Including Means For Handling Portion Separated From Working Fluid Patents (Class 415/169.1)
-
Patent number: 11781504Abstract: A bleed plenum for a compressor section associated with a gas turbine engine includes a plenum chamber having a first wall spaced apart from a second wall to define a plenum slot configured to receive a flow of fluid from the compressor section. A slot angle of the plenum slot is defined between a centerline of the plenum slot and a longitudinal axis of the gas turbine engine and varies about a circumference of the bleed plenum. The second wall includes a bullnose having a wedge angle defined between the second wall and a surface associated with the compressor section. The bullnose faces into the flow of fluid through the plenum slot, and the wedge angle of the bullnose varies about the circumference of the bleed plenum.Type: GrantFiled: October 19, 2021Date of Patent: October 10, 2023Assignee: HONEYWELL INTERNATIONAL INC.Inventor: Masayoshi Shimo
-
Patent number: 11643938Abstract: The invention relates to a bleed air extraction device for a turbomachine, which has: an axial compressor, formed in a flow path and having at least one compressor stage, which comprises a rotor and a stator, and a bleed air duct, which is provided and designed to guide a bleed air flow branched off from the flow path of the axial compressor. In this case, the bleed air duct comprises an inlet opening, which is formed downstream of a stator of the axial compressor in the radially outer flow path boundary, an axially forward wall adjoining the inlet opening, and an axially rearward wall adjoining the inlet opening. Guide means are provided, which are provided and designed for the purpose of guiding at least a portion of the bleed air flow branched off from the flow path in the direction of the axially forward wall of the bleed air duct.Type: GrantFiled: July 14, 2022Date of Patent: May 9, 2023Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KGInventor: Bernd Becker
-
Patent number: 11569642Abstract: An explosion-proof housing 10 having at least one pressure relief body 15 arranged in a pressure compensation vent opening 14 of one of the housing parts 12, 13. In order to secure the pressure relief body 15 to the housing part 12, a thickened region 20 of the housing part 12 engages over an edge zone 24 of the pressure relief body 15 along its entire peripheral surface 23 on both of its flat sides 16, 17. A resulting engaging depth Si, which is measured parallel to the flat sides 16, 17, is preferably greater than a thickness D1, D2 of the part of the thickened region 20 engaging over the edge zone 24. The pressure relief element 15 consists of sintered wire mesh. This connection is pressure-resistant and stable over a wide temperature range.Type: GrantFiled: May 18, 2018Date of Patent: January 31, 2023Assignee: R. Stahl Schaltgeräte GmbHInventors: Thorsten Arnhold, Clife Hermanowski
-
Patent number: 11377939Abstract: An electrical submersible well pump has upper and lower diffusers non-rotatably mounted in a housing. A rotatable impeller between the upper and lower diffusers has a bottom shroud. An outward-facing wall is on an upper end of the lower diffuser. A lower end of the upper diffuser has an inward-facing wall that fits closely around the outward-facing wall of the lower diffuser. A key mounted between the inward-facing and outward-facing walls prevents relative rotation between the diffusers. The key extends axially above an upper end of the neck and radially inward from the inward-facing wall of the upper diffuser into close proximity to the bottom shroud, creating a sand dam.Type: GrantFiled: March 22, 2021Date of Patent: July 5, 2022Assignee: BAKER HUGHES OILFIELD OPERATIONS, LLCInventors: Zheng Ye, Mark Paquette
-
Patent number: 11371469Abstract: A fuel pump for a liquid fuel water injection system of a motor vehicle is provided. The fuel pump includes a low-pressure pump that mixes water from a water tank of the motor vehicle with liquid fuel from a fuel tank of the motor vehicle to a liquid fuel water emulsion and provides the liquid fuel water emulsion at a low pressure. A high-pressure pump is in fluid communication with the low-pressure pump and compresses the liquid fuel water emulsion from the low pressure to a high pressure for injecting the liquid fuel water emulsion into an internal combustion engine of the motor vehicle via an injection rail of the motor vehicle. A pump drive drives the low-pressure pump and the high-pressure pump synchronously with a pump frequency independently from an engine speed of the internal combustion engine of the motor vehicle.Type: GrantFiled: July 17, 2020Date of Patent: June 28, 2022Assignees: Hyundai Motor Company, Kia Motors CorporationInventors: Stephan Revidat, Michael Winkler
-
Patent number: 11251418Abstract: Provided is a method for manufacturing a slurry for a positive electrode of a nonaqueous electrolyte secondary battery containing an alkali metal complex oxide, the method making it possible to reliably deaerate surplus carbonic acid gas after an alkali component of a slurry containing the alkali metal complex oxide is neutralized within a short period of time. The method for manufacturing a slurry for a positive electrode of a nonaqueous electrolyte secondary battery includes a step of manufacturing an electrode slurry including a step of performing a neutralization treatment on an alkali component in the slurry by using inorganic carbon dissolved in a solvent of the slurry and a step of deaerating the inorganic carbon in the slurry as carbonic acid gas by causing cavitation.Type: GrantFiled: February 20, 2018Date of Patent: February 15, 2022Assignees: NIHON SPINDLE MANUFACTURING CO., LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGYInventors: Taichi Sakamoto, Takashi Mukai, Yuta Ikeuchi, Naoto Yamashita, Masahiro Yanagida, Keiichi Asami, Keiichiro Onishi
