Abstract: A method that includes obtaining, using a processor, reflectance data from a target coating and calculating, using the processor, electrostatics data from the reflectance data. The method also includes generating, using the processor, a coating formulation that is the same or substantially similar in appearance to the target coating.
Abstract: An image noise reduction method is provided. An image is received. A first-stage process is performed to the image to obtain a luminance information Y and a color information Cb and/or Cr corresponding to a pixel array in an YCbCr domain. A second-stage process is performed to the luminance information Y to reduce at least a luminance noise. A third-stage process is performed to the color information Cb and/or Cr to reduce at least a color noise. The luminance information Y and the color information Cb and/or Cr are then combined.
Abstract: An image forming apparatus has a plurality of developing devices for developing an electrostatic image formed on an image bearing member, and a rotary member holding the plurality of developing devices and rotated in a route including a developing position, the rotary member selectively positioning any one of the developing devices at the developing position. Each of the plurality of developing devices has a plurality of developer carrying members carrying a developer thereon and carrying the developer to the image bearing member.
Abstract: An image forming apparatus has a plurality of developing devices for developing an electrostatic image formed on an image bearing member, a rotary member holding the plurality of developing devices and rotated in a route including a developing position, the rotary member selectively positioning any one of the developing devices at the developing position, each of the plurality of developing devices having a first developer carrying member and a second developer carrying member for carrying a developer thereon and carrying it to the image bearing member, and a holding member holding the first developer carrying member and the second developer carrying member and pivotally movably provided.
Abstract: An electrophotographic image forming method is disclosed. The method comprises developing latent images each formed on a static latent image forming member by serially arranged plural image forming units each including a toner to form toner images, respectively, successively transferring the toner images onto an image support so as to form a piled up image, and fixing the piled up image by a fixing device having a rotatable heating member including a heater fixed therein and a pressing member, and in the method the toner for developing the latent image has a variation coefficient of the shape coefficient of not more than 16% and a number variation coefficient of the particle diameter distribution in number of not more than 27%.