Article Manipulator Moves Analogous With Human Hand, Finger, Or Arm Movement Patents (Class 414/1)
  • Patent number: 10335943
    Abstract: A robot arm mechanism has a plurality of joints. Of the plural joints, a first joint is a rotational joint that rotates on a first axis, a second joint is a rotational joint that rotates on a second axis, and a third joint is a linear motion joint that moves along a third axis. The second axis is perpendicular to the first axis and is a first distance away from the first axis. The third axis is perpendicular to the second axis and is a second distance away from the second axis.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: July 2, 2019
    Assignee: Life Robotics Inc.
    Inventor: Woo-Keun Yoon
  • Patent number: 10279483
    Abstract: The invention relates to a robot comprising a tool (8), a first chain of elements having a proximal end element (6) and a distal end element (7) to which the tool is connected, at least one control member (9) of the robot connected to one of the elements of the first chain of elements other than the distal end element, control means (13, 14, 15) for at least one part of the first element chain and the control member in order to associate, with a movement of the control member relative to the proximal end element along at least one degree of freedom of the control member, a more complex movement of the distal end element relative to the proximal end element along at least one of the degrees of freedom of the distal end element.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: May 7, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Florian Gosselin, Xavier Lamy, Dominique Ponsort
  • Patent number: 10258419
    Abstract: Methods and devices are provided for performing robotic surgery. In general, a surgical system is provided including an electromechanical tool with a first mode of operation in which the electromechanical tool mimics movement of a controller, and a second mode of operation in which the tool mirrors movement of the controller. A hybrid surgical device is also provided including an adapter matable to a handle assembly such that the adapter is electronically coupled to a motor of the handle assembly and is configured to communicate with the motor. A robotic laparoscopic surgical device is also provided including a motion sensor configured to sense movement of an electromechanical tool and an electromechanical arm that assists movement of the tool. A robotic surgical device is also provided including an electromechanical driver associated with a trocar and being configured to rotate and to translate a tool disposed through a passageway.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 16, 2019
    Assignee: Ethicon LLC
    Inventors: Michael D. Auld, Kevin D. Felder, Steven G. Hall, Eric W. Thompson
  • Patent number: 10213886
    Abstract: The invention relates to a method and a device for making tools and/or handling equipment available for a treatment machine, wherein a mobile magazine contains at least two different types of tools and/or handling equipment together.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: February 26, 2019
    Inventor: Klaus Hofmann
  • Patent number: 10058963
    Abstract: A robotic system for replacing a spent end effector component with a replacement end effector component is disclosed. The robotic system comprises a surgical end effector comprising an attachment portion. The robotic system further comprises an extraction system comprising a rotary extractor. The rotary extractor is configured to release the spent end effector component from the attachment portion of the surgical end effector when the spent end effector component in the surgical end effector is moved into engagement with the rotary extractor as the rotary extractor is rotated.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: August 28, 2018
    Assignee: Ethicon LLC
    Inventors: Frederick E. Shelton, IV, Jerome R. Morgan
  • Patent number: 10052163
    Abstract: The present disclosure relates to system(s) and method(s) for assisting a surgeon to operate a surgical device. The system is configured to receive real-time spatial data corresponding to a set of movable arms of a surgical device. In one embodiment, each tag may be enabled to capture the real-time spatial data by a set of sensors deployed on each tag with precise coordinate markings. Further, the system receive reference spatial data corresponding to each of the set of movable arms pertaining to the surgical device. The system is configured to compare the real-time spatial data with the reference spatial data to generate a matching score corresponding to each movable arm. The system is configured to identify one or more movable arms, from the set of movable arms with a matching score greater than a predefined threshold score and generate an alert corresponding to the one or more movable arms.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 21, 2018
    Inventor: Dorairaj Balusamy
  • Patent number: 10031493
