With Means Positioning Fluid Current Driven Impeller Relative To Flow Direction Patents (Class 416/9)
  • Patent number: 9909557
    Abstract: A blade loading system for imposing a force on a wind turbine blade includes a portable load device having a cable, a tower support movably coupled to the tower, and a blade attachment device coupled to the blade and coupled to the cable, wherein when the blade attachment device is coupled to the blade and the tower support is adjacent the blade, the load device induces tension in the cable so that a force is imposed on the blade in a direction toward the tower. A method of applying a force to a blade includes: coupling a tower support to the tower adjacent the base, coupling a cable to the blade attachment device, raising the tower support along the tower, coupling the blade attachment device to the blade, and tensioning the cable to provide a force on the blade in a direction toward the tower.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: March 6, 2018
    Assignee: Vestas Wind Systems A/S
    Inventor: Claus Bæk Christiansen
  • Patent number: 9879650
    Abstract: A system and method for a vertical axis wind turbine (VAWT) is described which can provide the basis for a new and improved wind turbine design suitable for a range of different power classes such as from 4 kilowatts to 10 megawatts. A vertical blade of chord length C is attached to a central hub via a main support strut of chord length C. The main support strut comprises two sections: a blade-support-section and a counterweight-support-section. Both the blade-support-section and the counter-weight-support-section have a blunt leading edge and a tapered trailing edge with the profile reversing either side of the hub axis. Two control struts comprising aerodynamic profiles support the blade wherein one control strut connects to the upper surface of the main support strut and the other control strut connects to the lower surface of the main support strut hub. The main support strut and the control struts provide lift to the wind turbine and reduce drag.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: January 30, 2018
    Inventors: Philip B. Wesby, Christopher Turner
  • Patent number: 9810197
    Abstract: An apparatus for moving blades of a wind turbine is provided. The apparatus for moving blades for a wind turbine includes: wire connectors formed at a plurality of blades; and a pair of wires that are attachable and detachable to and from first to third wire connectors so as to connect the first and second wire connectors formed at first and second blades and a third wire connector formed at the third blade.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: November 7, 2017
    Assignee: SAMSUNG HEAVY IND. CO., LTD.
    Inventors: Jaeyeon Choi, Tae Won Yoon, Shimjith Manappatty
  • Patent number: 9768594
    Abstract: An actuating device for an electric switchgear of the type having one or more bushings connected to a casing. The actuating device can include a gear mechanism which is suitable to be mounted at and outside the zone where a bushing is connected to the casing, and which includes a plurality of gears operatively interconnected to each other and arranged to move a bushing between a first service position and a second transport position wherein it is lowered towards the casing from the first service position. A connection can be arranged to keep the bushing operatively coupled to the casing while moving it between the first and second positions.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: September 19, 2017
    Assignee: ABB Schweiz AG
    Inventors: Ennio Errico, Matteo Papetti
  • Patent number: 9760069
    Abstract: Method of operating a wind farm comprising a plurality of wind turbines, each of the turbines having a plurality of blades, the method comprising determining a possible wake situation at a first wind turbine caused by a second wind turbine, the second wind turbine being located upstream of the first wind turbine, and individually adapting the blades of the second wind turbine such that a wake generated by the second wind turbine is deflected away from the first wind turbine.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: September 12, 2017
    Assignee: ALSTOM Renewable Technologies
    Inventor: Jaume Betran Palomas
  • Patent number: 9470208
    Abstract: A method of locking a rotor of a wind turbine, the method including positioning of the rotor in a locking position; applying a rotor lock; forcing the rotor to turn in a first direction; and, applying a rotor brake.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 18, 2016
    Inventor: Jacob Johannes Nies
  • Patent number: 9399983