-
Patent number: 11028816Abstract: A gravitational vortex water turbine assembly is described wherein the water turbine is disposed below the bottom of the basin in which the vortex is induced. Preferably, the basin comprises a spiral-shaped side wall and the rotor blades of the turbine rotor are dimensioned such that they absorb the tangential, axial and radial component of the water flow of the vortex.Type: GrantFiled: December 8, 2016Date of Patent: June 8, 2021Assignee: TURBULENT BVBAInventor: Geert Slachmuylders
-
Patent number: 11028683Abstract: A downhole pump gas eliminating seating nipple system for preventing and eliminating the collection of gas such as a foam barrier during operations of a downhole pump assembly. The downhole pump gas eliminating seating nipple system generally includes a seating nipple including an upper end, a lower end, and a channel extending between the upper and lower ends. The channel includes a beveled edge below the upper end and a locking lip above the lower end. A plurality of upper gas eliminators are positioned below the beveled edge. A plurality of lower gas eliminators are positioned below the locking lip. A plurality of central gas eliminators are positioned between the upper and lower gas eliminators. Each of the gas eliminators is angled upwardly from inlet to outlet so as to prevent accumulation of gasses within or below the seating nipple, which can lead to gas locking and/or gas interference.Type: GrantFiled: December 3, 2020Date of Patent: June 8, 2021Assignee: Stoneview Solutions LLCInventor: Ronald D. Evitt
-
Patent number: 10704565Abstract: A side-channel pump having a pump housing in which an operating chamber which is provided with a side channel and a motor are arranged, and having an impeller in the operating chamber which rotates with a shaft which is driven by the motor. A cooling circuit extends from the operating chamber to the motor and from the motor to a suction portion of the pump, wherein the cooling circuit is supplied from an operating chamber whose outlet side is connected to an outlet opening of the side-channel pump. Using the pump, gas can be drawn in without the pump becoming overheated.Type: GrantFiled: June 18, 2015Date of Patent: July 7, 2020Assignee: STERLING INDUSTRY CONSULT GMBHInventor: Heiner Kösters
-
Patent number: 10683876Abstract: A fluid moving system and apparatus for an electric submersible pump (ESP) is described. A fluid moving system includes a gas separator between an electric submersible pump and an ESP motor, the gas separator including a separation chamber including an impeller and a diffuser, the impeller including a plurality of regressively pitched main vanes interspersed between a plurality of mixer vanes, each of the plurality of main and mixer vanes extending along the hub with a positive slope and a concave top face, and a diffuser, the diffuser including blades extending along a diffuser body in a sloped direction substantially opposite the slope of the impeller main vanes, the blades having a concave top face and a regressive pitch that mirrors the pitch of the impeller main vanes, wherein the impeller vanes and diffuser blades serve to homogenize the well fluid while facilitating downstream movement.Type: GrantFiled: July 2, 2018Date of Patent: June 16, 2020Assignee: Halliburton Energy Services, Inc.Inventors: Donn J. Brown, Trevor A. Kopecky, Thomas John Gottschalk
-
Patent number: 10376857Abstract: Methods and apparatuses for controlling the size of microbubbles are provided herein. The methods include forming a microbubble in a liquid at an inlet end of a liquid microchannel, the liquid microchannel having an outlet end spaced from the inlet end and a liquid microchannel conduit extending therebetween. As the liquid is propelled along a length of the liquid microchannel, the liquid carry the microbubble, a negative pressure is applied to a first very low pressure microchannel having a first end, a second end spaced from the first end and a first very low pressure microchannel conduit extending between the first end and the second end and having a portion thereof being laterally spaced from and adjacent to a portion of the liquid microchannel conduit. The negative pressure withdraws air from the microbubble in the liquid microchannel to shrink the microbubble as the microbubble travels along the portion of the liquid microchannel conduit.Type: GrantFiled: April 3, 2018Date of Patent: August 13, 2019Inventors: Scott Tsai, Raffi Karshafian, Michael Kolios, Byeong-Ui Moon, Vaskar Gnyawali
-
Patent number: 10302093Abstract: The Invention provides a spiral flow constant pressure pump, comprising a pump body, a pump casing and an impeller; the pressure drop between the end face of pump rear cover and the rear end face of impeller auxiliary blade is used for providing wash water to sealing device; a hole is opened in the high pressure area of the end face of pump rear cover; the position of the hole for entering the seal cavity is close to the sealing device, leading expectant high pressure water into the seal cavity; a hole is opened in the low pressure area of the end face of pump rear cover; the position of the hole for exiting the seal cavity is far away from the sealing device; the expectant high pressure water that enters the seal cavity will flow back to low pressure area through the drainage hole along flow direction after washing the sealing device; the pump recycles a part of energy, improves the hydraulic efficiency, decreases the turbulent loss and takes way the gas might exist in the seal cavity; the extended orifice sType: GrantFiled: July 15, 2014Date of Patent: May 28, 2019Assignee: JOHNSON PRECISION ENGINEERING (SUZHOU) CO., LTD.Inventors: Qiang Wang, Zhiming Zhang, Cheng Wang
