Diaphragm Patents (Class 417/395)
  • Patent number: 10342920
    Abstract: A fluid control system for delivery of a liquid includes a pneumatic drive that incorporates a linear actuator to effect known volume changes in a gas reservoir. The gas reservoir is in fluid communication with a gas-side reservoir that is separated from a fluid-side reservoir by a flexible membrane. Movement of the linear actuator effects positive or negative volume differences on the gas in the gas-side reservoir, resulting in a decrease or increase in pressure of the gas that is transmitted to the fluid-side reservoir to draw fluid, primarily liquid, in from a source or deliver liquid out to a sink. In another aspect, a mechanism is provided for the detection and elimination of air bubbles in the fluid path.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: July 9, 2019
    Assignee: TURNPOINT MEDICAL DEVICES, INC.
    Inventors: Jeffrey A. Carlisle, Lawrence M. Kuba
  • Patent number: 10288060
    Abstract: An electronically controlled diaphragm pump system includes a pump housing with a drive gas chamber, a fluid chamber separated by a diaphragm, gas pressure means for providing a drive gas pressure in response to a control signal, and gas under-pressure means connected to a gas outlet port for providing a gas outlet under-pressure or sucking of gas in response to a control signal. The pump system has a displacement sensor and control circuitry connected to the displacement sensor for determining the displacement or position of the diaphragm and adapted or supplying the control signals to the gas pressure means and the gas under-pressure means.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: May 14, 2019
    Assignee: STOBBE PHARMA TECH GMBH
    Inventor: Per Stobbe
  • Patent number: 10267303
    Abstract: A high viscosity portion pump system has a single piston portion pump having a piston/diaphragm assembly arranged on a piston shaft forming liquid and gas chambers, which moves from a starting-position and provides high viscosity fluid from the liquid chamber when gas is received by the gas chamber; has an elastic member arranged on a retainer coupled to the shaft in a compartment in a pump housing, which moves the assembly back to the position and draws further fluid into the liquid chamber when the gas is released; and has a piston position sensor that responds to the position of the shaft and provides signaling containing information about when the assembly is in the position or completed a stroke from the position. A gas control system includes a signal processor that receives the signaling, and provides corresponding signaling containing information about when to provide or release the gas.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: April 23, 2019
    Assignee: Flow Control LLC.
    Inventors: Christopher H. Verdugo, Bernard L. Perkins, Humberto V. Meza
  • Patent number: 10245359
    Abstract: A handheld tool for providing irrigation and/or suction is provided. In certain embodiments, the tool has a single cannula for providing both suction and irrigation, while in others there are separate suction and irrigation cannulas. In some embodiments, flush water is supplied by actuating a flush button which both pinches closed a suction hose and opens a flush hose. If present, the irrigation cannula may be opened by actuating an irrigation button. In certain embodiments, the irrigation and/or flush button may be provided with blade tips to pinch closed the irrigation or flush hoses in cooperation with a blade extending from the tool housing.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: April 2, 2019
    Inventor: Peter L. Bono
  • Patent number: 10012229
    Abstract: A roll-diaphragm compressor and a roll-diaphragm compressors system, including methods for manufacturing and using same. The roll-diaphragm compressor includes a compressor body having a concave portion that defines a rounded interface wall and an apex portion adjacent to the concave portion that comprises an inlet and outlet port. The roll-diaphragm compressor also includes a flexible roll-diaphragm coupled to the compressor body about a compressor body edge and a compression chamber defined by the concave portion, apex portion and roll-diaphragm. The roll-diaphragm compressor further includes a piston head rigidly coupled to a central portion of the roll-diaphragm and configured to drive the roll-diaphragm to a first configuration where the roll-diaphragm engages the interface wall as part of a compression cycle.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 3, 2018
    Assignee: OTHER LAB LLC
    Inventors: Pete Lynn, Saul Griffith, Kevin Albert, Tim Swift, Jake Read
  • Patent number: 9992538
    Abstract: Systems and methods disclosed herein provide for determining changes in the device engagement data as a video advertisement is played on a video application executing in a mobile computing device. A user engagement engine collects device engagement data over multiple intervals of playback of the video advertisement. The device engagement data includes data indicating the spatial orientation of the mobile computing device and data indicating the volume level. The user engagement engine also calculates the differences in the device engagement data from a first interval of playback to a second interval of playback of the video advertisement. The mobile computing device transmits the changes in the device engagement data to an advertising server. The advertising server uses the changes in the device engagement data to determine a cost-per-impression value of the video advertisement.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: June 5, 2018
    Assignee: Adobe Systems Incorporated
    Inventor: Shrinidhi Karanth
  • Patent number: 9840995
    Abstract: During a pressurization stroke of a high-pressure pump, a cylinder inner wall and a plunger receive a fuel pressure from the pressurization chamber. Meanwhile, an upper housing does not receive the fuel pressure from the pressurization chamber, so that its thickness can be made thin. A cylinder is comprised of a bottom portion, a cylindrical portion and a large-diameter cylindrical portion. When inserting the large-diameter cylindrical portion into a large engaging hole, the bottom portion and the cylindrical portion are not brought into contact with a lower housing. A high liquid-tightness between the bottom portion, the cylindrical portion and a small engaging hole can be ensured.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 12, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masatoshi Kuroyanagi, Mamoru Urushizaki, Yasuaki Matsunaga