    Abstract: The invention relates to an actuator apparatus (1) for generating the motion of a tool, in particular for the work on biological cell material, which provides at least one electrically controlled actuator element (3), a motion section (3a), at which a tool can be arranged and which is linked to the at least one actuator element, an electrical control device (11) for controlling the at least one actuator element, an electrical measurement device (12), which is configured to perform a measuring method for measuring at least one electrical capacitance quantity of the at least one actuator element, wherein the capacitance quantity is usable to provide information on the status of the actuator apparatus. Further, a corresponding method for obtaining and utilizing said information on the actuator apparatus is provided.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: July 24, 2018
    Inventors: Andreas Schirr, Andreas Graff
  • Patent number: 9849585
    Abstract: A robotic arm for flexible operation in three dimensional space is provided. The robotic arm is divided into several arm parts with multiple joints to move the robot arm in three-dimensional space. The length and angle of the different arm parts are adjustable. The functioning of arm parts is controlled by one or more motors. The motors are configured to control a change in length and angle of the arm parts. Based on usage, a motor is used to change the length and two, four, or six motors or even more motors are used to change the angle and adjust an access to the target. The robot is assembled by varying the number of attachable arm parts depending on the direction of movement and the degree or direction of rotation.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: December 26, 2017
    Inventor: Ali Sanatkar
  • Patent number: 9827061
    Abstract: A command interpreter is in communication with a wireless controller. The command interpreter is configured to identify a reference location of the wireless controller, identify a second location of the wireless controller, and determine, based on the reference location and the second location, a sequence of instrument commands configured to adjust positioning of the instrument device.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: November 28, 2017
    Assignee: Hansen Medical, Inc.
    Inventors: Kamini Balaji, Sean P. Walker, Serena H. Wong, June Park, Richard Henderson
  • Patent number: 9694501
    Abstract: Provided is a parallel link robot which has increased rigidity and which can be reduced in size. The parallel link robot includes: a base (1); a movable portion (2); a plurality of link portions (5) connecting the base (1) and the movable portion (2); and a plurality of actuators (6) for driving the plurality of link portions (5), wherein each of the plurality of actuators (6) is a linear actuator (6) supported on the base (1) to be rotatable about a predetermined axis (A1) and has a main body portion (8) and a shaft portion (7) for linearly moving relative to the main body portion (8), and each of the plurality of link portions (5) has a driving link (3) supported on the base (1) to be rotatable about a predetermined axis (A2) and connected to the linear actuator (6) and a driven link (4) connecting the driving link (3) and the movable portion (2).
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: July 4, 2017
    Assignee: THK CO., LTD.
    Inventor: Masaki Nagatsuka
  • Patent number: 9629683
    Abstract: Provided is an operation input device including a base member; a grip that is gripped by an operator and that is moved relative to the base member; a coupling portion that couples the grip to the base portion in a pivotable manner; and a scaling-ratio changing mechanism that changes an amount by which the grip is moved with respect to a pivoting angle of the coupling portion, and an object thereof is to enable switching operation between a coarse movement and a fine movement by using the same operation.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: April 25, 2017
    Assignee: OLYMPUS CORPORATION
    Inventor: Izumi Hatta
  • Patent number: 9586556
    Abstract: Adjusting device for a front lid, with an actuator for raising the rear edge of the front lid, wherein the actuator has a first linear drive which enables a substantially vertical movement of the front lid and a second linear drive which enables a substantially horizontal movement of the front lid.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: March 7, 2017
    Assignee: AUDI AG
    Inventors: Peter Kugler, Wolfgang Dorfner, Harald Sternecker, Bernhard-Konrad Pfaller, Istvan Virag
  • Patent number: 9561595
    Abstract: An example device may include a rounded outer incline ramp and a rounded inner incline ramp surrounding a central axis. The rounded inner incline ramp and the rounded outer incline ramp may be inversely aligned relative to the central axis. The device may also include a piston carrier oriented in a direction parallel to the central axis. The piston carrier may include a first piston including a first roller positioned on the two ramps at a first point, where the first piston is configured to act on the two ramps in a direction parallel to the central axis. The piston carrier may also include a second piston including a second roller positioned on the two ramps at a second point opposite the first point, where the second piston is configured to act on the two ramps in a direction parallel to the central axis.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: February 7, 2017
    Assignee: Google Inc.