    Abstract: A wind turbine blade extending along a longitudinal axis from a root end to a tip end and in a transverse plane perpendicular to the longitudinal axis, the transverse plane having a main axis extending through an elastic center point, wherein the wind turbine blade comprises a sensor system including a first sensor set for measuring a first bending moment in a first sensor position at a first distance from the root end, the first sensor set comprising a first primary sensor for measuring a primary component and a first secondary sensor for measuring a secondary component, wherein a first primary sensor axis in the transverse plane is oriented in a direction defined by the first primary sensor and the elastic center point, and a first secondary sensor axis in the transverse plane is oriented in a direction defined by the first secondary sensor and the elastic center point, and wherein an angle between the first primary sensor axis and the first secondary sensor axis is in the range from 50° to 130°.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: July 26, 2016
    Inventors: Torben Lindby, Ivan Engmark Mortensen
  • Patent number: 9399982
    Abstract: A flying electric generator for obtaining power from wind currents which includes a fuselage having fore and aft portions and an intermediate portion, a rotor assembly including at least two forward rotors mounted on a pair of forward extending support arms extending from the fuselage and at least two rear rotors mounted to a pair of rearward extending support arms extending from the fuselage and at least one first forward wing mounted to a forward portion of the fuselage and extending outwardly on opposite sides of the fuselage and at least one second rear wing mounted to a rear portion of the fuselage and extending outwardly on opposite side of the fuselage.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: July 26, 2016
    Inventor: Robert Austin
  • Patent number: 9194366
    Abstract: A horizontal axis wind turbine with a ball-and-socket hub is disclosed. The hub enables horizontal axis turbines with two or more blades to teeter in response to wind shear gradients. The new hub design for a turbine equipped with three blades has been modeled using modified FAST code and has shown significant advantages over present three-bladed turbines with fixed hubs in reducing loads on the blades, tower, main shaft and bearings. The new hub design for a turbine equipped with three blades has also shown significant advantages over present two-bladed teetering turbines in reducing loads on the blades and tower. A likely additional advantage of a ball-and-socket hub equipped with three blades over a teetering hub with two blades is that wider teetering ranges are possible due to the significantly reduced likelihood for resonant teetering.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: November 24, 2015
    Inventor: Arnold Ramsland
  • Patent number: 9133824
    Abstract: A method of controlling the yawing of two-bladed wind turbine is described. The yaw speed of the turbine is increased when the wind turbine rotor blades are in a substantially vertical position, and the yaw speed may be reduced when the blades are substantially horizontal. By modulating the yaw rate based on the rotational angle of the blades, the effect of the yaw moments on the wind turbine structure is reduced, and the wind turbine may be designed to take into account such reduced forces.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 15, 2015
    Assignee: Envision Energy (Denmark) ApS
    Inventors: Michael Friedrich, Peter Grabau, Carsten Bendix Sørensen
  • Patent number: 9120652
    Abstract: A service crane for a wind turbine is provided. The wind turbine includes a tower and a nacelle mounted to the top of the tower. The service crane is mounted to the nacelle and includes a boom, a hoist rope guided along the boom and a winch capable of reeling in and out the hoist rope for lifting or lowering a load. Furthermore, a nacelle is provided which includes a service crane mounted thereto.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: September 1, 2015
    Inventor: Thorkil Munk-Hansen
  • Publication number: 20150147174
    Abstract: The present invention relates to methods, apparatus and computer program products for coordinating the control of a floating wind turbine (101) between a wind turbine controller (111) and a platform controller (110). One or more wind turbine control systems and/or one or more platform control systems may be altered based on 102 said coordinated control of said floating wind turbine (101).
    Type: Application
    Filed: January 9, 2013
    Publication date: May 28, 2015
    Inventors: Ian Couchman, Robert Bowyer
  • Publication number: 20150139797
    Abstract: The present invention relates to methods, apparatus and computer program products for controlling a wind turbine that comprises a nacelle and one or more turbine blades to reduce or prevent edgewise vibrations building up on the one or more turbine blades. It is identified 202 whether the nacelle is unable to yaw to an upwind position and initiating a corrective action 203 to prevent edgewise vibrations building up on the one or more turbine blades if the nacelle is unable to yaw to an upwind position.