  • Patent number: 9777974
    Abstract: An analyzing device includes a heating device, a cooling device, and a controller. The cooling device includes a piezoelectric pump, a check valve, an exhaust valve, and an air tank. The analyzing device heats a subject by the heating device. The cooling device drives the piezoelectric pump while the heating device heating the subject. With this, the outside air is sucked through a suction port and the air that is discharged from the piezoelectric pump is accommodated in the air tank through the check valve. Then, the pressure in the air tank is increased. Thereafter, the cooling device stops driving of the piezoelectric pump. With this, the air in the air tank is discharged toward the subject via the exhaust valve so as to cool the subject.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: October 3, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Gaku Kamitani, Atsuhiko Hirata
  • Patent number: 9771512
    Abstract: A system for mixing fracturing gel includes a dry gel mixing chamber having a bladed impeller carried to rotate in the mixing chamber. The mixing chamber has a dry gel inlet and hydrating fluid inlet. A valve is fluidically coupled to the hydrating fluid inlet to automatically maintain a specified flow condition of hydrating fluid into the mixing chamber over multiple different values of the flow condition to the hydrating fluid inlet.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: September 26, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Bryan Chapman Lucas
  • Patent number: 9761468
    Abstract: In accordance with some embodiments, a wafer taping device is provided. The wafer taping device includes a tape delivering along a first direction. The wafer taping device also includes a wafer mount unit disposed below the tape. The wafer mount unit has an upper surface for supporting a wafer and having a notch for allowing a cut mark of the wafer to align with it. The notch is staggered with a second direction in the upper surface, and the second direction is substantially perpendicular to the first direction. In addition, the wafer taping device includes a laminating roller disposed above the wafer mount unit and having a long axis elongated in the second direction. The laminating roller is configured to reciprocate along the first direction for pressing the tape to the wafer.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: September 12, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yuh-Sen Chang, Shang-Hsien Lin, Chih-Yang Chan, Szu-Hsien Lee, Chia-Haw Yeh
  • Patent number: 9731226
    Abstract: A solution treatment apparatus connected to a supply nozzle that supplies a treatment solution to a substrate, includes: a supply pipeline connecting a treatment solution storage container and the supply nozzle; a filter apparatus provided in the supply pipeline; a pump on a secondary side of the filter apparatus; a circulation pipeline connecting a discharge side of the pump and an intake side of the filter apparatus; a supply control valve provided in the supply pipeline on a secondary side of the pump; a circulation control valve provided in the circulation pipeline; and a control unit, wherein the control unit opens the circulation control valve and drives the pump when supply of the treatment solution from the supply nozzle to the substrate is stopped by closing the supply control valve, to thereby circulate the treatment solution between the supply pipeline having the filter apparatus and the circulation pipeline.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 15, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kousuke Yoshihara, Katsunori Ichino, Toshinobu Furusho, Takashi Sasa, Katsuhiro Tsuchiya, Yuichi Terashita, Hirofumi Takeguchi
  • Patent number: 9709044
    Abstract: A method for supplying vacuum for a pneumatic brake booster for a motor vehicle braking system, using an electromotively-driven displacement type pump assembly. At least one pressure sensor for monitoring a pneumatic pressure is associated with the pump assembly, and electric signals of the pressure sensor are fed to an electronic unit, analyzed, and processed in order to regulate the pressure. A plausibility check of the pressure sensor signal is carried out by a pressure value amplitude being determined, by signal analysis, in the form of a difference between a maximum pressure value and a minimum pressure value within a stroke of the displacement element, and this being compared to a stored comparison value wherein if the pressure value amplitude deviates from the comparison value by a defined amount, the signal of the pressure sensor is then defined as implausible.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: July 18, 2017
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Alexander Kalbeck, Bernd Pfaffeneder, Jürgen Stürzer
  • Patent number: 9631730
    Abstract: A valve includes a lower valve housing, a diaphragm, and an upper valve housing. A top surface of a piezoelectric pump is bonded to a bottom surface of the lower valve housing. A circular hole portion is provided in a central portion of a region of the diaphragm that opposes a projecting portion of the lower valve housing. The diaphragm is bonded to the upper valve housing and the lower valve housing, and a divided interior of a valve housing configures a first lower valve chamber, a second lower valve chamber, a first upper valve chamber, and a second upper valve chamber. A groove is located in a wall portion of the upper valve housing that opposes the diaphragm in the first upper valve chamber.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: April 25, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kenichi Kotani, Takenobu Maeda, Atsuhiko Hirata
  • Patent number: 9574554
    Abstract: The present invention includes methods and apparatuses for operating and controlling AOD pumps (10, 10?, 10?, 100, 460, 580, 740) and other pumps.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: February 21, 2017
    Assignee: Proportion-Air, Inc.
