Coating Patents (Class 419/35)
  • Patent number: 10408061
    Abstract: An article includes a body that has a first section and a second section bonded with the first section. The first section is formed with a first material that has a first microstructure and the second section is formed of a second material that has a second, different microstructure.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: September 10, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Thomas N. Slavens, Mark Zelesky, Mosheshe Camara-Khary Blake
  • Patent number: 9994702
    Abstract: Provided is a liquid material for forming a three-dimensional object, the liquid material adapted to be delivered to a powder material for forming a three-dimensional object to harden the powder material, the powder material containing an organic material and a base material, the liquid material including a cross-linking agent cross-linkable with the organic material and a resin having a glass transition temperature of 50° C. or higher or a melting point of 50° C. or higher.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: June 12, 2018
    Assignee: Ricoh Company, Ltd.
    Inventors: Keiko Osaka, Mariko Kojima, Yoshihiro Norikane, Hiroshi Iwata
  • Patent number: 9947916
    Abstract: A non-aqueous electrolyte secondary battery is provided that has both good safety and durability characteristics while at the same time has high charge/discharge capacity. The cathode active material for a non-aqueous electrolyte secondary battery of the present invention is a lithium nickel composite oxide to which at least two or more kinds of metal elements including aluminum are added, and comprises secondary particles that are composed of fine secondary particles having an average particle size of 2 ?m to 4 ?m, and rough secondary particles having an average particle size of 6 ?m to 15 ?m, with an overall average particle size of 5 ?m to 15 ?m; where the aluminum content of fine secondary particles (metal mole ratio: SA) is greater than the aluminum content of rough secondary particles (metal mole ratio: LA), and preferably the aluminum concentration ratio (SA/LA) is within the range 1.2 to 2.6.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: April 17, 2018
    Assignees: SUMITOMO METAL MINING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Syuhei Oda, Hiroyuki Toya, Katsuya Kase, Yutaka Oyama
  • Patent number: 9920578
    Abstract: A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: March 20, 2018
    Assignee: DIAMOND INNOVATIONS, INC.
    Inventors: Andrew Gledhill, Christopher Allen Long
  • Patent number: 9863622
    Abstract: An LED underwater light, which can be hand-held or mounted on an underwater camera housing, is switchable between two light modes. A first embodiment of the dive light is a focus light, used for initial focusing with a still underwater camera. Incorporated in the focus light is a red light source to which the focus light can be switched from initially projected white light. The switch is used to switch off a series of white LEDs while switching on a series of red LEDs. In another embodiment, the dive light is a flood/spot light, or with another two types of selectable LED arrays, and enables a diver to quickly switch between two types of light projection. Another feature is a laser beam projecting device within the housing, with a momentary switch on the housing to power the laser, as for pointing out underwater objects of interest, the laser beam being projected to the same area as the spot beam.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: January 9, 2018
    Assignee: Light & Motion Industries
    Inventors: Jarod Armer, Christopher McCaslin, Beau Jesse Robertson, Theodore Dale Masek, Brooks Lame
  • Patent number: 9767956
    Abstract: A composite particle includes: a particle composed of a soft magnetic metallic material, and a coating layer composed of a soft magnetic metallic material having a different composition from that of the particle and fusion-bonded to the particle so as to cover the particle, wherein when the Vickers hardness of the particle is represented by HV1 and the Vickers hardness of the coating layer is represented by HV2, HV1 and HV2 satisfy the following relationship: 100?HV1?HV2, and when half of the projected area circle equivalent diameter of the particle is represented by r and the average thickness of the coating layer is represented by t, r and t satisfy the following relationship: 0.05?t/r?1.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: September 19, 2017
    Assignee: Seiko Epson Corporation
    Inventors: Isamu Otsuka, Yu Maeta, Toshikuni Sato
  • Patent number: 9481036
    Abstract: A method for fabricating porous metal constructs (such as porous Ti constructs) which may be used as implants in bone repair is disclosed. The method employs a new saltbath sintering process coupled with conventional powder metallurgy technology which is capable of fabricating porous metal constructs with controlled porosity and pore size having a lower production cost than conventional powder metallurgy methods.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: November 1, 2016
    Assignee: The Curators of the University of Missouri
    Inventors: B. Sonny Bal, Tieshu Huang, Mohamed N. Rahaman
  • Patent number: 9446480