    Type: Application
    Filed: June 6, 2013
    Publication date: May 21, 2015
    Inventors: Kenneth Tougaard Simonsen, Paw Rosenvard, David Steele
  • Publication number: 20150125294
    Abstract: The invention relates to an aerodynamic wind energy conversion device and a method for controlling such a device. The aerodynamic wind energy conversion device comprises an aerodynamic wing; at least a first tractive line and a second tractive line; wherein ends of the tractive lines are connected to line connection points located at the aerodynamic wing; at least a first and a second reefing point located across the aerodynamic wing and is characterized in that the length of the second tractive line is shorter than the length of the first tractive line; and wherein the first reefing point is spaced from the first line connection point in a first reefing distance and the second reefing point is d spaced from the second line connection point in a second reefing distance, such that the second reefing distance is longer than the first reefing distance.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 7, 2015
    Inventors: Xaver Paulig, Bernd Specht
  • Publication number: 20150086357
    Abstract: Wind turbines and method for adjusting yaw bias in wind turbines are provided. In one embodiment, a method includes defining an operational condition for the wind turbine, the operational condition including a turbine speed range, a pitch angle range, and a wind speed range. The method further includes operating the wind turbine within the operational condition, adjusting a yaw angle of the wind turbine during operation of the wind turbine, and measuring power output of the wind turbine during operation within the operational condition.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Applicant: General Electric Company
    Inventor: Peter Alan Gregg
  • Patent number: 8961131
    Abstract: An arrangement for extracting energy from flowing liquid, such as tidal flows, oceanic currents and water flowing in rivers. The arrangement comprises a support device (12) and a turbine device (1) which is pivotally connected to the support device (12) about a substantially horizontal axis (18). The turbine device includes at least one helical turbine (2; 4), each having an axle connected to an energy converter (22; 24). The turbine device (1) has a proximate end and a distal end, the proximate end being pivotally connected to the support device (12), and the distal end being freely movable in a substantially vertical, circular path in the flowing liquid. This enables the turbine device, in use, to adjust to an operational angle with respect to a horizontal plane. The arrangement is characterized in that the distal end of the turbine device (1) is provided with at least one transverse bar (7), stabilizing the operational angle of the turbine device (1).
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: February 24, 2015
    Assignee: Flumill AS
    Inventors: Anthony Trayner, Sam Syvertsen, Jon Inge Brattekås, Jan Inge Eielsen
  • Patent number: 8939724
    Abstract: The present invention relates to a system and method for harvesting wind energy from air exhausted by other systems. Ventilation and heat exchange systems force air movement using fans. Exhaust airflow may also be the result of a combustion system. The exhaust air is generally wasted as it is diffused back to the atmosphere. Significant energy may be recovered from this exhaust air using relatively small turbines inserted into the airflow. Careful positioning of the turbine maximizes the recovery efficiency.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: January 27, 2015
    Assignee: Green Earth Power Company Limited
    Inventors: Hisanori Koya, David William Yang, Roland Emlyn Williams
  • Patent number: 8901763
    Abstract: A wind turbine with a rotor comprising one or more rotor blades and a hub, the hub being attached to a nacelle, a yaw system for rotating the rotor to orient it in a wind direction, and one or more line of sight detectors for detecting a component of wind velocity. The one or more detectors are mounted such that they rotate under the action of the yaw system. A control system is coupled to the one or more detectors and is arranged to compare the detected wind velocity component with a wind velocity value and control the yaw system in response to the comparison. The nacelle can be rotated under control of the control system until the yaw error is substantially zero.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 2, 2014
    Assignee: Vesta Wind Systems A/S
    Inventors: Robert Bowyer, Justin Creaby
  • Patent number: 8899920
    Abstract: A wind turbine yaw system is provided that includes a yaw gear, at least two pinion gears, and at least two drive units, each of which is associated to one of the pinion gears for driving that pinion gear. The yaw system also includes a control system with a controller for generating a drive unit control signal for each drive unit for controlling the respective drive unit according to a reference signal having a desired operational parameter value for the respective drive unit, so as to realize the desired operational parameter value in the respective drive unit. The control system includes a feedback loop for each drive unit feeding a drive unit feedback signal including at least the actual value of one operational parameter of the respective drive unit back to the controller. The controller generates the drive unit control signals based on the reference signal and the feedback signals.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 2, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Kurt Andersen
  • Publication number: 20140348650
    Abstract: The invention regards an apparatus for adjusting the yaw of a wind turbine adapted for mounting on a wind turbine comprising, a system for measuring the wind direction adapted, via a control signal, to control the yaw angle of the wind turbine based on the wind direction, and a wind sensor system adapted to determine the yaw error of the wind turbine, and means for modifying the control signal based on the yaw error determined by the wind sensor system.