    Inventors: David A. Reed, Timothy D. Hogue
  • Patent number: 9522221
    Abstract: An eye treatment cassette includes a handpiece, a vacuum source, a holding tank, a collection bag, and a displacement-based pump. The handpiece is configured to aspirate fluids from a patient's eye. The vacuum source communicates with the handpiece. The holding tank is interposed between the handpiece and the vacuum source, and is configured to hold the aspirated fluids. The collection bag is connected to the holding tank for collecting the aspirated fluids. The pump is coupled to the holding tank and is configured to operate while the vacuum source continues to aspirate fluids via the handpiece to drain the aspirated fluids from the holding tank.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: December 20, 2016
    Assignee: Abbott Medical Optics Inc.
    Inventors: John I. Muri, Craig Edwards
  • Patent number: 9511191
    Abstract: A fluid guiding assembly for a drug delivery device is presented having a first member, a cover part adjacently disposed to the first member and being in non-bonded surface contact with a surface portion of the first member thereby forming an interface area, at least one channel structure extending along the interface area of first member and cover part and being formed by at least one recess in either the first member and/or in the cover part, and a second member being in contact with the cover part and being bonded to the first member by way of injection molding to fix the cover part relative to the first member.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: December 6, 2016
    Assignee: SANOFI-AVENTIS DEUTSCHLAND GMBH
    Inventors: Marc Holtwick, Martin Haupt
  • Patent number: 9272835
    Abstract: A squeeze container includes a concave storage portion in which a content is stored, a sheet-shaped elastic body arranged to cover an opening portion of the storage portion, pressurization mechanism configured to swell the elastic body to the storage portion side with gas pressure, and a delivery passage which provides communication between the inside and outside of the storage portion and which delivers the content squeezed by the elastic body to the outside. The pressurization mechanism is structured to be capable of gradually swelling the elastic body by repeating squeezing with a hand and releasing thereof.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: March 1, 2016
    Assignee: Kao Corporation
    Inventors: Takashi Yamada, Yoshinori Inagawa
  • Patent number: 9233193
    Abstract: A fluid management system for use with a fluid reservoir includes an inflow pump and an outflow pump. The inflow pump is connectable to a probe for delivering a distention fluid to a body cavity. The outflow pump removes the distention fluid through the same probe, thus establishing a re-circulating volume of distention fluid within the body cavity. The removed fluid is filtered and returned to a fluid reservoir for eventual recycling to the body cavity. A controller adjusts the flow rates of the inflow pump and the outflow pump to maintain a pre-selected fluid pressure or volume within the body cavity.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 12, 2016
    Assignee: IOGYN, INC.