    Inventor: Brian Dellon
  • Patent number: 9400971
    Abstract: In some examples, a reader system is provided for managing inventory items in an inventory system. The reader system may be configured to read tags associated with items stowed in an inventory holder. The inventory holder may be detachably coupled to a mobile drive unit. The mobile drive unit may move the inventory holder to a first position near an antenna of the reader system and the tags may begin to be read. While reading or at other times in the reading process, the mobile drive unit may move the inventory holder relative to the antenna. The identified tags may be compared to a manifest list of items expected to be stowed in the inventory holder.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: July 26, 2016
    Assignee: Amazon Technologies, Inc.
    Inventors: Ryan Scott Russell, Thomas Matthew Ryle, Wesley Scott Lauka, Jonathan David Phillips, James Hollis Wood
  • Patent number: 9358646
    Abstract: A supporting structure for positioning manipulating arms that may be fitted with tools. The manipulating arms are unblocked for their relocation and/or for relocation of tools or parts held by the manipulating arms. Relocation of the manipulating arms into a new position is by means of a robot. Once relocated, the manipulating arms are again blocked. A supporting frame is fitted with at least one sliding guide and/or spherical joint in which each manipulating arm is movably disposed. Blocking and unblocking of the manipulating arms is achieved through the use of pneumatic or electrical power.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: June 7, 2016
    Assignee: CVUT V PRAZE, FAKULTA STROJNI
    Inventors: Michael Valasek, Martin Smrz, Petr Svatos, Pavel Kukula, Tereza Kasparkova, Milan Ruzicka, Ondrej Uher
  • Patent number: 9314934
    Abstract: An arm assembly for use in a robot to provide gravity counterbalancing of the robot arms. The arm assembly includes an arm and a drive assembly. The arm assembly includes a differential interconnecting the drive assembly with the arm link. The differential is attached to a torso-side or upper end of the arm link, and the differential is adapted to provide gravity counterbalancing for the predefined mass of the arm link. A pair of half counterweights are provided and arranged to each move in one degree of freedom and to provide two equal counterweights to the differential's two inputs such as input gears, pulleys, or the like. The drive assembly includes two motors that are grounded. In some embodiments, both the motors and the counterweights are spaced apart from the robot's shoulder, i.e., spaced apart from the differential near the robot's pelvis or low in the torso.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: April 19, 2016
    Assignee: Disney Enterprises, Inc.
    Inventor: John P. Whitney
  • Patent number: 9244523
    Abstract: A manipulator system includes a master manipulation unit that performs a manipulation input by an operator, a slave motion unit that operates in accordance with the manipulation input, an interlock control unit that analyzes the manipulation input and performs control to operate the slave motion unit, interlocking with the manipulation input, and an interlock permission input unit that is capable of being manipulated by the operator and transmits, to the interlock control unit, an interlock permission mode signal used to enter a mode in which interlock of the slave motion unit is permitted based on the manipulation input of the mater manipulation unit when the operator manipulates the interlock permission input unit.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 26, 2016
    Assignee: OLYMPUS CORPORATION
    Inventors: Ryohei Ogawa, Masaru Yanagihara
  • Patent number: 9165734
    Abstract: A microgripper (2) comprises a pair of opposed actuator devices (4, 6) connected to an electronic control unit (8). Each actuator (4, 6) includes an actuator body 10 of transparent flexible epoxy based photoresist material forming a “hot” arm (12) and a “cold” arm (14) joined together at their ends, and an electrical heating element wire (18) is embedded in the “hot” arm (12). A gripper arm (32) extends from the substrate and has a gripping portion (34) such that the gripper portions of the two gripper arms (32) face each other. When electrical current is supplied to the heating element (18), electrical heating of the “hot” arm (12) occurs, as a result of which thermal expansion of the “hot” arm (12) causes its length to become greater than that of the “cold” arm (14).