    Abstract: A method for forming a reinforced cladding on a superalloy substrate. The method includes forming a melt pool including a superalloy material and a plurality of discrete carbon reinforcing structures on the superalloy substrate via application of energy from an energy source. The method further includes cooling the melt pool to form a reinforced cladding including the superalloy material and the carbon reinforcing structures on the substrate.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: September 20, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Gerald J. Bruck, Ahmed Kamel
  • Patent number: 9260647
    Abstract: A method for breaking the viscosity of an aqueous fluid gelled with a viscoelastic surfactant (VES) is disclosed. The method includes providing an aqueous fluid and adding to the aqueous fluid, in any order: at least one VES comprising a non-ionic surfactant, cationic surfactant, amphoteric surfactant or zwitterionic surfactant, or a combination thereof, in an amount sufficient to form a gelled aqueous fluid comprising a plurality of elongated micelles and having a viscosity, and a plurality of metallic particles to produce a mixture comprising dispersed metallic particles dispersed within the gelled aqueous fluid. The method also includes dissolving the metallic particles in the gelled aqueous fluid to provide a source of at least one transition metal ion in an amount effective to reduce the viscosity.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: February 16, 2016
    Assignee: Baker Hughes Incorporated
    Inventor: James B. Crews
  • Patent number: 9108246
    Abstract: The present invention provides a method for mixing a raw material powder for powder metallurgy that allows efficient mixing at a low cost with a simple measure and easy adjustment of the apparent density by performing first agitation mixing in which a powder mixture obtained by adding, to an iron powder, one or two or more members selected from lubricant powders, free-machining agent powders, and lubricant powders for sliding surface, an alloying powder, and a binding agent is agitated while increasing the temperature to a temperature TK equal to or higher than the melting point TM of the binding agent, the resultant is agitated while maintaining the temperature TK, and the resultant is further agitated while reducing the temperature from the temperature TK, and performing second agitation mixing in which the obtained powder mixture is agitated while cooling.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 18, 2015
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiaki Maeda, Kiyoshi Makino, Kotaro Okawa, Ichio Sakurada, Kuniaki Ogura, Yukiko Ozaki
  • Publication number: 20150147218
    Abstract: Disclosed herein is an apparatus for use downhole comprising an expandable component; a support member that has a selected corrosion rate; wherein the support member is disposed on the expandable component; where the support member comprises a plurality of particles fused together; the particles comprising a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal having a different corrosion potential from the second metal; the first layer comprising a third metal having a different corrosion potential from the first metal.
    Type: Application
    Filed: June 24, 2014
    Publication date: May 28, 2015
    Inventors: Oleg Antonovych Mazyar, Michael H. Johnson, Casey L. Walls
  • Patent number: 9039920
    Abstract: There are provided a permanent magnet and a manufacturing method thereof enabling carbon content contained in magnet particles to be reduced in advance before sintering even when wet milling is employed. Coarsely-milled magnet powder is further milled by a bead mill in a solvent together with an organometallic compound expressed with a structural formula of M-(OR)X (M represents V, Mo, Zr, Ta Ti W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the magnet powder. Thereafter, a compact body of compacted magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius to perform hydrogen calcination process. Thereafter, through sintering process, a permanent magnet 1 is formed.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 26, 2015
    Assignee: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20150115766
    Abstract: It is an objective of the invention to provide a dust core made of an Fe-based amorphous metal powder having excellent magnetic properties, in which the dust core has a higher-than-conventional density, excellent magnetic properties and a high mechanical strength. There is provided a dust core including a mixture powder compacted, the mixture powder including: an Fe-based amorphous metal powder having a crystallization temperature Tx (unit: K), the Fe-based amorphous metal powder being plastically deformed, the plastically deformed metal Fe-based amorphous metal powder having a filling factor in the dust core higher than 80% and not higher than 99%; and a resin binder having a melting point Tm (unit: K), in which the Tx and Tm satisfy a relationship of “Tm/Tx?0.70”.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 30, 2015
    Inventors: Masami TAGUCHI, Shigeho TANIGAWA, Shin NOGUCHI
  • Publication number: 20150050178
    Abstract: A soft magnetic composite (SMC) material is formed from atomized ferromagnetic particles. The particles of a predetermined size range are formed and are coated with at least one layer of electrically insulating nano-sized inorganic fillers to form insulated ferromagnetic powder as the SMC material. The particles are further coated with a lubricating agent to facilitated demoulding.