    Inventors: Csabi Truckai, Aaron Germain, Kyle Klein, John H. Shadduck, Michael D. Walker, Benedek Orczy-Timko, Balazs Lesko
  • Patent number: 9157428
    Abstract: There is provided a micro-pump including: a bottom substrate; a flow path forming substrate coupled to the bottom substrate and including an inlet having a fluid introduced therein and an outlet having the fluid ejected therefrom; and a valve substrate coupled to the flow path forming substrate and including at least one valve controlling the fluid to be introduced and ejected.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 13, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sang Jin Kim, Bo Sung Ku
  • Patent number: 9157429
    Abstract: A pump includes a pump body defining a fluid chamber and inlet and outlet ports in fluid communication with the fluid chamber, an inlet check valve connected to the inlet port, an outlet check valve connected to the outlet port, and a piston housing coupled to the pump body and defining a piston chamber. A piston assembly is disposed at least partially within the piston chamber and at least partially within the fluid chamber and includes a piston and a poppet connected to the piston in proximity to the pump body. In addition, the pump includes a gland disposed between a portion of the piston housing and the pump body. Further, the pump includes the poppet having a poppet head axially connected to a diaphragm coupled to a poppet flange. The poppet head is connected to the piston.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: October 13, 2015
    Assignee: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventor: Hy Nguyen
  • Publication number: 20150147195
    Abstract: A channel-less microfluidic pump includes a cartridge including a substrate and an actuatable film layer disposed on the substrate, and a manifold having at least three actuatable void volumes separated by a plurality of wall sections and an actuatable flexible layer disposed on the manifold interfacing the actuatable film layer. In operation, the pump can be in an unactuated state wherein the actuatable film layer is disposed against the surface of the substrate or an actuated state wherein at least a portion of the flexible layer and a corresponding portion of the actuatable film layer are deflected into a corresponding void volume thus forming a fluidic volume between the deflected portion of the actuatable film layer and the surface of the substrate. In the actuated state, there is a fluidic gap between immediately adjacent void volumes formed by a thinned region of the flexible layer at a point of contact with a top surface of a wall section.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Applicant: RHEONIX, INC.
    Inventors: Lincoln C. Young, Peng Zhou
  • Publication number: 20150139821
    Abstract: A combination of a chamber wall and the flexible membrane defines a pump chamber in a diaphragm pump. The pump chamber includes one or more internal surfaces that are modified to include a pattern of a pattern of channel surface regions. The channel surface regions provide unobstructed pathways to a respective opening disposed on an internal surface of the chamber wall. For example, as discussed herein, presence of the channel surface regions ensures that the facing of the flexible membrane does not needlessly stick (as a result of residual suction) to an inside surface of the chamber wall during a portion of the pump stroke in which negative pressure is applied to a backing of the flexible membrane. In other words, the channel surface regions distribute relief pressure along the inside surface of the pump chamber wall.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventors: Jesse E. Ambrosina, Benajamin G. Powers, Alexander J. Segit, David I. Nazzaro
  • Patent number: 9033682
    Abstract: A hand pump (16) includes a housing (22) having an inlet (18) and an outlet (26) and an actuating body (32) movably mounted in the housing axially and a membrane (46) with a flexible ring section (48) surrounding the stroke axis (34). During stroke movement, the actuating body (32) is pressed with the membrane (46) against the force of an elastic element (42) from a resting position (I) into the pump housing (22) and into an actuating position, and returned to the resting position (I) by the elastic element (72). Thus, the volume of a pump chamber (20) can be modified.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 19, 2015
    Assignee: Mann+Hummel GMBH
    Inventor: Christian Thalmann
  • Patent number: 9028224
    Abstract: A double diaphragm pump is provided. The pump includes an inlet manifold, an outlet manifold, an air valve housing, first and second diaphragm housings, and a collar. The inlet manifold has at least one passageway configured to direct fluid from an inlet port on the inlet manifold. The outlet manifold has at least one passageway configured to direct fluid to an outlet port on the outlet manifold. Each of the housings is in selective fluid communication with the inlet and outlet manifolds. The collar is configured to be rotatably attached to the inlet manifold and the pump.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 12, 2015
    Assignee: Tuthill Corporation
    Inventors: Thomas R. Headley, Benjamin R. Freiburger
  • Publication number: 20150125319
    Abstract: A pumping cassette including a housing having at least two inlet fluid lines and at least two outlet fluid lines. At least one balancing pod within the housing and in fluid connection with the fluid paths. The balancing pod balances the flow of a first fluid and the flow of a second fluid such that the volume of the first fluid equals the volume of the second fluid. The balancing pod also includes a membrane that forms two balancing chambers. Also included in the cassette is at least two reciprocating pressure displacement membrane pumps. The pumps are within the housing and they pump the fluid from a fluid inlet to a fluid outlet line and pump the second fluid from a fluid inlet to a fluid outlet.