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: October 20, 2015
    Assignee: University Of Durham
    Inventors: David Wood, Belen Pilar Solano Hermosilla, Mary Herbert
  • Patent number: 9034055
    Abstract: A synergy-based human-machine interface that uses low-dimensional command signals to control a high dimensional virtual, robotic or paralyzed human hand is provided. Temporal postural synergies are extracted from angular velocities of finger joints of five healthy subjects when they perform hand movements that are similar to activities of daily living. Extracted Synergies are used in real-time brain control, where a virtual, robotic or paralyzed human hand is controlled to manipulate virtual or real world objects.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: May 19, 2015
    Assignee: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: Ramana Kumar Vinjamuri, Wei Wang, Zhi-Hong Mao, Douglas John Weber
  • Publication number: 20150016923
    Abstract: An exoskeleton assembly having an upper body support assembly pivotally connected to a lower body support assembly. A caliper assembly is connected to the lower and upper body support assemblies and includes a load arm attached to a differential strut. The caliper assembly has links pivotally attached to the upper and lower body assemblies. Pistons attached to the load arm substantially maintain a mounting component in an upright position.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 15, 2015
    Inventor: Garrett W. Brown
  • Patent number: 8924013
    Abstract: A path planning system for bringing state of an object into a target state includes a search tree production unit for producing in advance, in a state space with said target state defined as a root, a search tree having a branch at each one of a plurality of sections of the state space, said state space being divided into the plurality of sections in advance. The system also includes a search tree memory unit for storing the search tree, and a path generation unit for determining, a route on the search tree from the branch corresponding to the current state to the root. The path planning/control system further includes a path control unit for controlling the path of the object to bring the state of the object into the target state in accordance with the route on the search tree determined by the path planning system.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Chyon Hae Kim
  • Publication number: 20140330431
    Abstract: A joint torque augmentation system includes linkage assembly configured to couple to a user. Linkage assembly includes a unidirectional link and a device joint. The linkage assembly is worn by a user or is configured to couple to footwear. An actuator is coupled to the linkage assembly to provide a torque at a joint of the user. A sensor is coupled to the user to measure a position of the user. A control system is coupled to the sensor and actuator. A phase of gait for the user is determined by the control system based on the position measured by the sensor. The actuator produces a tension force on the linkage assembly during a first phase of gait. A compliant element is coupled between the actuator and linkage assembly. The compliant element is tuned based on a load carried by the user.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Inventors: Kevin Hollander, Nathan Cahill, Darren Kinney, Preston Clouse, Robert Holgate, Raymond Churchwell
  • Patent number: 8868231
    Abstract: In a system, one or more robotic arms are positioned adjacent a transport surface that is moving workpieces, and one or more picking elements are connected to each of the robotic arms. The picking elements have physical picking features that remove the workpieces from the transport surface and move the workpieces to another location. A controller is operatively connected to the robotic arms and the picking elements, and the controller independently controls the robotic arms and the picking elements to dynamically position the picking elements in coordination with a dynamic size, spacing, and transport speed of the workpieces being moved by the transport surface.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: October 21, 2014
    Assignee: Xerox Corporation
    Inventors: Kenneth P. Moore, Douglas K. Herrmann, Derek A. Bryl, Paul N. Richards, Richard Scarlata
  • Patent number: 8770905
    Abstract: The anthropomorphic force-reflective master arm is a light, anthropomorphic, back-drivable, six degree of freedom (DOF) master arm designed to control the motion of a remote slave device having arbitrary structure. Three of the link members are rotationally coupled to each other to form a handle, such that axes of rotation of each of the handle link members intersects at the user's hand position. The kinematics of the master arm is simplified to two independent sub-systems, which are the hand position and hand orientation.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: July 8, 2014
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulazia City for Science and Technology
    Inventors: Mayez Al-Mouhamed, Nesar Merah
  • Patent number: 8668702