    Type: Application
    Filed: January 30, 2013
    Publication date: February 19, 2015
    Inventors: Chi Ming Chan, Kai Mo Ng
  • Patent number: 8911663
    Abstract: The present invention relates to ferromagnetic powders with an electrically insulating layer on iron particles intended for the manufacture of components having improved soft magnetic properties at low and medium frequencies. The invention comprises an iron powder coated with a dielectric insulating layer comprising boron bearing compounds to form an insulated ferromagnetic powder. The present invention also relates to a method of making these insulated ferromagnetic powders. The present invention further relates to a method of synthesizing a product made from insulated ferromagnetic powders via a post-heat treatment at a moderate temperature (300° C. to 700° C.), to form a glass-like coating which acts as an electrical insulator. A preferred embodiment of the present invention is obtained when small amounts of alkali bearing compounds are added to the precursors to modify the coating chemistry and significantly increase the electrical resistivity after heat treatment.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 16, 2014
    Assignee: Quebec Metal Powders, Ltd.
    Inventors: Guillem Vachon, Claude Gelinas
  • Patent number: 8906822
    Abstract: This disclosure describes a coating composition comprising: MnxOy, MnCr2O4, or combinations thereof in a first region of a coating having a first thickness, wherein x and y are integers between 1 and 7; and X6W6(Siz, C1-z) in a second region of the coating having a second thickness, wherein X is Ni or a mixture of Ni and one or more transition metals and z ranges from 0 to 1.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: December 9, 2014
    Assignee: BASF Qtech, Inc.
    Inventors: Sabino Steven Anthony Petrone, Robert Leslie Deuis, Fuwing Kong, Yan Chen
  • Patent number: 8845957
    Abstract: A method for producing a magnetizable metal shaped body comprising a ferromagnetic starting material that is present in powder and in particulate form, using the following steps: (a) first compaction of the starting material (S3) such that adjoining particles become bonded to each other by means of positive adhesion and/or integral bonding in sections along the peripheral surfaces thereof and while forming hollow spaces, (b) creating an electrically isolating surface coating on the peripheral surfaces of the particles in regions outside the joining sections (S4), and (c) second compaction of the particles (S5) provided with the surface coating, such that the hollow spaces are reduced in size or eliminated.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 30, 2014
    Assignees: ETO Magnetic GmbH, Kennametal Europe GmbH
    Inventors: Paul Guempel, Stefan Glaeser, Beat Hofer
  • Publication number: 20140203205
    Abstract: There is provided a double-layer composite metal powder particle including an Fe-based powder, an insulating layer formed on a surface of the Fe-based powder, and a lubricating wax coating layer formed on the insulating layer.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 24, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hak Kwan KIM, No Il PARK, Sung Yong AN
  • Patent number: 8771391
    Abstract: Methods of forming a polycrystalline compact using at least one metal salt as a sintering aid. Such methods may include forming a mixture of the at least one metal salt and a plurality of grains of hard material and sintering the mixture to form a hard polycrystalline material. During sintering, the metal salt may melt or react with another compound to form a liquid that acts as a lubricant to promote rearrangement and packing of the grains of hard material. The metal salt may, thus, enable formation of hard polycrystalline material having increased density, abrasion resistance, or strength. The metal salt may also act as a getter to remove impurities (e.g., catalyst material) during sintering. The methods may also be employed to faun cutting elements and earth-boring tools.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: July 8, 2014
    Assignee: Baker Hughes Incorporated
    Inventor: Anthony A. DiGiovanni
  • Patent number: 8747516
    Abstract: Flowability-improving particles are adhered to surfaces of iron powder through a binder to provide an iron-based powder for powder metallurgy which has excellent flowability and which is capable of uniformly filling a thin-walled cavity and compaction with high performance of ejection force.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: June 10, 2014
    Assignee: JFE Steel Corporation
    Inventors: Tomoshige Ono, Shigeru Unami, Takashi Kawano, Yukiko Ozaki
  • Patent number: 8734561
    Abstract: A bonded metallurgical powder composition including: an iron-based powder having a weight average particle size in the range of 20-60 ?m, in an amount of at least 80 percent by weight of the composition, graphite powder in an amount between 0.15-1.0 percent by weight of the composition, a binding agent in an amount between 0.05-2.0 percent by weight of the composition, a flow agent in an amount between 0.001-0.2 percent by weight of the composition; wherein the graphite powder is bound to the iron-based powder particles by means of the binding agent, and wherein the powder composition has an apparent density of at least 3.10 g/cm3 and a hall flow rate of at most 30 s/50 g. Also, a method for producing a sintered component with improved strength from the inventive composition, as well as to a heat treated sintered component produced according to said method.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: May 27, 2014
