumentation, Inc.
    Inventors: Peter J. Miller, Paul J. Cronin
  • Publication number: 20040008991
    Abstract: The invention relates to the monitoring of polarization mode dispersion (PMD) using heterodyne detection for providing PMD compensation in optical networks, and an apparatus for monitoring PMD. In the present invention, a broadband PMD monitor is disclosed based on heterodyne detection with a tunable laser source which can be fed to a compensator such as an add/drop or other wavelength switch and polarization dependent attenuation means. A signal from a local oscillator is combined with an optical signal and the beat frequency amplitude and phase is analyzed for two orthogonal polarization states simultaneously to obtain a state of polarization. By averaging a plurality of polarization states within a channel, PMD can be estimated for compensation.
    Type: Application
    Filed: June 10, 2003
    Publication date: January 15, 2004
    Applicant: JDS UNIPHASE CORPORATION
    Inventors: Robert G. Waarts, Russell Chipman
  • Patent number: 6634808
    Abstract: In an optical transmission system, a first modulated signal is generated at the transmitting end by modulating a first carrier signal with a first data signal and a second modulated signal is generated by modulating a second carrier signal, which differs from the first carrier signal by a differential frequency, with a second data signal. The first and second modulated signals are polarized orthogonally with respect to one another and combined to form an optical multiplex signal and are transmitted. At the receiving end, the optical multiplex signal is conducted via a polarization control element to a polarization splitter which splits the optical multiplex signal into the first and second modulated signals.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: October 21, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventor: Christoph Glingener