    Type: Application
    Filed: January 5, 2015
    Publication date: May 7, 2015
    Applicant: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Michael J. Wilt, Kevin L. Grant, James D. Dale, Brian D. Tracey
  • Publication number: 20150125318
    Abstract: A pump comprising a housing having a cavity and a diaphragm positioned therein configured to fluidly separate the cavity into a driving chamber and a fluid chamber. The pump further includes a port that connects the driving chamber to a vacuum source. The port configured to have an open state and a closed state such that a fluid enters the fluid chamber when the port is in the open state, and wherein the fluid exits the fluid chamber when the port is in the closed state.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 7, 2015
    Applicant: ALLEGIANCE CORPORATION
    Inventors: Patrick Christopher Tetzlaff, Brian Thomas Leadingham
  • Publication number: 20150118078
    Abstract: A diaphragm pump includes a diaphragm cartridge assembly. The diaphragm cartridge is a self-contained unit having a diaphragm defining a pumped fluid side and a hydraulic fluid side and a seat receiving the hydraulic fluid side of the diaphragm and having a center opening. A biasing rod mounts to the diaphragm on the hydraulic fluid side and extending through the opening of the seat. A valve guide at an extended end of the biasing rod and a valve spool slidably mounts on the valve guide. A biasing element engages the seat and the valve guide. The pump may also include valve cartridges including a combined inlet check valve and discharge check valve.
    Type: Application
    Filed: October 31, 2014
    Publication date: April 30, 2015
    Inventor: Richard D. Hembree
  • Publication number: 20150104336
    Abstract: A diaphragm pump including at least three body plates and at least two diaphragm assemblies positioned between the at least three body plates. A series of drive fluid passages communicate with a drive side of the two diaphragm assemblies and a series of pumped fluid passages communicate with a pump side of the two diaphragm assemblies. There is an inlet check valve communicating with the series of pumped fluid passages and an outlet check valve communicating with the series of pumped fluid passages. At least one of the body plates is a doubled faced plate having either drive fluid passages on both faces or pumped fluid passages on both faces.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventor: Andrew C. Elliott
  • Patent number: 9004881
    Abstract: A fluid pump includes a pump body enclosing a first cavity and a second cavity, a first flexible member disposed within the first cavity, a second flexible member disposed within the second cavity, and a drive shaft extending between and attached to each of the first flexible member and the second flexible member. The drive shaft is configured to slide back and forth within the pump body. The pump also includes a first shift valve and a second shift valve disposed between the first flexible member and the second flexible member, operatively coupled to deliver a drive fluid to drive fluid chambers in alternating sequence. Some fluid pumps disclosed herein include a housing defining a modular-receiving cavity and a modular insert secured within the modular-receiving cavity by an interference fit. Methods of manufacturing and using fluid pumps are also disclosed.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: April 14, 2015
    Assignee: Simmons Development, LLC
    Inventors: Tom M. Simmons, John M. Simmons, David M. Simmons, Bruce Johnson
  • Patent number: 8967036
    Abstract: A diaphragm pump (10) having a pump body (11) providing opposing pump chambers (12, 13). Mounted in the body is a piston assembly (14) having pistons (15) joined by a piston rod (16). Each piston (15) is sealingly connected to the body (11) by a diaphragm (22) so that each of the chambers (12, 13) is divided into a first and a second sub-chamber, with the flow of fluid being pumped is governed by a pair of valves (30). Each valve (30) includes a base (31) to which there is movably attached a movable valve member (35).
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: March 3, 2015
    Assignee: Joe Santa & Associates Pty Limited
    Inventor: David Luiz Santa
  • Publication number: 20150050166
    Abstract: Embodiments of the present invention relate generally to certain types of reciprocating positive-displacement pumps (which may be referred to hereinafter as “pods,” “pump pods,” or “pod pumps”) used to pump fluids, such as a biological fluid (e.g., blood or peritoneal fluid), a therapeutic fluid (e.g., a medication solution), or a surfactant fluid. The pumps may be configured specifically to impart low shear forces and low turbulence on the fluid as the fluid is pumped from an inlet to an outlet. Such pumps may be particularly useful in pumping fluids that may be damaged by such shear forces (e.g., blood, and particularly heated blood, which is prone to hemolysis) or turbulence (e.g., surfectants or other fluids that may foam or otherwise be damaged or become unstable in the presence of turbulence).
