Abstract: This invention relates to apparatus and methods for pumping liquids, in particular using hydraulic ram pump techniques. The techniques we describe can advantageously be used, for example, for drawing water from a deep well in a developing country. We describe a hydraulic ram liquid pump, the pump comprising: a liquid conduit having first and second arms and a connecting portion to connect said arms; first and second one-way inlet valves to said liquid conduit; first and second internal shockwave generating devices within said liquid conduit between said first and second inlets; at least one one-way exit valve from said liquid conduit; wherein, in use, when said second shockwave generating device is sealed a column of liquid in said first arm is in fluid communication with a said exit valve and when said first shockwave generating device is sealed a column of liquid in said second arm is in fluid communication with a said exit valve.
Abstract: A hydraulic intensifier comprising a reciprocating differential piston arrangement and a controller configured to control the supply of low pressure hydraulic fluid to the intensifier is provided. The controller comprises at least one solenoid operated pilot valve and electronic operator configured to operate the pilot valve.
Abstract: A positive-displacement turbine engine comprising two rotors, exhaust opening for discharging exhaust gas, intake opening for receiving air and fuel or air-fuel mixture, turbine channels, turbine shaft, plurality of turbine blades, and spark plug. The rotors share a single shaft and are positioned in the opposite sides of the combustion head. Each of the turbine channels has a constant depth and varying width and comprises an intake zone, compression zone, combustion-expansion power-stroke zone, and exhaust zone. Each of the turbine channels widens in the intake zone, narrows in the compression zone, widens in the combustion-expansion power-stroke zone, and narrows in the exhaust zone. The turbine blades maintain a constant lateral orientation while the two rotors rotate. Each turbine blade has a blade-rod with two ends and a downward-offset crank on one end of the blade-rod that maintains the turbine blade in a constant horizontal orientation during rotation of the rotors.
Abstract: Disclosed is a high pressure intensifier for liquids which includes a housing having a pair of interconnected intensifying chambers with a pair of orifice effect valves, one located in each chamber, but carried on a single stem. The valves are arranged to alternately block the flow of liquid from each chamber to a low pressure exhaust port. Each intensifying chamber is provided with a high pressure exhaust port having a check valve therein. Liquid is fed to each chamber through ram tubes arranged in a trombone configuration. When flow from one intensifying chamber to the low pressure exhaust is blocked, the inertia of the decelerating liquid in the ram tube for that chamber forces a stream of high pressure liquid out through the high pressure exhaust port for that chamber.