-
Patent number: 10247185Abstract: A fluid pump includes a housing; an outlet; an inlet plate within the housing and having an inlet; an outlet plate disposed within the housing and having an outlet plate outlet passage; an electric motor which rotates about an axis; a pumping arrangement rotationally coupled to the electric motor such that rotation of the pumping arrangement causes fluid to be pumped from the inlet to the outlet plate outlet passage and through the outlet; a diverter plate between the outlet plate outlet passage and the electric motor and having a diverter passage which provides fluid communication from the outlet plate outlet passage, past the electric motor, to the outlet, the diverter plate also having an imperforate wall which is axially aligned with the outlet plate outlet passage such that the imperforate wall laterally directs fluid from the outlet passage to the diverter passage.Type: GrantFiled: February 25, 2015Date of Patent: April 2, 2019Assignee: DELPHI TECHNOLOGIES IP LIMITEDInventors: Alejandro Moreno, Hector R. Mendoza
-
Patent number: 10167770Abstract: A spacer for coupling a water pump to a timing chain cover on an automotive engine includes a body having an upstanding sidewall with opposed front and rear faces. The sidewall bounds an interior chamber, and a ramp is formed to the sidewall. The ramp extends into the interior chamber from the rear face to the front face.Type: GrantFiled: March 1, 2018Date of Patent: January 1, 2019Inventor: Christopher W. Ames
-
Patent number: 10151320Abstract: A compressor includes a rotor; a rotor casing surrounding the rotor from an outer circumferential side of the rotor and defining a main flow passage of a fluid between the rotor and the rotor casing; an extraction-chamber casing at an outer circumferential side of the rotor casing, and defining an extraction chamber in communication with the main flow passage between the rotor casing and the extraction-chamber casing; and an extraction nozzle connected to the extraction-chamber casing from an outer circumferential side of the extraction-chamber casing and configured to guide the fluid inside the extraction chamber to an outside of the compressor. A gap in a radial direction between the extraction-chamber casing and the rotor casing is larger at a first side of the extraction nozzle in a rearward rotation direction of the rotor than at a second side of the extraction nozzle in a forward rotation direction of the rotor.Type: GrantFiled: February 12, 2014Date of Patent: December 11, 2018Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.Inventor: Thomas Walker
-
Patent number: 9784275Abstract: The invention relates to a centrifugal pump for conveying a gaseous suspension, in particular a fiber pulp suspension, which has a pump impeller (12) with at least one opening (15) in the base plate and ribs (16) on the rear side, where a separator unit (17) is provided consisting of a separator housing (25) with a stationary disc (18) and a disc (22) that rotates together with the pump shaft (21), where the separator unit (17) is arranged in the pump housing adjoining the pump impeller (12) on its rear side when viewing the pump impeller (12) in axial direction and where the separator housing (25) has a gas collecting chamber (31) with a gas discharge pipe (28). It is characterized by the disc (22) that rotates together with the pump shaft (21) having a closed surface (23) without openings. As a result, pulp losses are reduced and the centrifugal pump achieves better stability when pumping a gaseous suspension, particularly a fiber pulp suspension.Type: GrantFiled: September 23, 2011Date of Patent: October 10, 2017Assignee: ANDRITZ AGInventor: Ludwig Michal
-
Patent number: 9303647Abstract: A priming system for preventing air-locking for use on a centrifugal pump having a priming system with a two piece detachable design. This permits the upper portion of the priming system to be removed for routine maintenance. The lower portion of the priming system includes a plurality of primary stationary vanes located longitudinally in the flow path of multi-phase fluids (air and water) which permit the removal of trapped air. Additional removable secondary vanes are located in the flow path after the primary stationary vanes and prior to the intake structure of the centrifugal pump housing. Such multiple vane structure allows the centrifugal pump to pump multi-phase fluids during a wide variety of conditions without air-locking and without requiring any modifications to the centrifugal pump impeller.Type: GrantFiled: August 15, 2012Date of Patent: April 5, 2016Inventor: Dale A. Conway
-