    Type: Application
    Filed: January 30, 2013
    Publication date: November 27, 2014
    Inventor: Jesper Kjaer Hansen
  • Patent number: 8851839
    Abstract: The present invention is a wide blade multiple generator wind turbine, which produces electrical energy by harnessing the kinetic energy of the wind to rotate multiple generators. Unlike traditional wind turbines, the present invention uses wide blades to focus on producing more torque rather than rotational speed. The wide blades are concentrically attached to a large drive wheel. The drive wheel is engaged to each of the generators and must be large enough to properly transfer the torque produced by the wide blades to the generators. The present invention could either position the generators concentrically around the drive wheel, which would directly engage the drive wheel to the generators, or position the generators laterally along the base structure, which would engage the drive wheel to the generators through a belt-and-pulley system or a chain-and-gear system. In addition to harnessing wind power, the present invention is design to absorb solar energy through the surface of the wide blades.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 7, 2014
    Inventor: Charles Franklin Eckart
  • Publication number: 20140255190
    Abstract: This patent refers to a system constructed by the wind turbine (1), placing two protectors; the first protector is placed on the opposite side of the wind direction to externally protect the wind turbine (1), called fixed protector (2), to divert the wind in the opposite rotary direction of wind turbine (1); the second protector is place in the intermediate area of the wind turbine (1), between the fixed protector (2) and located on the same side of the fixed protector (2), called mobile protector (3). Depending on the exit angle on the side of same wind direction and wind turbine rotation (1), this exit angle is controlled to contain the wind turbine rotation (1). This system may be installed upright, double or single, and horizontally, multiple.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Inventor: Akitoshi Murata
  • Publication number: 20140248147
    Abstract: A system for generating energy from wind induced by an aircraft is provided. The system includes one or more wind turbines configured to generate electrical power by capturing wind induced by the aircraft. Each of the one or more wind turbines include a rotor mounted for rotation about an axis, and a plurality of blades coupled to the rotor.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Inventor: Brett Mukherjee Hoffstadt
  • Publication number: 20140234103
    Abstract: A method and system for improving power production efficiency on a wind farm having of a plurality of spatially distributed wind turbines is provided. The method includes receiving a wind measurement that includes a wind direction impinging on a turbine (20), determining a misalignment of the wind turbine with respect to the wind direction, and activating a wake steering control for the wind turbine (20) to implement the misalignment of the wind turbine (20) with the wind direction such that the misalignment is adapted to steer a wake of the wind turbine away from a neighboring wind turbine (30). A wind turbine arrangement including a nacelle, a yaw controller, and a yaw drive is also provided.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 21, 2014
    Inventor: John M. Obrecht
  • Publication number: 20140227095
    Abstract: Pivotal jet wind turbine relates to clean energy field. It has a rim based rotor's structure. The rotor has plurality of outer-blades and plurality of inner-blades attached to the rotating rim. The roller based components suspend the rotor and transmit the rotational energy to generator(s). The central, pivotal part of the rotor is in full free from any mechanical or aerodynamic components or parts. This open zone constitutes a giant nozzle, producing an air-jet increasing the turbine's efficiency.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 14, 2014
    Inventor: Leonid Minutin
  • Publication number: 20140227094
    Abstract: The present invention relates to a vertical axis windmill. The windmill rotates on an upright post, with plural arms holding articulated working members circling around. Each working member has a pivotal edge like a vane, a flag or a hinged door, swings on its own axis and also circles around the axis of the central post. On the axis of each working member furnished a special hinge bearing to control and restrain the movement of each, flipping and engaging the favorable wind in about ¾ turn of the central axis but disengaging in the rest ¼ turn. The said hinge bearing also provides elastic releasable means, along with a centrifugal governor, to deal with excessive wind, allowing the working member to disengage to a temporary idle position as a free weather vane.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Inventor: Zhong Ai XIA
  • Publication number: 20140219796
    Abstract: A wind turbine control system comprising a thrust sensor and a braking system. The system allows an increase in wind speed to be detected instantaneously and corrective action to be initiated. The system comprises additional features such as deceleration control.
