Abstract: The invention is a rotary engine comprised of at least one and usually a plurality of independent partial engines. Two different processes can be carried out in each independent partial engine both of which are used to operate the engines. The processes of the invention are basically two different and separate closed cycle processes that can both operate within the same geometric confinement, i.e. the same expansion chamber or expansion chambers, at the same time. The primary process performs the main function of converting heat to kinetic energy and is necessary in all engines of the invention. It is a unique process that uses the expansion of gases and also the contraction of the condensing gases after their expansion. The secondary process is needed for start-up and to provide additional power in case the engine might go into a stall. In most engines of the invention both processes are needed to operate the engine.
Abstract: In a cylinder dividing mechanism of a pneumatic tool, the first and second air pressure driving spaces are formed in the chamber, the first and second external channels are set externally on the circumferential wall, the first external channel is connected with the first air intake and air intake/exhaust dividing controller, and the second external channel is connected with the second air intake and air intake/exhaust dividing controller. As such, a single chamber is provided with two air pressure driving spaces for synchronous compression and driving of the rotor. The driving torsion for the pneumatic tool could be multiplied without need of increasing the volume of the chamber of the cylinder to cater for the need of the users with improved applicability.
Abstract: A rotary piston compressor comprises a cylinder block (100), an eccentric rotor group (200) being fitted in the chamber of the cylinder block, a shaft (2) and a separating means (40). The eccentric rotor group (200) comprises a cylindrical rotor (4) provided on the shaft (2) and rotatable therewith, and a collar (3) rotationally provided on the cylindrical rotor (4). The separating means (40) is used for separating the axially extended sealed chamber, which is formed between the outer peripheral surface of the eccentric rotor group (200) and the inner wall of the cylinder block (100), into an induction chamber (70) and an exhaustion chamber (71).
Abstract: A rotary device has a housing with an elliptical inside surface surrounding an elliptical rotor. Vane and seal assemblies on the rotor and housing are controlled with cam and linkages to provide positive effective gas seals between the housing and rotor. A slack adjuster maintains lateral sealing relationships between the housing vale and seal assemblies and opposite side walls of the housing.
Abstract: In a globoid worm type compressor or expander comprising a casing, a globoid worm rotor in the casing and pinions meshing with the worm rotor, provision is made to effect sealing between the thread of the worm and each tooth of the pinions. The arrangement is such that the pinion is mounted on its shaft with the intermediary of a resilient member so that each tooth may be slightly displaced in both circumferential and diametric directions whereby to adapt itself to the thread of the worm to provide gas-tight seal between the tooth and the thread of the worm.