Patent number: 9091261Abstract: Embodiments of the invention provide a pump including an inlet port, an outlet port, a pumping chamber, and a porting system. The porting system includes an inlet tube including a trap in which a first volume of fluid can be collected. The porting system includes a reservoir with a first chamber and a second chamber separated by a partial port wall. The second chamber receives fluid directed over the partial port wall from the pumping chamber. The reservoir collects a second volume of fluid substantially equal to the first volume of fluid. The first volume of fluid and second volume of fluid provide enough fluid trapped inside the pump to allow the pump to temporarily operate when substantially no fluid is flowing into the inlet port.Type: GrantFiled: August 9, 2010Date of Patent: July 28, 2015Assignee: Pentair Flow Technologies, LLCInventors: Patrick A. Bear, Matthew A. Cottrell
-
Patent number: 9086191Abstract: A method for reliably avoiding backflow in the transport of a liquid under pressure via a transport pipe (1), in which a shut-off device (2) with differential pressure switching is arranged, into a container (3) which is under pressure and which comprises the liquid to be transported and/or another liquid is proposed, wherein a pressure accumulator (4) which is filled with the liquid to be transported up to a certain level and above the liquid level, in direct contact with the liquid to be transported, with an inert gas is arranged in the transport pipe (1) upstream from the shut-off device (2) in the transport direction, the inert gas being provided in the pressure accumulator (4) under an excess pressure and in an amount relative to the container (3) to be filled which are designed so that, in the case of a drop in the pressure in the transport pipe (1), the inert gas ensures a positive pressure difference in the transport pipe (1) to the container (3) over a period which is at least as long as the reactionType: GrantFiled: June 16, 2009Date of Patent: July 21, 2015Assignee: BASF SEInventors: Franz Borgel, Alfred Krause, Mirko Kreitschmann, Anton Meier, Frank-Friedrich Pape, Wolfgang Reif, Michael Salla
-
Patent number: 9039356Abstract: An abrasive handling submersible pump assembly diffuser is described. An electric submersible pump assembly stage comprises a rotatable impeller, and a co-axially mounted diffuser comprising a diffuser bowl, the diffuser bowl comprising a plurality of diffuser bowl wedges having a blunted pie-shape, each of the plurality of diffuser bowl wedges protruding axially from a diffuser bowl floor into a cavity between the rotatable impeller and the co-axially mounted diffuser such that each of the plurality of diffuser bowl wedges protrudes into a path of pumped solid-laden fluid, wherein the blunted pie-shaped wedges extend radially between an inner wall and an outer wall of the diffuser bowl and a thickness of the blunted pie-shaped wedges in a circumferential direction increases towards the outer wall.Type: GrantFiled: November 21, 2014Date of Patent: May 26, 2015Assignee: Summit ESP, LLCInventors: Wesley John Nowitzki, Gregory Austin Davis, Steven Andrew Lovell, John Vanderstaay Kenner
-
Publication number: 20150132115Abstract: A gas turbine compressor including a guide vane (1), a moving vane (2), in particular downstream, and a bleed channel (3) having an upstream channel wall (3.1), which merges into an annular space (5), an axially opposite downstream channel wall (3.2) having an inlet edge (3.3), which is rounded in particular, and a bleed channel outlet, the downstream channel wall enclosing with an axis of rotation of the compressor a first angle (?) which increases in the flow direction (x).Type: ApplicationFiled: November 5, 2014Publication date: May 14, 2015Inventor: Roland WUNDERER
-
Patent number: 9028204Abstract: The centrifugal pump assembly comprises a device for separating gas from the fluid to be delivered, which is arranged on the suction side. The gas separation device is provided with an impact body (2) which at least partly is arranged in the suction-side flow path (11) of the fluid to be delivered, and on the housing side is arranged at a distance to the suction port of the pump.Type: GrantFiled: June 29, 2007Date of Patent: May 12, 2015Assignee: Grundfos Management a/sInventor: Bent Døssing
-
Patent number: 8967954Abstract: A radial turbomachine includes a radial diffuser channel with a diaphragm, a deflecting channel connecting to the radial diffuser channel downstream thereof, and a return flow channel connecting to the deflecting channel downstream thereof. The main flow direction of the radial diffuser channel runs radially from inside to outside. The main flow direction of the deflecting channel is deflected from radially outward to radially inward. The main flow direction of the return channel runs radially from outside to inside. The diaphragm comprises first, second and third outer surface sections. The first outer surface section has a convex shape for delimiting the deflecting channel. At least one consumption-gas removal channel is provided in the diaphragm so that, if the main flow in the deflecting channel comprises solid or liquid particles, a consumption gas can be discharged therefrom through the consumption-gas removal channel as low-particulate gas of a main flow.Type: GrantFiled: November 10, 2010Date of Patent: March 3, 2015Assignee: Siemens AktiengesellschaftInventors: Werner Jonen, Peter Robens
-
Patent number: 8961110Abstract: A wind turbine is disclosed, the wind turbine comprising a nacelle including at least one of a debris-generating device, an inlet for air or an outlet for air. Following this invention, the wind turbine further comprises at least one electro-static filter arranged to filter at least one of the debris coming from the debris-generating device, the air coming into the nacelle through the inlet or the air coming out of the nacelle through the outlet.Type: GrantFiled: August 26, 2009Date of Patent: February 24, 2015Assignee: Vestas Wind Systems A/SInventor: Brian Johansen