    Assignee: Hoganas AB (Pub)
    Inventor: Mats Larsson
  • Patent number: 8728390
    Abstract: A method of making a permanent magnet includes a step of forming a coating on an alloy powder by physical vapor deposition. The alloy powder includes neodymium, iron, boron and other metals. The coating includes a component selected from the group consisting of dysprosium, terbium, iron, and the alloys thereof. The alloy powder is vibrated during formation of the coating. Finally, a permanent magnet is formed from the coated powder, the permanent magnet having a non-uniform distribution of dysprosium and/or terbium. A method of making a permanent magnet using a vibrating transport belt is also provided.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Yucong Wang
  • Patent number: 8663548
    Abstract: A composition may have metal nanoparticles having a diameter of 20 nanometers or less and have a fusion temperature of less than about 220° C. A method of fabricating the metal nanoparticles may include preparing a solvent, adding a precursor with a metal to the solvent, adding a first surfactant, mixing in a reducing agent, and adding in a second surfactant to stop nanoparticle formation. Copper and/or aluminum nanoparticle compositions formed may be used for lead-free soldering of electronic components to circuit boards. A composition may include nanoparticles, which may have a copper nanocore, an amorphous aluminum shell and an organic surfactant coating. A composition may have copper or aluminum nanoparticles. About 30-50% of the copper or aluminum nanoparticles may have a diameter of 20 nanometers or less, and the remaining 70-50% of the copper or aluminum nanoparticles may have a diameter greater than 20 nanometers.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 4, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Alfred A. Zinn
  • Publication number: 20130266471
    Abstract: A method of making a permanent magnet includes a step of forming a coating on an alloy powder by physical vapor deposition. The alloy powder includes neodymium, iron, boron and other metals. The coating includes a component selected from the group consisting of dysprosium, terbium, iron, and the alloys thereof. The alloy powder is vibrated during formation of the coating. Finally, a permanent magnet is formed from the coated powder, the permanent magnet having a non-uniform distribution of dysprosium and/or terbium. A method of making a permanent magnet using a vibrating transport belt is also provided.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Yucong Wang
  • Publication number: 20130266472
    Abstract: A method of making a permanent magnet includes a step of contacting a powder with a metal-containing vapor to form a coating on the powder. The alloy powder includes neodymium, iron, and boron. The metal-containing vapor includes a component selected from the group consisting of dysprosium, terbium, iron and alloys thereof. A permanent magnet is formed from the coated powder by compaction, sintering and subsequent heat treatment.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Yucong Wang
  • Patent number: 8535604
    Abstract: A method of producing composites of micro-engineered, coated particulates embedded in a matrix of metal, ceramic powders, or combinations thereof, capable of being tailored to exhibit application-specific desired thermal, physical and mechanical properties to form substitute materials for nickel, titanium, rhenium, magnesium, aluminum, graphite epoxy, and beryllium. The particulates are solid and/or hollow and may be coated with one or more layers of deposited materials before being combined within a substrate of powder metal, ceramic or some combination thereof which also may be coated. The combined micro-engineered nano design powder is consolidated using novel solid-state processes that prevent melting of the matrix and which involve the application of varying pressures to control the formation of the microstructure and resultant mechanical properties.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: September 17, 2013
    Inventors: Dean M. Baker, Henry S. Meeks
  • Publication number: 20130209308
    Abstract: A method of making a nanoscale metallic powder is disclosed. The method includes providing a base material comprising a metallic compound, wherein the base material is configured for chemical reduction by a reductant to form a metallic material. The method also includes forming a powder of the base material, the powder comprising a plurality of powder particles, the powder particles having an average particle size that is less than about 1 micron. The method further includes disposing the powder particles into a reactor together with the reductant under an environmental condition that promotes the chemical reduction of the base material and formation of a plurality of particles of the metallic material.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Michael H. Johnson, David Ernest Rodrigues