    Abstract: A minimal access tool includes a frame arranged to be attached to an arm of a user, a tool shaft having a proximal end and a distal end, where the tool shaft proximal end is connected to the frame. The tool further includes an input joint having a first end connected to the frame and a second end arranged to receive user input, the input joint including a virtual center-of-rotation (VC) mechanism which provides a center of rotation that generally coincides with a wrist joint of the user. An output joint is connected to the tool shaft distal end, where the output joint is coupled to the input joint via a mechanical transmission connected therebetween to correlate motion of the input joint to motion of the output joint.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: March 11, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Shorya Awtar, Jens Nielsen, Tristan Trutna, Andrew Mansfield, Rosa Abani, James Geiger, Patrick Quigley
  • Patent number: 8644986
    Abstract: A control device that controls grip of an object is disclosed. The control device includes: detecting means for detecting a slip of the object and outputting a slip detection value; change-value calculating means for calculating, on the basis of the slip detection value, a change value for changing a command value, which sets gripping force for the object, to magnitude for resting the object; suppression-value calculating means for calculating, on the basis of the slip detection value, a suppression value for suppressing the command value to necessary minimum magnitude for resting the object; and setting means for setting the magnitude of the command value on the basis of the change value and the suppression value.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: February 4, 2014
    Assignee: Sony Corporation
    Inventors: Toshimitsu Tsuboi, Takeo Kishida, Tetsuharu Fukushima
  • Patent number: 8573077
    Abstract: A method for inspecting a wafer and a system. The system includes: a chuck; and a robot that includes a movable element connected to a detachable adaptor selected from a group of diced wafer detachable adaptors and non-diced wafer detachable adaptors; wherein a diced wafer detachable adaptor is shaped such to partially surround the diced wafer and comprises at least one vacuum groove adapted to apply vacuum on a tape that supports the diced wafer; and wherein the robot is adapted to fetch the wafer from a cassette and to place the wafer on the chuck.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: November 5, 2013
    Assignee: Camtek Ltd.
    Inventors: Itzik Nisany, Amir Gilead, Michael Vainer, Valery Nuzni
  • Patent number: 8392023
    Abstract: A robotic system includes a robot for moving a payload in response to a calculated input force. Sensors in respective sensor housings are connected to a handle, each sensor including a light emitter and receiver. The sensors measure a light beam received by a respective receiver. A controller calculates the calculated input force using received light. Each sensor housing modifies an interruption of the light beam in a sensor when the actual input force is applied, and the controller controls the robot using the calculated input force. A method of controlling the robot includes emitting the light beam, flexing a portion of the sensor housing(s) using the actual input force to interrupt the light beam, and using a host machine to calculate the calculated input force as a function of the portion of the light beam received by the light receiver. The robot is controlled using the calculated input force.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: March 5, 2013
    Assignees: GM Global Technology Operations LLC, Universite Laval
    Inventors: Vincent Duchaine, Noemie Paradis, Thierry Laliberte, Boris Mayer-St-Onge, Clement Gosselin, Dalong Gao
  • Publication number: 20120328395
    Abstract: A teleoperated robotic system that includes master control arms, slave arms, and a mobile platform. In use, a user manipulates the master control arms to control movement of the slave arms. The teleoperated robotic system can include two master control arms and two slave arms. The master control arms and the slave arms can be mounted on the platform. The platform can provide support for the master control arms and for a teleoperator, or user, of the robotic system. Thus, a mobile platform can allow the robotic system to be moved from place to place to locate the slave arms in a position for use. Additionally, the user can be positioned on the platform, such that the user can see and hear, directly, the slave arms and the workspace in which the slave arms operate.
    Type: Application
    Filed: December 20, 2011
    Publication date: December 27, 2012
    Inventors: Stephen C. Jacobsen, Fraser M. Smith, John McCullough, Glenn Colvin, JR., Wayco Scroggin, Marc X. Olivier
  • Publication number: 20120294696
    Abstract: An interface (101) for converting human control input gestures to telematic control signals includes a plurality of articulating arms (107, 108, 109) each mounted at a base end (113, 115, 117) to an interface base and coupled at an opposing end to a housing (106). The articulating arms are operable to permit linear translational movement of the housing in three orthogonal directions. At least one sensor (116) of a first kind is provided for measuring the linear translational movement. A pivot member (201) is disposed in the housing and is arranged to pivot about a single pivot point. A grip (102) is provided and is attached to the pivot member so that a user upon grasping the grip can cause the pivot to rotate within the housing. A button (118) is provided to switch between at least two modes, wherein when in a first mode control signals are used to control a vehicle base (502), and when in the second mode control signals are used to control a robotic arm (504) coupled to the vehicle base (502).