    Type: Application
    Filed: May 25, 2012
    Publication date: August 7, 2014
    Inventors: Silvestro Caruso, Martin Jakubowski, Luciano Caioli
  • Publication number: 20140219795
    Abstract: A method for operating a horizontal axis wind turbine is provided, the wind turbine including: a rotor including a rotor blade, wherein the rotor is rotatably coupled to a nacelle, and the rotor is rotatable about a horizontal rotor axis extending through the nacelle, and the nacelle is rotatably coupled to a tower, the nacelle rotatable in a yaw plane about a yaw axis. The method includes determining a wind direction; determining a yaw angle setting, wherein the yaw angle setting deviates from an alignment of the rotor axis and the wind direction in the yaw plane; yawing the nacelle to the yaw angle setting; and operating the wind turbine for example to generate electricity.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Inventors: Saskia HONHOFF, Andreas HERRIG, Farzad TAGHADDOSI, Sarah DELPORT
  • Publication number: 20140217742
    Abstract: Systems for increasing the power productivity of two bladed teetering hinge, yaw controlled wind turbines by varying rotor shaft restraining torque and yaw angle.
    Type: Application
    Filed: May 11, 2011
    Publication date: August 7, 2014
    Inventors: Silvestro Caruso, Martin Jakubowski, Luciano Caioli
  • Publication number: 20140205453
    Abstract: The aquatic propulsion proposed uses oscillating blades provided with independent, mutually parallel vertical shafts affixed, at the upper end thereof, to a single horizontal oar of planar profile. The blades or fins being of different length on the basis of the distance between the fastening point of the actual oscillation shaft thereof and the shaft on which the oar rocks. Propulsion is achieved when the user applies a force in traction or thrust on any of the two grips provided at either end of the handlebars, or in opposite directions on both at one and the same time. The movement is transmitted to the rotary shaft and then to the profile section on which the fins are arranged, which causes the fins to move transversely and alternately in both directions, causing displacement of the water and the propulsion of the swimmer or floating object or vehicle, in the intended direction.
    Type: Application
    Filed: August 14, 2012
    Publication date: July 24, 2014
    Inventor: Jose San Gabino Ramirez
  • Publication number: 20140199169
    Abstract: A method for operating a wind turbine is described. The wind turbine includes a tower having a tower axis, and a nacelle being rotatable about the tower axis. The method includes providing a data set of one or more operational parameters of the wind turbine. The one or more operational parameters depend on the angular position of the nacelle with respect to the tower axis. The method further includes determining an angular position of the nacelle with respect to the tower axis; selecting one or more operational parameters from the data set of one or more operational parameters of the wind turbine depending on the determined angular position of the nacelle; and applying the one or more selected operational parameters to the wind turbine. Further, another method of operating a wind turbine and a wind turbine are described.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 17, 2014
    Inventors: Henk-Jan KOOIJMAN, Bastian SUNDERMANN, Margret KALTER
  • Publication number: 20140186176
    Abstract: A method of determining a degree of yaw error of a wind turbine is provided. The method includes obtaining wind pressure measurement values from in front of the rotor plane, which wind pressure measurement values exhibit a periodic nature related to a rotation of a spinner of the wind turbine, performing a signal processing step to process the wind pressure measurement values to determine a phase offset of the wind pressure measurement values relative to an angular reference, and deriving a yaw error angle from the phase offset. A method of establishing a relationship between a phase offset of wind pressure measurement values and a degree of yaw error of a wind turbine, a yaw error determination unit, and a wind turbine are also provided.