  • Patent number: 8460603
    Abstract: An object of the present invention is to provide an electrical discharge surface treatment-purpose electrode that stabilizes properties and a film-forming rate of a coating made by surface treatment that uses the electrode showing a narrow distribution in physical properties such as a composition and resistance. A method of manufacturing an electrical discharge surface treatment-purpose electrode according to the present invention is identified as a method of manufacturing an electrical discharge surface treatment-purpose electrode formed of a green compact made of a metal powder subjected to compression molding, characterized in that the method includes the step of forming a nitride coating by nitriding a surface of the metal powder, and the step of forming a green compact by subjecting the metal powder having its surface nitrided to compression molding.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: June 11, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Shigyo, Yoshikazu Nakano
  • Publication number: 20130084204
    Abstract: A method of making a permanent magnet and a permanent magnet. The method includes providing combining a core material and a surface material so that the surface concentration of dysprosium, terbium, or both in the surface material is high while simultaneously keeping the bulk concentration of dysprosium, terbium, or both low. From this, the magnet has a non-uniform distribution of dysprosium, terbium or both. Varying approaches to preparing the combined core and surface materials may be used to ensure that the surface powder effectively wraps around the core powder as a way to achieve the high surface concentration and low bulk concentration. In one form, the core material may be made from a neodymium-iron-boron permanent magnet precursor material.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 4, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: GM Global Technology Operations LLC
  • Publication number: 20130056674
    Abstract: A powder magnetic core of the present invention is a powder magnetic core that includes an insulating layer containing a particulate metal oxide between metal powders, in which the insulating layer contains Ca, P, O, Si, and C as elements. According to the present invention, it is possible to provide a powder magnetic core in which securing of a constant permeability characteristic under a high magnetic field and decrease in core loss are compatible with each other, and a method for producing the powder magnetic core.
    Type: Application
    Filed: April 8, 2011
    Publication date: March 7, 2013
    Inventors: Takashi Inagaki, Takehiro Shimoyama, Chio Ishihara, Tetsushi Maruyama
  • Publication number: 20130004359
    Abstract: A system for forming a bulk material having insulated boundaries from a metal material and a source of an insulating material is provided. The system includes a heating device, a deposition device, a coating device, and a support configured to support the bulk material. The heating device heats the metal material to form particles having a softened or molten state and the coating device coats the metal material with the insulating material from the source and the deposition device deposits particles of the metal material in the softened or molten state on the support to form the bulk material having insulated boundaries.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 3, 2013
    Inventor: Martin Hosek
  • Patent number: 8241557
    Abstract: An object of the present invention is to provide a method for producing a dust core wherein generation of iron oxide at grain boundaries in the dust core is unlikely to take place upon annealing of the dust core subjected to compaction, thus allowing excellent electromagnetic characteristics to be realized. Also, the following is provided: a method for producing a dust core, which comprises: a step of molding a magnetic powder comprising a powder for a dust core formed with an iron-based magnetic powder coated with a silicone resin into a dust core via compaction; and a step of annealing the dust core via heating so as to cause the silicone resin contained in the dust core to be partially formed into a silicate compound, wherein annealing of the dust core is carried out at a dew point of an inert gas of ?40° C. or lower in an inert gas atmosphere in the annealing step.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: August 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaki Sugiyama, Toshiya Yamaguchi, Shinjiro Saigusa, Mitsutoshi Akiyama
  • Publication number: 20120194310
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of densely sintering the entirety of the magnet without making a gap between a main phase and a grain boundary phase in the sintered magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M- (OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body formed through powder compaction is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, through sintering process, a permanent magnet is manufactured.