    Type: Application
    Filed: May 20, 2011
    Publication date: November 22, 2012
    Applicant: HARRIS CORPORATION
    Inventors: Matthew D. Summer, Paul M. Bosscher, Loran J. Wilkinson, William S. Bowman, John B. Rust
  • Publication number: 20120237319
    Abstract: An operator controllable robotic device is disclosed. The robotic device comprises a support member, an upper robotic arm, a lower robotic arm, and a control arm. The upper robotic arm is coupled to the support member and has rotational movement in at least one degree of freedom relative to the support member. The lower robotic arm is coupled to the upper robotic arm and has rotational movement in at least one degree of freedom relative to the upper robotic arm. The control arm allows an operator to control the robotic device. The control arm is coupled to the upper robotic arm and has rotational movement in at least one degree of freedom relative to the upper robotic arm. The control arm allows a movement of the operator to control a movement of at least one of the upper robotic arm and the lower robotic arm.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Inventors: Stephen C. Jacobsen, Fraser M. Smith, John McCullough, Marc X. Olivier, Glenn Colvin, Wayco Scroggin
  • Patent number: 8226072
    Abstract: If the rotation angle in a rotation direction allowed by a joint portion detected by the angle sensor is no more than a predetermined lower limit or no less than a predetermined upper limit, the controller maintains the released state of the brake mechanism so that the rotation of the workpiece in the direction is not restricted.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: July 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hideyuki Murayama
  • Patent number: 8170711
    Abstract: A system for transporting inventory items includes an inventory holder capable of storing inventory items and a mobile drive unit. The mobile drive unit is capable of moving to a first point with the inventory holder at least one of coupled to and supported by the mobile drive unit. The mobile drive unit is additionally capable of determining a location of the inventory holder and calculating a difference between the location of the inventory holder and the first point. The mobile drive unit is then capable of determining whether the difference is greater than a predetermined tolerance. In response to determining that the difference is greater than the predetermined tolerance, the mobile drive unit is also capable of moving to a second point based on the location of the inventory holder, docking with the inventory holder, and moving the mobile drive unit and the inventory holder to the first point.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: May 1, 2012
    Assignee: Kiva Systems, Inc.
    Inventors: Raffaello D'Andrea, Peter K. Mansfield, Michael C. Mountz, Dennis Polic, Patrick R. Dingle
  • Patent number: 8160743
    Abstract: An anthropomorphic medical robot arm includes a base end, a first arm element, a base joint coupling the base end to the first arm element, a second arm element, a middle joint coupling the second arm element to the first arm element, a distal functional end, a distal joint coupling the distal functional end to the second arm element, and at least one selectively operable movement inhibitor operable on the base joint, middle joint and/or distal joint so as to restrict the functionally possible range of movement of the robot arm to the range of movement of a human arm.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: April 17, 2012
    Assignee: Brainlab AG
    Inventors: Rainer Birkenbach, Andreas Hartlep, Richard Wohlgemuth, Michael Bertram, Alin Albu-Schäffer, Markus Grebenstein, Ulrich Hagn, Klaus Jöhl, Mathias Nickl, Tobias Ortmaier, Franz Hacker, Rainer Konietschke, Stefan Jörg
  • Publication number: 20110164949
    Abstract: A compact exoskeleton arm support device compensates for gravity. The compact exoskeleton arm support device compensating for gravity may include at least five joints. Among the at least five joints, two joints may be driven by actuators, and the remaining joints may be driven by user force. The compact exoskeleton arm support device compensating for gravity effectively uses the actuators, thereby increasing operating efficiency and reducing production costs.