    Type: Application
    Filed: October 27, 2014
    Publication date: February 19, 2015
    Applicant: DEKA Products Limited Partnership
    Inventors: Brian D. Tracey, Larry B. Gray, Jason A. Demers, James D. Dale, N. Christopher Perry, Michael J. Wilt
  • Patent number: 8951023
    Abstract: Pumping systems and methods for delivering a plurality of different pumpable materials serially at a location at substantially the same flow rate includes a plurality of diaphragm pumps, wherein each diaphragm pump has a first chamber for receiving a hydraulic fluid from a first and/or second hydraulic fluid source and a second chamber for receiving a material to be pumped from one of a plurality of pumpable material sources. A sensor is provided for detecting the pressure of the hydraulic fluid in each of the first chambers of the plurality of diaphragm pumps and is operable to activate the source of hydraulic fluid to ensure that the hydraulic fluid in each of the first chambers of the plurality of diaphragm pumps has an equivalent pressure.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: February 10, 2015
    Assignee: Stratabolt (Proprietary) Limited
    Inventor: Donald Michael O'Connor
  • Patent number: 8932032
    Abstract: A process fluid pump can include a pump chamber, an inlet valve, and an outlet valve. Diaphragm regions can define at least a portion of each of the pump chamber, the inlet valve, and the outlet valve. The diaphragm regions can each have an actuation region with a surface that is convexly shaped when the formed actuation region is in a natural unstressed first state, and each formed actuation region can be actuated by a motive fluid to transition to a second state in which the surface is non-convexly shaped.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: January 13, 2015
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Troy J. Orr
  • Patent number: 8932031
    Abstract: A pump system includes: a first coupler that receives a common input feed and provides two input feeds of fluid being drawn into the pump system, a second coupler that receives two output feeds and provides a common output feed of the pumped fluid, and a third coupler that receives a common gas feed providing two gas feeds to drive the pump system; two pumps, each having an inlet to receive a respective input feed, an outlet to provide a respective output feed of the pumped fluid, and a gas inlet to receive a respective gas feed so as to cause pumping action to drive the pump; and a base for holding the couplers with straps for attaching the two pump. The common gas feed causes pumping action in the two pumps and provides a constant almost pulsation free flow.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: January 13, 2015
    Assignee: Xylem IP Holdings LLC
    Inventors: Nathan D. Maguire, Robert J. Romero
  • Patent number: 8926294
    Abstract: A pumping cassette including a housing having at least two inlet fluid lines and at least two outlet fluid lines. At least one balancing pod within the housing and in fluid connection with the fluid paths. The balancing pod balances the flow of a first fluid and the flow of a second fluid such that the volume of the first fluid equals the volume of the second fluid. The balancing pod also includes a membrane that forms two balancing chambers. Also included in the cassette is at least two reciprocating pressure displacement membrane pumps. The pumps are within the housing and they pump the fluid from a fluid inlet to a fluid outlet line and pump the second fluid from a fluid inlet to a fluid outlet.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: January 6, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Michael J. Wilt, Kevin L. Grant, James D. Dale, Brian D. Tracey
  • Patent number: 8926291
    Abstract: A liquid pump control system for dry run avoidance and re-prime detection. Pump dry run conditions can be detected with improved sensitivity by measuring pump cycle speed. Pump cycle speed is determined from sensors including pressure sensors, diaphragm end of stroke indicators, check valve movement sensors, and other techniques. A controller closes a valve to reduce pump cycle speed by reducing drive air pressure or by deadheading the pump liquid outlet. When the pump re-primes, the valve is opened, pump cycle speed increases, and pumping volume flow rate increases until a dry run condition is again encountered. Time delays can be introduced to delay shutting down or restarting the pump, for example to give a liquid source tank time to refill. The improved control sensitivity provides improved shut-down and re-start performance, reducing wear on the pump and reducing wasted drive air and energy consumption.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: January 6, 2015
    Inventors: Michael Orndorff, Scott Driscoll, Jevawn Roberts
  • Publication number: 20150004003
    Abstract: Illustrative embodiments of diaphragm pumps, and pre-charging systems for use with such pumps, are disclosed. In at least one illustrative embodiment, a diaphragm pump may comprise a first diaphragm that separates a cavity into a motive fluid chamber and a pumped media chamber, a charge chamber having a controlled volume, wherein the controlled volume is adjustable to vary a controlled mass of compressed fluid capable of being stored in the charge chamber, and one or more valves configured to (i) fluidly couple the motive fluid chamber to an exhaust chamber during a first stroke period, (ii) fluidly couple the charge chamber to a compressed fluid inlet during at least a portion of the first stroke period, and (iii) fluidly couple the charge chamber to the motive fluid chamber during a second stroke period.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Inventors: Jevawn Sebastian Roberts, Michael Brace Orndorff
  • Publication number: 20150004019
    Abstract: In at least one illustrative embodiment, a diaphragm pump may comprise a sleeve formed to include (i) a bore extending along a longitudinal axis and (ii) a sleeve port that opens to the bore, and a spool supported in the bore of the sleeve and formed to include a spool port, the spool being configured to move with a diaphragm during at least a portion of a stroke of the diaphragm such that the spool slides relative to the sleeve and, when the diaphragm reaches a turndown position that is between first and second end-of-stroke positions, the spool port aligns with the sleeve port to cause a pilot signal to be supplied to a cut-off valve. At least one of the sleeve and the spool may be rotatable about the longitudinal axis to adjust a location of the turndown position relative to the first and second end-of-stroke positions.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Inventors: Jevawn Sebastian Roberts, Michael Brace Orndorff
  • Publication number: 20140341755
    Abstract: A pump system for producing fluids from a reservoir using a wellbore having a vertical section with a casing defining an annulus, a transitional section and a horizontal section, and a production tubing having a vertical section and a horizontal section, wherein the system includes a completion with an isolation device in the annulus near the bottom of the vertical section, a gas/liquid separator for receiving produced fluids from the horizontal section, and a vertical lift pump; a continuous flow path from the terminus of the production tubing to the vertical section; a plurality of horizontal pumps in the horizontal section, each having an intake exposed to the reservoir and an outlet in the continuous flow path. The horizontal length of the production tubing is closed to the reservoir except through the horizontal pumps.