    Type: Application
    Filed: March 28, 2011
    Publication date: August 2, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120187328
    Abstract: There are provided a permanent magnet and a manufacturing method thereof enabling carbon content contained in magnet particles to be reduced in advance before sintering even when wet milling is employed. Coarsely-milled magnet powder is further milled by a bead mill in a solvent together with an organometallic compound expressed with a structural formula of M-(OR)X (M represents V, Mo, Zr, Ta Ti W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the magnet powder. Thereafter, a compact body of compacted magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius to perform hydrogen calcination process. Thereafter, through sintering process, a permanent magnet 1 is formed.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 26, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120187327
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of decreasing an activity level of a calcined body activated by a calcination process. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, desiccated magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, the powdery calcined body calcined through the calcination process in hydrogen is held for several hours in vacuum atmosphere at 200 through 600 degrees Celsius for a dehydrogenation process.
    Type: Application
    Filed: March 31, 2011
    Publication date: July 26, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120187329
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of densely sintering the entirety of the magnet without making a gap between a main phase and a grain boundary phase in the sintered magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)X (M represents Dy or Tb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body formed by powder compaction is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius for calcination process in hydrogen. Thereafter, through sintering process, the compacted-state calcined body is formed into a permanent magnet.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 26, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Toshinobu Hoshino, Takashi Ozaki
  • Publication number: 20120188049
    Abstract: A coil component is of the type where a helical coil is directly contacting a magnetic body, which is still capable of meeting the demand for electrical current amplification. A coil component, comprising a magnetic body mainly constituted by magnetic alloy grains, and a coil formed on the magnetic body; wherein an oxide film of the magnetic alloy grains is present on the surface of each of the magnetic alloy grains, and based on grain size by volume standard, the magnetic alloy grains have a d50 in a range of 3.0 to 20.0 ?m, d10/d50 in a range of 0.1 to 0.7, and d90/d50 in a range of 1.4 to 5.0.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 26, 2012
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Hitoshi MATSUURA, Tomomi KOBAYASHI, Yoshikazu OKINO, Hidemi IWAO, Kenichiro NOGI, Kenji OTAKE
  • Publication number: 20120187326
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of decreasing an activity level of a calcined body activated by a calcination process. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M?(OR)x (M represents Dy or Tb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, desiccated magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, the powdery calcined body calcined through the calcination process in hydrogen is held for several hours in vacuum atmosphere at 200 through 600 degrees Celsius for a dehydrogenation process.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 26, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Toshinobu Hoshino, Takashi Ozaki
  • Publication number: 20120182109
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of inhibiting grain growth of magnet grains having single domain particle size during sintering so as to improve magnetic properties. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, the desiccated magnet powder is calcined by utilizing plasma heating and the powdery calcined body is sintered so as to form a permanent magnet 1.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120182108
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of densely sintering the entirety of the magnet without making a gap between a main phase and a grain boundary phase in the sintered magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, desiccated magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, the powdery calcined body calcined through the calcination process in hydrogen is held for several hours in vacuum atmosphere at 200 through 600 degrees Celsius for a dehydrogenation process.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120181476
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of efficiently concentrating traces of Dy or Tb in grain boundaries of the magnet and sufficiently improving coercive force due to Dy or Tb while reducing amount of Dy or Tb to be used. To fine powder of milled neodymium magnet material is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents Dy or Tb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body compacted through powder compaction is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius for a hydrogen calcination process. Thereafter, through sintering process, the compact body is formed into a permanent magnet.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Toshinobu Hoshino, Takashi Ozaki
  • Publication number: 20120182107
    Abstract: There are provided a permanent magnet and a manufacturing method thereof that enables concentration of V, Mo, Zr, Ta, Ti, W or Nb contained in an organometallic compound in grain boundaries of the permanent magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body obtained by compacting the magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius so as to perform a calcination process in hydrogen. Thereafter, through sintering, a permanent magnet is manufactured.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120182105