    Type: Application
    Filed: December 17, 2013
    Publication date: July 3, 2014
    Inventors: Jimmi Andersen, Jan Martin Jensen, Johnny Rieper
  • Publication number: 20140186179
    Abstract: A water generator assembly includes a water generator having two forwarding wings on the front end thereof and the forwarding wings are applied by current and generate a resistance force and a lifting force. The resistance force and the lifting force are combined as a composition force which has a forwarding component force in the X-axis to offset the drag force cause by the current applying to the water generator. A component force in Y-axis is offset by the forwarding wings. A balance wing is connected to the water generator to prevent the water generator from spinning about the X-axis. The water generator has a lifting wing to generate a lifting force to lift the water generator. A buoyant floats and indexes the water generator. A tail wing and two side wings keep the water generator facing the current and prevent the water generator from spinning about the Y-axis.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 3, 2014
    Inventor: SHUEEI-MUH LIN
  • Publication number: 20140161610
    Abstract: A method for reducing a pitching moment that loads a rotor of a wind power plant includes determining a manipulated variable in order to set an azimuth angle of the wind power plant. A horizontal oblique incoming flow against the rotor is brought about by a wind acting on the rotor by use of the azimuth angle so as to reduce a portion of the pitching moment that is caused by vertical wind shear acting on the wind power plant.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 12, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Felix Hess, Stefan Kapp
  • Patent number: 8740543
    Abstract: A method of deploying offshore wind turbine assemblies includes mounting a wind turbine assembly horizontally on a vessel and transporting the wind turbine assembly to an offshore site. The wind turbine assembly is raised to a vertical condition at the site and attached to anchor weights. Blades are attached to the turbine head after the wind turbine assembly is in the vertical condition. In one embodiment, the wind turbine assembly can include a tower including tapered lower and upper sections joined together at their respective wide ends, a turbine head connected to the upper section, and a platform connected to the lower section. The platform includes a buoy tank partially filled with ballast to provide mass and buoyancy. A wave piercing cowling is rotatively attached to the lower section. The turbine head can include an adjustable journal bearing, scabbard blade mounts, and a gearless induction generator with flux adjusting capabilities.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: June 3, 2014
    Inventor: Lloyd E. Weaver
  • Publication number: 20140133983
    Abstract: Yaw brakes for wind turbines are proposed, the wind turbines having a tower, a nacelle and a yaw system for rotating the nacelle with respect to the tower. The yaw brakes comprise a locking part, having a toothed profile at a side facing a toothed profile of an annular gear of the yaw system. The locking part of the yaw brakes is movable in a radial direction relative to the annular gear, between a brake position and a non-brake position. Brake discs and callipers may be eliminated.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 15, 2014
    Inventor: Santiago Canedo Pardo
  • Publication number: 20140127015
    Abstract: An automatic adjustment device for adjusting inclination of blades of wind turbines includes a first housing having multiple blades connected thereto and each blade has a first connection portion which is inserted into the firs housing. A transmission unit is connected to the first housing. A pump unit and a speed-changing member are mechanically connected to the transmission unit. The pump unit is mechanically connected to the speed-changing member. The pump unit has a driving unit which is connected with a transmission disk which is connected to the connection portions of the blades. The pump unit is activated by speed difference between the speed-changing member and the transmission unit so as to rotate the transmission disk via the driving unit, and adjust the inclination angle of the blades to protect the blades and increase the efficiency of the wind turbine.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Inventor: SHUEEI-MUH LIN
  • Publication number: 20140112782
    Abstract: Provided is a small-sized propeller windmill which can efficiently generate power even when a wing speed is low, has no possibility that the windmill is broken even when a strong wind blows, can stably ensure a weathercock direction of a base blade, and can suppress an environmental burden. In such a propeller windmill, the blade having a corrugated wing shape is supported in a cantilever manner by way of an elastic body, and the blade and the elastic body are made of paper or plastic. Further, to stably ensure the weathercock direction of the base blade, a weathercock stabilizing mechanism is arranged behind the base blade.