-
Patent number: 8961102Abstract: A system and method for sealing a shaft disposed for rotation within a casing, where two axially-spaced seal rings of an oil film seal extend around the shaft and define a clearance therebetween. Oil is pumped into the clearance from an oil reservoir and a portion of the oil is received in an annular port defined in the casing between an outer labyrinth seal and one of the axially-spaced seal rings. The oil mixes with a process gas to for an oil and gas mixture. A blower is in fluid communication with the annular port and circulates the oil and gas mixture to a trap where the oil is separated from the process gas and a separated process gas is returned back to the annular port.Type: GrantFiled: June 6, 2012Date of Patent: February 24, 2015Assignee: Dresser-Rand CompanyInventor: Philippe Auber
-
Patent number: 8961111Abstract: According to one aspect of the invention, a turbine airfoil includes a first cavity inside the turbine airfoil configured to receive a fluid and a second cavity inside the turbine airfoil. The turbine airfoil also includes a passage inside the turbine airfoil that provides fluid communication between the first and second cavities, wherein the passage includes a curved portion configured to separate particulates from the fluid as the fluid flows through the passage.Type: GrantFiled: January 3, 2012Date of Patent: February 24, 2015Assignee: General Electric CompanyInventors: Adebukola Oluwaseun Benson, Gary Michael Itzel, Kevin Richard Kirtley
-
Patent number: 8870994Abstract: A filter cassette for removing particles from an air stream is provided, The filter cassette has an upstream end, a downstream end, and includes a mounting frame to which a filter media is fitted. The filter has a mounting face positioned between the filter cassette's upstream and downstream ends at a first distance (Dup) from the upstream end and a second distance (Ddown) from the downstream end. The first and second distances each amount to more than 10% of an overall length of the filter cassette. The mounting face may be positioned centrally between the upstream and downstream ends, approximately in a barycenter line of the filter cassette. The filter cassette thus extends to both sides of the partition opening. Filter surface area is increased and torque induced by the filter cassette into the partition is reduced.Type: GrantFiled: March 31, 2010Date of Patent: October 28, 2014Assignee: W. L. Gore & Associates GmbHInventor: Torsten Herrmann
-
Patent number: 8864444Abstract: A cooled turbine vane for a turbine engine, that includes a blade mounted on a platform carried by a base, the blade including one or more cavities formed therein for cooling air circulation, the cavity extending along the trailing edge and being supplied with cooling air by a supply duct connecting an air intake located in a lower portion of the base and the cavity of the trailing edge by defining a bend within the base. The duct includes, on an axis substantially radial relative to the air intake a bell-shaped niche located under the platform, the niche being open at a top thereof via a dusting hole extending through the platform and being defined at a foot of the base by walls extending substantially radially from the platform to close the platform laterally.Type: GrantFiled: March 12, 2010Date of Patent: October 21, 2014Assignee: SnecmaInventors: Serge Louis Antunes, Jacques Auguste Amedee Boury, Patrice Jean-Marc Rosset
-
Publication number: 20140298823Abstract: A precooler for an aircraft engine system includes a precooler core and a precooler inlet to direct a compressor bleed flow into the precooler core to cool the compressor bleed flow. The precooler further includes a precooler outlet to direct the compressor bleed flow from the precooler to a selected component of the aircraft engine system and a precooler bleed port through which a portion of the compressor bleed flow is diverted to a secondary component of the aircraft engine system. The precooler bleed port is oriented such that flow entering the precooler bleed port must substantially reverse direction from a direction of the compressor bleed flow through the precooler.Type: ApplicationFiled: April 3, 2013Publication date: October 9, 2014Applicant: Hamilton Sundstrand CorporationInventor: Peter Bizzarro
-
Publication number: 20140286746Abstract: A gas turbine engine compressor includes a rotor defining a central axis of rotation and a plurality of blades which project into an annular compressor gas flow passage, and a shroud circumferentially surrounding the rotor and having a radially inner surface adjacent to the blade tips. Bleed holes extend through the shroud adjacent the blade tips, each of the bleed holes having an inlet end disposed in the shroud radially inner surface and an outlet end disposed in a shroud radially outer surface. Bleed air removed from the annular gas flow passage flows through the bleed holes from the inlet to the outlet ends. The outlet end of each bleed hole is located circumferentially upstream of the inlet end relative to a direction of rotational flow in the annular gas flow passage driven by a direction of rotation of the rotor.Type: ApplicationFiled: March 4, 2013Publication date: September 25, 2014Applicant: Pratt & Whitney Canada Corp.Inventor: Pratt & Whitney Canada Corp.
