Intermodulation Patents (Class 398/211)
  • Patent number: 7373091
    Abstract: The inventors propose herein a switch fabric architecture that allows broadcasting and fast channel access in the ns-range. In various embodiments of the present invention, 10 Gb/s receiver modules are based on a novel heterodyne receiver and detection technique, which is tolerant to moderate wavelength drifts of a local oscillator. A gain clipped electrical amplifier is used in the novel receiver as a rectifier for bandpass signal recovery.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: May 13, 2008
    Assignee: Lucent Technologies Inc.
    Inventor: Lothar Benedict Erhard Josef Moeller
  • Patent number: 7343098
    Abstract: A fiber optic phased array and control method are provided for controllably adjusting the phase and amplitude of the optical signals emitted by a plurality of fiber optic amplifiers to compensate for atmospheric turbulence. The fiber optic phased array also includes a sensor assembly for detecting: (i) the phase of the optical signals that are emitted by the fiber optic amplifiers, and (ii) both the phase and the amplitude of the optical signals that have been reflected by the target. The fiber optic phased array also includes phase modulators and a gain adjustment mechanism for altering the phase and the amplitude of the optical signals propagating along the fiber optic amplifiers to compensate for modifications in the phase and amplitude that will be introduced by atmospheric turbulence. Among other things, the amplitude control of the optical signals is not adversely effected by intensity nulls in the reflected wavefront.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: March 11, 2008
    Assignee: The Boeing Company
    Inventors: David Roderick Gerwe, Robert R. Rice, Harold B. Schall
  • Patent number: 7233430
    Abstract: An optical, multi-channel, Differential Phase Shift Keying (DPSK) receiver demodulates multiple Wavelength Division Multiplexed (WDM) channels using a single interferometer. This distributes expense of the interferometer over all channels of an optical signal, allowing for deployment of cost-effective, scalable, wideband, WDM DPSK systems. For example, for an 80 channel WDM link, the receiver uses a single interferometer instead of eighty interferometers and associated stabilization hardware, dramatically reducing size, weight, power, and cost. The receiver is architecturally compatible with existing interferometer technologies so previous development and qualification efforts can be leveraged. This allows for expedited technology insertion into existing optical communications networks, including terrestrial and space-based optical networks.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: June 19, 2007
    Assignee: Massachusetts Institute of Technology
    Inventor: David O. Caplan
  • Patent number: 7106979
    Abstract: Residual birefringence in optical fibers causes polarization mode dispersion (PMD). The invention compensates for this by using a polarization mode dispersion compensator and a polarimeter. The PMD compensator has a variable PMD that may be controlled. The output of the PMD compensator is monitored by a polarimeter. By dithering the wavelength of the optical signal, the polarimeter may provide an accurate measure of the PMD. A controller uses this measurement to control the PMD compensator. The PMD compensating scheme may also be incorporated in a wavelength division multiplexed system with each channel having its own PMD compensator. In addition, a control method may control any polarization mode dispersion compensator based on feedback from a polarimeter to reduce the PMD of the input signal. Instead of using a polarimeter, a Q detector may be used to monitor the output of the PMD compensator. The Q detector provides a measurement of the edge sharpness and, thereby, a measure of the PMD.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: September 12, 2006
    Assignee: CIENA Corporation
    Inventor: Michael G. Taylor
  • Patent number: 7031612
    Abstract: An optical transponder/transceiver for intermediate range (e.g., 10-50 km) optical communication applications utilizes an electroabsorption modulated laser for the transmitting device. Preferably, the laser operations at a wavelength of approximately 1310 nm and comprises an electroabsorption modulated Fabry-Perot laser.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: April 18, 2006
    Assignee: Multiplex, Inc.
    Inventors: Kang-Yih Liou, Tawee Tanbun-Ek, Won-Tien Tsang, Liang David Tzeng
  • Publication number: 20040008984
    Abstract: A monitoring system useful for monitoring the state of a fiber communication channel in which a portion of the fiber signal is tapped and detected by a photodiode. The dark current of the photodiode and other DC offsets of the system may be compensated by passing a known signal through the photodiode and extracting the component due to the known signal. The known signal may be a locally generated optical signal having a predetermined harmonic signature. Optionally, the fiber signal may be selectively attenuated before being combined with the known signal so only the known signal is detected. The known signal may also be a dark signal induced by selectively attenuating the fiber signal. The system may include a temperature sensor which allows the compensation to be performed against stored temperature dependent compensation values while the fiber signal is not attenuated.
    Type: Application
    Filed: February 15, 2001
    Publication date: January 15, 2004
    Inventors: Kevin S. Gerrish, Scott T. Hilbert