    Type: Application
    Filed: June 30, 2011
    Publication date: April 24, 2014
    Inventor: Akira Obata
  • Publication number: 20140105740
    Abstract: A trillium wind turbine has an electricity-generating nacelle and swept-back, complexly-curved blades. Each blade has a main blade, a trailing edge blade, and a diversion blade. Wind is directed down the length of the blade and exits the tip. The main blade resembles a portion of a cylinder in form, the cylinder being twisted to change the angle of attack, thereby adding more lift throughout the length of the blade. The trailing edge and diversion blades are pitched relative to the wind and produce lift. Additionally, wind hitting the diversion blade is diverted behind the blade. Because the surface area and volume of the blade are larger near the nacelle and smaller at the tip, the air that travels along the blade increases in velocity as it travels producing more thrust/lift. The turbine also automatically faces into the wind without the need for sensors or positioning motors.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Inventor: Reno Barban
  • Publication number: 20140097621
    Abstract: The Variable Foil Machine harnesses fluid flow energy and propels fluids. A variable foil (120) with reversible camber is secured to a leading draft member (150) movable on a leading support (122) and to a trailing draft member (130) movable on a trailing support (136). The trailing draft member (130) is secured to a trailing guide (132) via a crank arm (148). Apparatus can be installed on the ground or on a pivoting base (138). In one embodiment, the leading draft member (150) is fixed while the trailing draft member (130) oscillates. In another embodiment, an oscillation amplitude offset between leading draft member (150) and trailing draft member (130) promotes cyclic translation of the variable foil (120). An energy converter (142) may be cooperatively coupled to produce energy or perform work. Selective combination of moving parts provides a versatile choice of modes of operation for power generation, work and communication.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 10, 2014
    Inventor: Edouard P. Kassianoff
  • Publication number: 20140086744
    Abstract: In a torque limiter, wedge-shaped spaces are formed between inner and outer rings so as to be arranged in the circumferential direction. In each wedge-shaped space, there are arranged a first roller and a second roller that transmit torque between the inner and outer rings by being brought into wedge-engagement when the inner and outer rings rotate relative to each other in one direction and in the other direction, respectively. Between the first and second rollers, there is arranged an urging device that urges the first and second rollers in such directions that the first and second rollers are brought into wedge-engagement. Each wedge-shaped space is formed such that when the torque becomes equal to or higher than a predetermined value, a first wedge angle of the first roller or a second wedge angle of the second roller becomes such an angle that wedge-engagement of the roller is cancelled.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 27, 2014
    Inventor: Hideki FUJIWARA
  • Publication number: 20140086745
    Abstract: A vertical axis wind turbine having a plurality of upright airfoils pivotally engaged. A continuous adjustment of the angle of attack of the airfoils to oncoming wind is provided by rotation of a control plate connected to the vanes which are mounted upon a rotating drive plate. A vane can be employed to rotate the control plate to affect the continuous adjustment of the airfoils.
    Type: Application
    Filed: December 9, 2013
    Publication date: March 27, 2014
  • Publication number: 20140064963
    Abstract: A wind turbine system includes blades which rotate by receiving wind, a nacelle which supports the blades and rotates with the blades, a main shaft for transmitting torque which is connected to the hub and is rotated by the rotation of the hub, and a generator which generates electricity using rotating energy of the main shaft, wherein the main shaft is connected to the hub inside the hub in the axial direction of the main shaft.
    Type: Application
    Filed: August 8, 2013
    Publication date: March 6, 2014
    Applicant: Hitachi, Ltd.
    Inventor: Ikuo TOBINAGA
  • Publication number: 20140056707
    Abstract: The present invention provides a conveyance device for an energy collector such as a wind turbine, solar collector, or a combination thereof. The conveyance device is configured to orient the energy collector by moving the device to compensate for a change in the source of energy such as a change in power, direction, speed, location and a combination thereof. The conveyance device includes a track configured to be positioned near a support structure such as a telecommunications tower and first and second electrical contacts configured to electrically connect the energy collector to an electrical load. The conveyance device is also configured to receive an energy collector configured to be attached to the track such that the energy collector is movable relative to the track. In this manner, there is provided a device for adjusting the orientation of the wind turbine or solar collector such that it collects energy efficiently.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: Windular Research and Technologies Inc.