    Type: Application
    Filed: December 17, 2012
    Publication date: November 20, 2014
    Applicant: RAISE PRODUCTION, INC.
    Inventors: Eric Laing, Geoff Steele, Dan Fletcher, Herve Ohmer
  • Patent number: 8888469
    Abstract: A hydraulically-controlled diaphragm pump including a pump chamber formed between a pump head and a pump body, a constant volume intermediate hydraulic chamber formed in the pump body and including a piston driven with reciprocating motion inside the intermediate chamber, a leak compensation volume for compensating leaks from the intermediate chamber being connected thereto by a top-up channel via a free check valve that is not rated and that passes fluid towards the working chamber. The check valve and at least a portion of the compensation volume are housed in a body fitted to the pump body at the high point of the intermediate hydraulic chamber in the working position of the pump.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: November 18, 2014
    Assignee: Milton Roy Europe
    Inventor: Rémy Lefebvre
  • Patent number: 8888470
    Abstract: A pumping cassette, the cassette includes a housing. The housing includes at least one fluid port and at least one air vent port. The air vent port vents a fluid source outside the housing. The pumping cassette also includes at least one reciprocating pressure displacement membrane pump within the housing. The pump pumps fluid.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: November 18, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Michael J. Wilt, Kevin L. Grant, James D. Dale, Brian Tracey
  • Patent number: 8870549
    Abstract: Reciprocating positive-displacement membrane pumps (which may be referred to hereinafter as “pods,” “pump pods,” or “pod pumps”) used to pump fluids, such as a biological fluid (e.g., blood or peritoneal fluid), a therapeutic fluid (e.g., a medication solution), or a surfactant fluid are disclosed. The speed of a pump stroke can be adjusted by altering a frequency of pressure pulses delivered to the pump membrane during a fill stroke or a delivery stroke of the pump. A pumping algorithm may divide a pump stroke into an initial pumping period and a end-of-stroke pumping period, with the pressure pulse duration being longer during the initial pumping period. This arrangement may allow for a minimum pump flow rate while also providing a pressure ripple that can be used to detect the end of a pump stroke.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: October 28, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Brian D. Tracey, Larry B. Gray, Jason A. Demers, James D. Dale, N. Christopher Perry, Michael J. Wilt, Scott A. Leonard
  • Patent number: 8858195
    Abstract: A central flow double diaphragm pump controlled by an operating fluid distribution module with a pivoting sealing member and protruding wing, that pivots on a low friction seal. The pump also includes a central pump body having an inlet and discharge manifolds, and two pumped fluid chambers in the central pump body each including a pumped fluid chamber inlet port and outlet port; within each chamber the inlet port is positioned higher than the outlet port. Two suction check valves are located in the central body, close to the suction inlet, above the pump's shaft, and these valves' outlets connect directly to the pumped fluid chamber inlet ports. Two discharge check valves are located in the central pump body, close to the discharge outlet and below the shaft, and the pumped fluid chamber outlet ports connect directly to these valves' inlets. Removable access caps are included above the check valves.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: October 14, 2014
    Assignee: Samoa Industrial S.A.
    Inventor: Alberto Gonzalez-Moratiel Alvarez
  • Patent number: 8845305
    Abstract: A diaphragm pump (10) having a pump body (11) providing opposing pump chambers (12, 13). Mounted in the body is a piston assembly (14) having pistons (15) joined by a piston rod (16). Each piston (15) is sealingly connected to the body (11) by a diaphragm (22) so that each of the chambers (12, 13) is divided into a first and a second sub-chamber, with the flow of fluid being pumped is governed by a pair of valves (30). Each valve (30) includes a base (31) to which there is movably attached a movable valve member (35).