-
Patent number: 8764386Abstract: A submersible pump, and method of making the submersible pump, is disclosed. The pump comprises a housing, a plurality of impeller stages serially disposed in the housing from a bottom impeller stage to a top impeller stage, an impeller stage bypass hole extending through one of the diffusers and a housing bypass hole extending through the housing radially outwardly from one of the impeller stages.Type: GrantFiled: August 6, 2010Date of Patent: July 1, 2014Assignee: Franklin Electric Co., Inc.Inventor: James J. Volk
-
Patent number: 8714917Abstract: A pump having anti-airlock provisions. The pump is comprised of a volute comprised of a volute wall, and an impeller comprising back vanes on a side of the impeller that is proximate to the volute wall, with the back vanes having a length extending radially outwardly along the impeller. A bleed hole is formed in the volute wall in communication with the portion of the volute between the back vanes and the volute wall, and the exterior of the volute, such that the bleed hole is located midway along the length of the back vanes. When the pump is operating with air, liquid, or a combination of air and liquid in the volute, the bleed hole is under positive pressure with respect to the exterior of the volute. The bleed hole may be in communication with the exterior of the volute through a lateral tunnel formed in the pump.Type: GrantFiled: February 15, 2011Date of Patent: May 6, 2014Assignee: Liberty Pumps Inc.Inventors: Donald M. Pohler, Matthew S. Heinsler
-
Publication number: 20140050570Abstract: An apparatus, system and method for pumping gaseous fluid are described. The gas separator of the invention homogenizes at least a portion of produced well fluid and vents unhomogenized gas thereby improving the efficiency and decreasing the downtime of the assembly. A system for pumping gaseous fluid from an underground well comprises a gas separator, the gas separator comprising an impeller configured to homogenize at least a portion of a gas and a liquid in a pumped fluid to obtain homogenized fluid, the impeller comprising a top side open to the diffuser and a truncated vane located at a mid-pitch location between at least two untruncated vanes starting from a bottom side of the impeller, and a gas separation chamber downstream of the impeller, the gas separation chamber configured to vent an unhomogenized gas, and a centrifugal pump arranged to receive the homogenized fluid from the gas separation chamber.Type: ApplicationFiled: October 24, 2013Publication date: February 20, 2014Applicant: Summit ESP, LLCInventors: Shiv Jayaram, Freddie George Walton, David Thomas Jolly, Steven Keith Tetzlaff
-
Publication number: 20140023485Abstract: The invention relates to a centrifugal pump for conveying a gaseous suspension, in particular a fiber pulp suspension, which has a pump impeller (12) with at least one opening (15) in the base plate and ribs (16) on the rear side, where a separator unit (17) is provided consisting of a separator housing (25) with a stationary disc (18) and a disc (22) that rotates together with the pump shaft (21), where the separator unit (17) is arranged in the pump housing adjoining the pump impeller (12) on its rear side when viewing the pump impeller (12) in axial direction and where the separator housing (25) has a gas collecting chamber (31) with a gas discharge pipe (28). It is characterized by the disc (22) that rotates together with the pump shaft (21) having a closed surface (23) without openings. As a result, pulp losses are reduced and the centrifugal pump achieves better stability when pumping a gaseous suspension, particularly a fiber pulp suspension.Type: ApplicationFiled: September 23, 2011Publication date: January 23, 2014Applicant: ANDRITZ AGInventor: Ludwig Michal
-
Patent number: 8596966Abstract: A turbine stator vane with a cooling circuit that improves the cooling effectiveness of the airfoil as well as collects any dirt particles before passing the clean cooling air through the cooling circuit. The airfoil includes a 3-pass aft flowing serpentine circuit with a first leg located along the airfoil leading edge and connected to a showerhead arrangement for film cooling discharge. A cooling air supply channel is located between the first leg and the second leg of the serpentine flow circuit, and the cooling supply channel includes ribs arranged to produce a vortex flow within the cooling air that collects the dirt particles within a center of the vortex flow and deposits the dirt particles at the bottom of the channel. The vortex flow cooling air flows through impingement holes to produce impingement cooling on the backside wall of the leading edge with clean cooling air.Type: GrantFiled: March 8, 2012Date of Patent: December 3, 2013Assignee: Florida turbine Technologies, Inc.Inventor: George Liang
-
Patent number: 8591180Abstract: A steam turbine nozzle assembly having a flush aperture is disclosed. In one embodiment, the steam turbine nozzle assembly includes a diaphragm assembly comprising: an inner diaphragm ring segment; an outer diaphragm ring segment; a static nozzle blade positioned between the inner diaphragm ring segment and the outer diaphragm ring segment; and a first cavity between the static nozzle blade and one of the inner diaphragm ring segment or the outer diaphragm ring segment; wherein the one of the inner diaphragm ring segment or the outer diaphragm ring segment includes a first aperture fluidly connected with the first cavity.Type: GrantFiled: October 12, 2010Date of Patent: November 26, 2013Assignee: General Electric CompanyInventors: James Peter Anderson, Steven Sebastian Burdgick, Mark Edward Burnett, Dominick Joseph Werther
-