    Inventor: Kerry Patrick Donnelly
  • Publication number: 20140050580
    Abstract: A horizontal axis wind turbine assembly adapted for use atop a tower includes a frame, a yaw shaft assembly coupling the frame to the tower, an alternator secured to the frame, a shaft coupled to the alternator to produce electrical power, a rotor hub coupled to the shaft, a plurality of blades secured to the rotor hub, and a tail assembly rotatably coupled about a vertical axis to the frame. The tail assembly is operable to move to a first, straight position aligned with the horizontal axis, and a second position rotated an angle ? from the horizontal axis. An actuator is secured to the frame and is adapted to rotate the tail assembly the angle ? from the horizontal axis.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 20, 2014
    Applicant: Weaver Wind Energy
    Inventors: Alexander L. Hagen, Gary Bush, Arthur J. Weaver, Kelly S. Frank, Ken Bignoli, Gwendolyn Barr
  • Patent number: 8647060
    Abstract: This horizontal axis wind turbine comprises a plurality of yaw motors that are provided on one of either a nacelle or a tower, and a gear 2 that is provided on the other of either the nacelle or the tower and that engages with the drive gears 4m, 4n of the plurality of yaw motors, such that when the plurality of yaw motors stop the rotation of the nacelle, some of the yaw motors are stopped and held by yaw motor brakes, then after a delay, the other yaw motors are stopped and held by yaw motor brakes. When the other yaw motors are stopped, the drive gears 4m of the some yaw motors and the drive gears 4n of the other yaw motors hold the gear 2 by pressing against the gear 2 in opposite directions of rotation.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 11, 2014
    Assignee: Hitachi, Ltd.
    Inventor: Shigeo Yoshida
  • Publication number: 20140037447
    Abstract: A method for operating a wind farm is provided. The method includes determining a wind condition, determining a wake-effect between at least two wind turbines forming at least a sub-set of the wind farm, each of the at least two wind turbines having a yaw system, and determining a desired yaw angle setpoint for each of the at least two wind turbines so that a total power production of at least the sub-set is expected to be increased compared to independently operating the yaw systems of each of the at least two wind turbines.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 6, 2014
    Inventor: Sid Ahmed Attia
  • Publication number: 20140037449
    Abstract: A power plant for obtaining energy from a flow of a body of water with a varying main incident flow direction, comprising a rotating unit with an axial turbine assigned an axis of rotation and comprises at least one rotor blade, the rotor blade is fastened in a rotationally conjoint manner to a rotor head of the rotating unit, and the rotor blade has at least over a partial region of the longitudinal extent thereof, a profile which can be impinged on by flow bidirectionally for windward and leeward operation. A rotary device is provided for a power plant component for adjusting a relative angle between the axis of rotation and the main flow direction, wherein the rotary device is assigned a first stop and a second stop which limit the range of movement of the rotary device to a range of angle of rotation of less than 180°.
    Type: Application
    Filed: March 28, 2011
    Publication date: February 6, 2014
    Inventors: Norman Perner, Jochen Weilepp
  • Publication number: 20130323056
    Abstract: A vertical axis wind turbine blade is revealed. The vertical axis wind turbine blade includes a blade frame formed by assembly plates disposed at regular intervals and blade bodies each of which pivoted between two adjacent assembly plates. Stoppers are disposed between the assembly plates and the blade bodies. The stopper is used to stop on one side of the blade body corresponding to a downwind surface of the assembly plate. The blade bodies pivotally connected to the blade frame move along with the blade frame to be in an open or a closed position. When the wind blows the upwind surface, the blade body is stopped by the stopper and in the closed position so as to receive the wind power. While the wind blowing the downwind surface, the blade body is in the open position to reduce the wind resistance. Thus the wind turbine efficiency is dramatically improved.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Inventor: MAX SU
  • Publication number: 20130315732
    Abstract: A horizontal-shaft wind machine having improved low wind speed performance and greater overall efficiency consists of multiple rotors, wherein each successive rotor is larger in diameter than the previous rotor moving from the most windward rotor to the most leeward rotor. Each rotor may be coupled to a separate concentric shaft, and all rotors may rotate in the same direction with the output shafts of each rotor coupled via an overrunning clutch to a single shaft, the output of which is used to drive the load. Winglets attached to the leading edge and tip of the rotor sails improve low wind startup torque.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 28, 2013
    Inventor: Richard K. Sutz