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of preventing degrade in the magnetic properties by densely sintering the entirety of the magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)X (M represents Dy or Tb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, the desiccated magnet powder is calcined by utilizing plasma heating and the powdery calcined body is sintered so as to form a permanent magnet 1.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120182106
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of preventing grain growth in a main phase and enabling rare-earth rich phase to be uniformly dispersed. To fine powder of milled neodymium magnet material is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (in the formula, M represents Cu or Al, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body formed by compacting the above neodymium magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, through a sintering process, a permanent magnet is manufactured.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20120181475
    Abstract: There are provided a permanent magnet and a manufacturing method thereof enabling carbon content contained in magnet particles to be reduced in advance before sintering even when wet milling is employed. Coarsely-milled magnet powder is further milled by a bead mill in a solvent together with an organometallic compound expressed with a structural formula of M?(OR)x (M includes at least one of neodymium, praseodymium, dysprosium and terbium, each being a rare earth element, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the magnet powder. Thereafter, a compact body of compacted magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius to perform hydrogen calcination process. Thereafter, through sintering process, a permanent magnet 1 is manufactured.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Patent number: 8075838
    Abstract: A compression molding which is high in both dimensional accuracy and mechanical strength is difficult to manufacture by a powder molding process. Especially, a molding including a soft magnetic material with high soft magnetic properties is difficult to manufacture. A composite metal molding according to the present invention includes metal particles and the carbide of a resin intervening among the particles. It is manufactured by coating metal particles with a resin, molding the prepared molding material under pressure into a predetermined shape, and heating the prepared pressurized preform to calcine the resin and weld mutually the particles. The carbide of the resin has a weight ratio of 0.001 to 2% to the metal particles when the particles have their proportion expressed as 100. The particles have a weld ratio of 10 to 80%. The particles preferably contain a soft magnetic material and the resin is preferably a furan resin.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 13, 2011
    Assignee: Canon Denshi Kabushiki Kaisha
    Inventors: Junji Hamana, Isamu Kawada, Naoaki Maruyama
  • Patent number: 8062582
    Abstract: The present invention provides metal powder compositions for pressed powder metallurgy and methods of forming metal parts using the metal powder compositions. In each embodiment of the invention, the outer surface of primary metal particles in the metal powder composition is chemically cleaned to remove oxides in situ, which provides ideal conditions for achieving near full density metal parts when the metal powder compositions are sintered.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: November 22, 2011
    Assignee: Apex Advanced Technologies, LLC
    Inventors: Dennis L. Hammond, Richard Phillips
  • Patent number: 8034153
    Abstract: A composition for coating sliding or rolling or fretting or impacting members is formed by preparing a composite powder of TiB2 and BN, with a TiB2 to BN ratio ranging from 1:7 to 20:1, and a metallic matrix selected from the group consisting of nickel, chromium, iron, cobalt, aluminum, tungsten, carbon and alloys thereof.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 11, 2011
    Assignee: Momentive Performances Materials, Inc.
    Inventors: Robert Marchiando, Jon Leist
  • Patent number: 7976643
    Abstract: A nanocomposite magnet containing an Fe particle in the grain boundary of an Nd2Fe14B compound particle is produced by mixing a dispersion of the Nd2Fe14B compound particle in a solvent containing a surface-active agent and a dispersion of the Fe particle in a solvent containing a surface-active agent, and then supporting the Fe particle on the surface of the Nd2Fe14B compound particle by stirring the mixture of the dispersions while adding an amphiphilic solvent, and then performing the drying and the drying and the sintering.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: July 12, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritsugu Sakuma, Tetsuya Shoji
  • Publication number: 20110135530
    Abstract: A method of making a powder metal compact is disclosed. The method includes forming a coated metallic powder comprising a plurality of coated metallic powder particles having particle cores with nanoscale metallic coating layers disposed thereon, wherein the metallic coating layers have a chemical composition and the particle cores have a chemical composition that is different than the chemical composition of the metallic coating layers. The method also includes applying a predetermined temperature and a predetermined pressure to the coated powder particles sufficient to form a powder metal compact by solid-phase sintering of the nanoscale metallic coating layers of the plurality of coated powder particles to form a substantially-continuous, cellular nanomatrix of a nanomatrix material, a plurality of dispersed particles dispersed within the cellular nanomatrix and a solid-state bond layer extending throughout the cellular nanomatrix.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Inventors: Zhiyue Xu, Gaurav Agrawal, Bobby Salinas