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: September 30, 2014
    Assignee: Joe Santa & Associates Pty Limited
    Inventor: David Luiz Santa
  • Patent number: 8845306
    Abstract: A pumping system comprising a membrane pump (1) for pumping a medium into or out of a vessel (6), the membrane pump comprising an actuating member (13) for moving a membrane (3) in a first direction from a first end position to a second end position against the action of a spring (12), the membrane being movable in the opposite direction from the second end position to the first end position under the action of the spring. The pumping system comprises sensing means (14) for generating a measuring value representing the location of said first end position of the membrane (3), and processing means (17) for establishing a pressure value representing the pressure inside a vessel (6) connected to an inlet (5) or outlet (24) of a pump chamber (4), the processing means (17) being adapted to establish said pressure value based on said measuring value.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 30, 2014
    Assignee: Xavitech AB
    Inventor: Johan Stenberg
  • Patent number: 8834136
    Abstract: An undulating diaphragm pump having a propulsion chamber for receiving said diaphragm, wherein the diaphragm has mechanical characteristics that vary from an inlet of the propulsion chamber towards an outlet of the propulsion chamber in such a manner that, when the diaphragm is actuated to deform with a traveling wave that propagates from the inlet towards the outlet of the propulsion chamber in order to propel the fluid, the propagation speed of the wave in the diaphragm in any cross-section relative to the movement of the fluid inside the propulsion chamber is equal to or greater than the mean travel speed of the fluid in said section.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 16, 2014
    Assignee: AMS R&D SAS
    Inventor: Jean-Baptiste Drevet
  • Patent number: 8821130
    Abstract: A pump includes a housing defining an interior volume, a diaphragm partitioning the interior volume into a pumping chamber and an actuating chamber, a diaphragm support associated with the actuating chamber and configured to limit movement of the diaphragm, and a dispersion element coupled to the housing. The dispersion element is configured to laterally distribute a fluid within the pump.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: September 2, 2014
    Assignee: Oshkosh Corporation
    Inventors: Roy Venton-Walters, Aaron J. Rositch, Erik Ellifson, Jason J. Zuleger, Joseph Krebs
  • Publication number: 20140241905
    Abstract: Illustrative embodiments of positive displacement pumps utilizing pressure compensating calibration, as well as related systems and methods, are disclosed. In one illustrative embodiment, a method of operating a positive displacement pump includes sensing, with a pressure sensor disposed at a fluid outlet of the positive displacement pump, a back pressure at the fluid outlet, transmitting a pressure signal associated with the sensed back pressure from the pressure sensor to a controller of the positive displacement pump, and identifying, on the controller, a volume of fluid pumped by the positive displacement pump using the pressure signal.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: INGERSOLL-RAND COMPANY
    Inventor: Warren Andrew Seith
  • Publication number: 20140227110
    Abstract: Illustrative embodiments of diaphragm pumps having an automatic priming function, as well as related systems and methods, are disclosed. In one illustrative embodiment, a method of priming a diaphragm pump includes sensing, with a pressure sensor disposed at a fluid outlet of the diaphragm pump, a pressure of a fluid being pumped by the diaphragm pump, transmitting a pressure signal associated with the sensed pressure from the pressure sensor to a controller of the diaphragm pump, and identifying, on the controller, whether the diaphragm pump is primed by determining whether a characteristic of the pressure signal has reached a threshold.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: INGERSOLL-RAND COMPANY
    Inventor: Warren Andrew Seith
  • Patent number: 8801404
    Abstract: One or more techniques and/or systems are disclosed for increasing compressed air efficiency in a pump that utilizes an air efficiency device in order to optimize the amount of a compressed air in the pump. The air efficiency device may allow for controlling the operation of the air operated diaphragm pump by reducing the flow of compressed air supplied to the pump as the pump moves between first and second diaphragm positions. A sensor may be used to monitor velocity of the diaphragm assemblies. In turn, full position feedback is possible so that the pump self-adjusts to determine the optimum, or close to optimum, turndown point of the diaphragm assemblies. As such, air savings are achieved by minimizing the amount of required compressed air.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: August 12, 2014
    Assignee: Warren Rupp, Inc.
    Inventors: Mark D. McCourt, Haihong Zhu, Michael Brace Orndorff, Jevawn Sebastian Roberts, Charles Randolph Abbott