Patent number: 8568090Abstract: A system for removing moisture from a steam/water mixture engaging a stationary component of a steam turbine. The system includes an airfoil located within a flow path of a steam turbine. The airfoil is configured for removing moisture from a steam/water mixture traveling in the flow path. To this end, the airfoil includes a cavity in flow communication with the steam path through at least one inlet and outlet opening, near the leading and trailing edge of the airfoil, respectively. Moisture and steam are extracted from the surface through the inlet openings, the steam and water are separated in the cavity, the separated water flows towards the bottom end, and the dry steam flows through the outlet opening and returns to the steam path. The dry steam blowing out of the trailing edge reduces the size of secondary droplets, and thereby prevents erosion.Type: GrantFiled: December 7, 2009Date of Patent: October 29, 2013Assignee: General Electric CompanyInventors: Tao Guo, Jonathon E. Slepski, Kenneth M. Koza
-
Publication number: 20130280028Abstract: A thermal management system for a gas turbine engine includes a high pressure compressor rotor having a plurality of disks and a shaft; at least one forward cavity formed between a rim of at least one of the disks and the shaft and at least one aft cavity formed between a rim of at least one other of the disks and the shaft; a first flow of cooling air in the at least one forward cavity; and a second flow of cooling air in the at least one aft cavity.Type: ApplicationFiled: April 24, 2012Publication date: October 24, 2013Applicant: UNITED TECHNOLOGIES CORPORATIONInventors: Daniel Benjamin, Daniel Carminati, David S. Jang
-
Patent number: 8529195Abstract: An inducer for a casing of a gas turbine system is disclosed. The inducer includes a plurality of orifices defined in the casing, the plurality of orifices disposed in an annular array about the casing, and a plurality of cartridges, each of the plurality of cartridges configured to mate with one of the plurality of orifices. Each of the plurality of cartridges includes an inlet and an outlet for flowing a cooling medium therethrough. The inducer further includes at least one flow modifier disposed in each of the plurality of cartridges for modifying the flow of the cooling medium through each of the plurality of cartridges. Each of the plurality of cartridges is independently removable from each of the plurality of orifices.Type: GrantFiled: October 12, 2010Date of Patent: September 10, 2013Assignee: General Electric CompanyInventor: Stanley Kevin Widener
-
Patent number: 8499432Abstract: A wastegate assembly (200) for a turbocharger (101) or the like is provided having a support plate (300), an actuator (275), a linkage (250) operably connected to the actuator (275), and a valve plate (225) operably connected to the linkage (250). The linkage (250) translates actuation of the actuator (275) to movement of the valve plate (225) thereby sealing or unsealing the bypass outlet (500). The actuator (275), linkage (250) and valve plate (225) can be pre-assembled to the support plate (300) prior to the support plate (300) being connected to the turbine housing (102). The actuator (275), linkage (250) and valve plate (225) can be calibrated prior to the wastegate assembly (200) being connected to the turbine housing (102). The bypass outlet (500) can be machined via access provided by the wastegate port (400).Type: GrantFiled: March 4, 2008Date of Patent: August 6, 2013Assignee: BorgWarner Inc.Inventor: Michael E. Harris
-
Patent number: 8474433Abstract: During engine braking of a turbocharged internal combustion engine, the exhaust gas pressure increases and this is used to pressurize the seals between the turbocharger shaft and the bearing housing so as to prevent oil leakage into the compressor housing. Immediately after engine braking, stored exhaust gas pressure is used to pressurize the seals at the turbine end so as to prevent oil leakage into the turbine housing. In an alternative arrangement the exhaust gas is used to generate a reduced pressure in the bearing housing to increase the pressure gradient across the seals.Type: GrantFiled: August 5, 2009Date of Patent: July 2, 2013Assignee: Cummins Turbo Technologies LimitedInventor: Pierre French
-
Patent number: 8439633Abstract: A steam turbine includes a diffuser that has a bearing cone and an inner plate of a steam guide that define a passage through which steam flows. An outer plate is disposed with respect to the inner plate such that an opening is located between the inner and outer plates. At least one hole is located in the inner plate. A water tube is disposed in the opening, the water tube having water flowing therethrough which condenses at least a portion of a flow of steam flowing in the passage thereby creating at least a partial vacuum within the opening. The vacuum creates a suction effect through the at least one hole in the inner plate that can cause at least a portion of the flow of steam in the passage to attach itself to an inner surface of the inner plate.Type: GrantFiled: January 4, 2010Date of Patent: May 14, 2013Assignee: General Electric CompanyInventors: Kamlesh Mundra, Prakash B. Dalsania
-
Patent number: 8439655Abstract: Ventilating device (1) comprising a casing (6) intended to channel at least one air flow (3) created by a blower wheel (5), the said casing (6) delimites a main air channel (7) in which a main air flow (3a) circulates and a secondary air channel (8) intended to bring towards a motor (4) a secondary air flow (3b) in order to cool the motor (4), the said secondary air channel (8) comprising a inlet (11) arranged in a main channel wall (7c) and a outlet arranged in a plan containing a casing end by which the wheel (5) is introduced, the said secondary channel (8) further comprising a means intended to change at least twice the direction of the secondary air flow (3b) when the secondary air flow (3b) passes through the secondary air channel (8).Type: GrantFiled: April 4, 2007Date of Patent: May 14, 2013Assignee: Valeo Systemes Thermiques S.A.S.Inventor: Serge Pouysegur
-