    Type: Application
    Filed: December 28, 2010
    Publication date: July 7, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong Hun KIM, Young Bo Shim, Soo Sang Yang, Yong Jae Kim, Kwang Jun Kim
  • Publication number: 20110129320
    Abstract: A robotic system includes a robot for moving a payload in response to a calculated input force. Sensors in respective sensor housings are connected to a handle, each sensor including a light emitter and receiver. The sensors measure a light beam received by a respective receiver. A controller calculates the calculated input force using received light. Each sensor housing modifies an interruption of the light beam in a sensor when the actual input force is applied, and the controller controls the robot using the calculated input force. A method of controlling the robot includes emitting the light beam, flexing a portion of the sensor housing(s) using the actual input force to interrupt the light beam, and using a host machine to calculate the calculated input force as a function of the portion of the light beam received by the light receiver. The robot is controlled using the calculated input force.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Vincent Duchaine, Noemie Paradis, Thierry Laliberte, Boris Mayer-St-Onge, Clement Gosselin, Dalong Gao
  • Patent number: 7865266
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 4, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Patent number: 7765031
    Abstract: In a robot, a first determining unit determines whether there is an interference region in which a first occupation region and a second occupation region are at least partially overlapped with each other. A second determining determines whether a second movable part of another robot is at least partially located in the interference region based on an actual position of the second movable part. A stopping unit begins stopping, at a predetermined timing, movement of the first movable part if it is determined that there is the interference region, and that the second movable part is at least partially located in the interference region. The predetermined timing is determined based on a positional relationship between an actual position of the first movable part and the interference region.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 27, 2010
    Assignee: Denso Wave Incorporated
    Inventor: Kenji Nagamatsu
  • Patent number: 7757028
    Abstract: Methods, systems, and computer program products for transmitting first-priority data and second-priority data. The first-priority data and second-priority data are stored in separate data buffers, and the first-priority data is transmitted preferentially over the second-priority data.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: July 13, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Michael B Druke, Philip L Graves, Theodore C Walker
  • Publication number: 20100158641
    Abstract: A manipulator system having a slave tong with an input, a master handle having two outputs, and a planetary gear assembly having a sun gear, a planet gear, and a ring gear and is configured to receive the two outputs of the master handle and provide a single input to the slave tong.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Applicant: DELAWARE CAPITAL FORMATION, INC.
    Inventor: Michael J. Harper
  • Patent number: 7672755
    Abstract: There is provided a library device which can be restored to working order quickly and reliably even when a control board containing information necessary for the operation of the library device is replaced. The library device includes a cell array which consists of an array of multiple cells each of which contains one cartridge containing a magnetic tape, magnetic tape drives in which the cartridges are removably mounted and which access the storage medium contained in the cartridges, a robot which transfers the cartridges between the cell array and the magnetic tape drives, a main control board which controls the operation of the entire library device, a barcode label which represents ID information for identification of the library device, and cell flags which are marks used to recognize the locations of the cells composing the cell array.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: March 2, 2010
    Assignee: Fujitsu Limited
    Inventor: Shinobu Sasaki
  • Patent number: 7577517
    Abstract: Each of guided vehicles has an operating condition memory unit for storing the total travel distance, the travel time, the number of travels, the number of errors at a stop position, and the number of article transfers. These values are evaluated by an evaluation unit 53, and the machine difference is measured again for each of the guided vehicles.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: August 18, 2009
    Assignee: Murata Kikai Kabushiki Kaisha
    Inventor: Atsuo Nagasawa
  • Patent number: 7558647
    Abstract: In a robot arm controlling device, a mechanical impedance set value of the arm is set by an object property-concordant impedance setting device based on information of an object property database in which information associated with properties of an object being gripped by the arm is recorded, and a mechanical impedance value of the arm is controlled to the set mechanical impedance set value by an impedance controlling device.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 7, 2009
    Assignee: Panasonic Corporation
    Inventor: Yasunao Okazaki
  • Publication number: 20090060684
    Abstract: A robot according to an embodiment of the present invention includes: a robot body; a first shoulder joint attached to the robot body, and rotatable with respect to the robot body; a support unit whose proximal end is attached to the first shoulder joint, and which is rotatable with respect to the robot body together with the first shoulder joint; a second shoulder joint attached to a distal end of the support unit, and rotatable with respect to the support unit; and an arm unit whose proximal end is attached to the second shoulder joint, and which is rotatable with respect to the support unit together with the second shoulder joint.
