Abstract: A microscopic geometry cutting device includes: a controller that outputs a timer count start command in starting a driving program which controls a drive of an X-axis or a Y-axis moving mechanism; an arrival time calculator that calculates an arrival time from when the timer count start command is output till when the cutter arrives at a machining start position in accordance with relative moving speed information of the moving mechanisms and machining start position information of a workpiece W; an elapsed time determiner that determines whether an elapsed time from when the timer count start command is output is coincident with the arrival time and outputs a trigger signal when the elapsed time is coincident with the arrival time; and a reciprocating stage driver that drives the reciprocating stage in a manner that the cutter advances and retracts in a predetermined cutting depth in response to the trigger signal.
Abstract: An angle adjusting mechanism or a linear axis of a processing machine is provided with a reciprocation device. A tool and a tool cutting mechanism are mounted on a moving part of the reciprocation device. A workpiece is processed by the tool based on a combination of the drive of the processing machine and the drive of the reciprocation device.
Abstract: This invention aims at avoiding interference of a blade when a plurality of grooves of a diffraction grating element are formed. In order to achieve this object, in a method of working a diffraction optical grating element shape on a working target surface, a main spindle for rotatably supporting a cutting blade is provided on X-, Y-, and Z-coordinate axes of the working target surface, and an angle of an edge of the cutting blade mounted on the main spindle performs working to have an inclination with such an angle that interference with a planned working position at an outer peripheral portion of a curved surface of the diffraction optical grating element is avoided.
Abstract: A tool T is mounted to the tip of the rotatable main shaft S, and at least the rotation angle of the main shaft S is controlled so that the edge of the tool T is always maintained at the right angle against the direction of the tool movement on the machining program locus, when a work W is machined with the edge T.sub.A of the tool T in the state that the edge T.sub.A of the tool T is offset from the rotation center S.sub.0 of the main shaft S.