Patent number: 8425181Abstract: The axial-flow turbine includes an extraction chamber 15 disposed on the outer circumference of a turbine blade chamber 12 and an extraction opening 16. An outer diaphragm 8 forming the downstream-side wall surface of the extraction chamber 15 is provided with a projection 21 formed more radially inwardly than the downstream-side edge on the outer circumference of an adjacent bucket 2 on the upstream side of the extraction opening 16 to form the downstream-side wall surface of the extraction opening 16. The projection 21 forms an upstream-side wall surface 18 of the outer diaphragm 8 for leading a part of the working fluid to the extraction chamber 15, and an inner wall surface 19 of the outer diaphragm 8 for leading the remaining working fluid to a bucket 11 on the downstream side of the extraction opening 16.Type: GrantFiled: February 16, 2010Date of Patent: April 23, 2013Assignee: Hitachi, Ltd.Inventor: Shigeki Senoo
-
Patent number: 8388308Abstract: A system for asymmetric flow extraction is described and claimed, the system comprising a flow path, a bleed slot in the flow path, a bleed cavity for receiving at least a portion of the fluid extracted from the flow path and a bleed passage in flow communication with the bleed slot and the bleed cavity wherein the bleed passage has at least one deflector having a shape such that the width of the bleed passage cross section varies in a direction normal to the direction of fluid flow in the bleed passage. In another embodiment, the deflector has an aerodynamic surface having a shape such that the flow passage between the aerodynamic surface and a surface located away from it has a cross sectional shape that is non-axisymmetric. In another embodiment, the bleed passage comprises an assembly of a plurality deflectors, arranged circumferentially.Type: GrantFiled: October 30, 2007Date of Patent: March 5, 2013Assignee: General Electric CompanyInventors: Apostolos Pavlos Karafillis, Kalyanasundaram Muruganathan, Samuel Rulli, David Cory Kirk, Donald Charles Slavik, Erich Alois Krammer, Manish Kumar
-
Publication number: 20130017066Abstract: A compressor includes a rotor platform; a rotor blade; and a casing having an inner surface surrounding the tip and spaced radially outwardly from the tip to define a gap. A secondary air flow system includes a bleed inlet configured to remove secondary air flow from the primary air flow; an injection opening disposed in the inner surface of the casing upstream of the bleed inlet; an accessory conduit; and a plenum fluidly coupled to the bleed inlet, the injection opening, and the accessory conduit. The bleed inlet and plenum at least partially define a secondary air flow path such that a first portion of the secondary air flow is directed in through the bleed inlet, through the plenum, and out through the injection opening and a second portion of the secondary air flow is directed in through the bleed inlet, through the plenum, and out through the accessory conduit.Type: ApplicationFiled: July 14, 2011Publication date: January 17, 2013Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Nick Nolcheff, Jong Lee
-
Patent number: 8353665Abstract: An impeller for use in a two-chamber extracting blower that separates liquid and solid contaminants from a supply of and provides a supply of clean air moving at high velocity air. The impeller includes a plurality of blades wherein each blade includes a first section perpendicular to and formed of the blade and a second section perpendicular to the first section, also formed of the blade and radiating outward. The height of each section and the construction of the main section of the blade create differing pressure zones during rotation of the impeller, segregating air contain the impurities and prompting separation of the impurities. The construction of the first and second sections promotes more efficient and quieter operation, strengthens the blade, and permits removal of the impeller.Type: GrantFiled: April 23, 2010Date of Patent: January 15, 2013Assignee: GlobalTech Motor & Controls, Inc.Inventors: Frank T. Stockstill, Fernando Osornia, Fernando S. Osornia
-
Publication number: 20120315131Abstract: An axial turbocompressor having an annular compressor passage which is arranged concentrically around a rotational axis, is delimited radially on the outside by a passage wall, and in which rotor blades, which may be assembled to form a ring, are arranged in a rotatably mounted manner around the rotational axis, is provided. The free-ending tips of the rotor blades lie opposite the passage wall in each case, forming a gap, and the passage wall, in the axial section of the tips, at least partially has a wall structuring and wherein a bleed opening of a bleed passage is provided in the passage wall for the tapping of medium flowing in the compressor passage. In order to enable an exceptionally efficient bleed of medium flowing in the compressor passage, the bleed opening is located in the wall structuring.Type: ApplicationFiled: June 5, 2012Publication date: December 13, 2012Inventor: Dirk MERTENS
-
Patent number: 8282341Abstract: With highly loaded rotors and stators problems can occur with secondary flows sweeping low momentum fluid across the blades reducing efficiency. By provision of collector slots to collect the secondary air and direct that air to a return slot in a rotor hub it is possible to provide impetus to the collected secondary flow to an outlet slot such that there is dispersal of the secondary flow and therefore reduce the effects upon the overall performance of a gas turbine engine incorporating the arrangement.Type: GrantFiled: February 25, 2010Date of Patent: October 9, 2012Assignee: Rolls-Royce PLCInventors: Christopher Freeman, Ivor J Day
-
Patent number: 8282338Abstract: An underwater generator for generating electricity including: a casing, a turbine propeller assembly configured within the casing; a platform, where the platform provides a mechanism to hold the casing; a cover member, where the cover member protects the turbine propeller assembly; and a power cable for transmitting electrical energy from the underwater generator to a user thereof. The casing may include a slit at a bottom portion, where the slit allows the removal of sediments, sand particles and similar materials. The turbine propeller assembly includes a plurality of blades. In one exemplary embodiment, the blades may turn in two directions.Type: GrantFiled: June 8, 2009Date of Patent: October 9, 2012Inventor: Mark Kliewer