    Type: Application
    Filed: March 6, 2008
    Publication date: March 5, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hideichi Nakamoto
  • Publication number: 20090035097
    Abstract: A remotely operable machine (1) comprises a manipulator arm (17), a machine body (3), and a support (5). The support is disposed between the machine body and the manipulator arm for coupling the arm to the body. The support is movable from one position (D) to another (E) relative to said body so as to provide for variation or extension of the reach of the manipulator arm. The support may be provided by a linkage having an attachment (15) for pivotally supporting the arm, the attachment being pivotally coupled to an extension arm (19) at one end thereof, the extension arm being pivotally coupled to the machine body at its other end. Alternatively, a track assembly for facilitating movement of the support on the machine body may be provided. The track assembly or linkage are configured to allow deployment of the support on the ground adjacent to said body.
    Type: Application
    Filed: November 10, 2006
    Publication date: February 5, 2009
    Inventor: Elgan Williams Loane
  • Publication number: 20090028669
    Abstract: The present invention discloses apparatuses and method for configuring a compartmentable equipment to accommodate emergency responses. An exemplary equipment comprises a plurality of removable compartments for storing workpieces so that in emergency events, such as power failure or equipment failure, the workpieces can be removed from the equipment for continuing processing without disrupting the flow of the fabrication facility. The compartmentable equipment can comprise emergency access ports, including mating interface to a portable workpiece removal equipment to allow accessing the individual compartments without compromising the quality, defects and yield of the workpieces stored in the stocker.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventor: Lutz Rebstock
  • Publication number: 20090016851
    Abstract: A robot hand apparatus (1) includes a base (2); a motor (M); a first-link (10) supported by the base (2) while allowing the rotation around a first axis (S1), which is in parallel to an actuation axis (G) of the motor (M) and is positioned apart from the actuation axis (G), the first-link (10) has a first guide path (11b) movably supporting a control axis (42); a second link (20) which connects with the actuation axis (G) and supports the control axis (42), and moves the control axis (42) within the first guide path (11b) in accordance with the rotation of the actuation axis (G); and a finger link (F1) supported by the first link (10) while allowing the rotation around a second axis; and the finger link (F1) directly or indirectly links with the control axis (42) and is rotated by the actuation of the control axis (42).
    Type: Application
    Filed: September 29, 2005
    Publication date: January 15, 2009
    Inventors: Hiroshi Matsuda, Takafumi Fukushima, Kenichiro Sugiyama, Masayoshi Kokushiyou
  • Publication number: 20090016852
    Abstract: Provided is a vial conveyance device which includes, in order to hold and release a vial (2), at least two arms (26) that can be opened and closed, an urging member (31) that urges the arms (26) in an opening direction, a frame body (27) for opening and closing the arms (26), and a frame body stopper (26a) that stops the frame body (27) in a state in which the arms (26) are closed.
    Type: Application
    Filed: February 21, 2006
    Publication date: January 15, 2009
    Applicant: YUYAMA MFG. CO., LTD.
    Inventor: Shoji Yuyama
  • Publication number: 20090003973
    Abstract: A wafer transfer robot, having a robot hand which transfers a wafer in an improved driving manner by changing a driving force transfer device of the robot hand, is disclosed. The wafer transfer robot having at least robot hand to transfer a wafer includes an arm frame supported on an elevating shaft to vertically move the robot hand, wherein the robot hand includes a first robot arm rotatably supported on the arm frame, a second robot arm rotatably supported at an end of the first robot arm, a first driving device which rotates the first robot arm to rotate the robot hand, a second driving device which rotates the second robot arm to extend and contract the robot hand in a radial direction with the first driving device, and a controller which operates the first driving device and stops the second driving device when the robot hand is rotated, and operates both the first driving device and the second driving device at the same time when the robot hand is extended and contracted in a radial direction.
    Type: Application
    Filed: March 27, 2008
    Publication date: January 1, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong Won Choi, Kyung Won Kang
  • Patent number: 7457698
    Abstract: A coordinated joint control system for controlling a coordinated joint motion system, e.g an articulated arm of a hydraulic excavator blends automation of routine tasks with real-time human supervisory trajectory correction and selection. One embodiment employs a differential control architecture utilizing an inverse Jacobian. Modeling of the desired trajectory of the end effector in system space can be avoided. The invention includes image generation and matching systems.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: November 25, 2008
    Assignee: The Board of Regents of the University and Community College System on Behalf of the University of Nevada, Reno
    Inventor: George Danko