Different Temperatures Patents (Class 419/54)
  • Patent number: 5749041
    Abstract: A method of fabricating articles, such as prototype parts and prototype tooling for injection molding, is disclosed. The method begins with the fabrication of the article in a "green" state by the selective laser sintering, or another additive thermal process, applied to a composite powder, preferably a powder of metal particles coated with a thermoplastic polymer. Both the green article and also an aqueous emulsion of a thermosetting material are then preheated to a temperature below the glass transition temperature of the thermoplastic polymer, and the green article is then infiltrated with the aqueous emulsion. The thermosetting material may be a thermosetting polymer with an appropriate cross-linking agent, or may be a cross-linking agent that will react with the thermoplastic binder polymer. After infiltration, the article is dried, and a rigid skeleton of a thermosetting material is now present within the structure of the article. Further processing may now be performed.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: May 5, 1998
    Assignee: DTM Corporation
    Inventors: Udaykumar Lakshminarayan, Kevin P. McAlea, Richard B. Booth
  • Patent number: 5744433
    Abstract: A lubricant for metallurgical powder compositions contains an oligomer of amide type, which has a weight-average molecular weight M.sub.w of 30,000 at the most. A metal-powder composition containing the lubricant, as well as a method for making sintered products by using the lubricant, are also disclosed. Further, the use of the lubricant in warm compaction is described.
    Type: Grant
    Filed: November 29, 1996
    Date of Patent: April 28, 1998
    Assignee: Hoganas AB
    Inventors: Helge Storstrom, Bjorn Johansson
  • Patent number: 5745834
    Abstract: A method of free form fabrication of metallic components, typically using computer aided design data, comprises selective laser binding and transient liquid sintering of blended powders. The powder blend includes a base metal alloy, a lower melting temperature alloy, and a polymer binder that constitutes approximately 5-15% of the total blend. A preform part is built up, layer-by-layer, by localized laser melting of the polymer constituent, which rapidly resolidifies to bind the metal particles. The binder is eliminated from the preform part by heating in a vacuum furnace at low atmospheric pressure. The preform part may require support during elimination of the polymer binder and subsequent densification by controlled heat treatment. Densification is performed at a temperature above the melting point of the lower temperature alloy but below the melting point of the base metal alloy to produce transient liquid sintering of the part to near full density with desired shape and dimensional tolerances.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: April 28, 1998
    Assignee: Rockwell International Corporation
    Inventors: Clifford C. Bampton, Robert Burkett, Hong-Son Ryang
  • Patent number: 5740516
    Abstract: A firearm bolt prepared from an alloy of tungsten, nickel and iron having a density of about from 14.1 g/cc to 18.0 g/cc. The alloy preferably also contains at least one of molybdenum, cobalt, rhenium, tantalum and gold. The alloy is preferably manufactured by standard powder metallurgical techniques followed by a liquid phase sinter and vacuum anneal. The bolt can also be manufactured using solid state sintering. The bolt can also be manufactured by mechanically working the material after sintering, after annealing, or after both sintering and annealing.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: April 14, 1998
    Assignee: Remington Arms Company, Inc.
    Inventors: Marlin R. Jiranek, II, Michael D. Keeney
  • Patent number: 5733427
    Abstract: A sputtering target formed of a refractory metallic silicide having a composition MSi.sub.x including a mixture composition of an MSi.sub.2 phase in the form of particles (M: at least one refractory metal selected from a group consisting of W, Mo, Ti, Zr, Hf, Ni and Ta), and an Si phase provided as a matrix phase. Interface layers having a predetermined thickness are formed at the interfaces between the MSi.sub.2 phase and the Si phase. The value X in the composition formula MSi.sub.x is set to a range of 2.0 to 4.0, and the thickness of the interface layers formed between the MSi.sub.2 phase and the Si phase, the dispersion of the composition, the density ratio of the target, the electrical resistivity of the Si phase and the surface roughness are set to predetermined values. An uniform high-quality thin film in which a composition distribution is uniform can be manufactured stably by using this target.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: March 31, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takashi Yamanobe, Mitsuo Kawai, Tatsuzo Kawaguchi, Kazuhiko Mitsuhashi, Toshiaki Mizutani
  • Patent number: 5734959
    Abstract: The invention is directed to a method of forming an implant having a porous surface using an organic binder compound to enhance the bonding between the porous surface layer and implant. Preferably, the binder is formed from a water-soluble protein that carbonizes during the sintering process to alloy with the metal of the porous surface layer. The porous surface layer may be in the form of beads or of fiber metal and can be preformed to fit with an implant or formed over the surface of the implant.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: March 31, 1998
    Assignee: Zimmer, Inc.
    Inventors: Steve Krebs, Clarence Panchison, H. Ravindranath Shetty
  • Patent number: 5722037
    Abstract: There is provided a process for producing titanium composite, comprising the steps of: molding titanium powder, titanium alloy powder, or powder comprising titanium into a certain shape by a cold isostatic press or cold press; reacting the shape with hydrocarbon gas at its decomposition temperature or higher, to form TiC therein; and providing the shape with high density by vacuum sintering, hot isostatic pressing, hot forging, hot rolling and/or the combinations thereof. TiC a reinforcing material, is in-situ formed by reacting a cold-pressed body of the powder with hydrocarbon gas and cleaner than the externally added one and distributed more uniformly and finely in the Ti matrix, leading to a significant improvement in wear resistance and high temperature property.
    Type: Grant
    Filed: May 9, 1996
    Date of Patent: February 24, 1998
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Hyung-Sik Chung, Yong-Jin Kim, Byung-Kee Kim, Jian-Qing Jiang
  • Patent number: 5722033
    Abstract: A method of extruding a boron carbide-aluminum alloy metal matrix composite includes heating the ingots of the composite to temperatures of about 570.degree. C., holding the ingots at about 570.degree. C. to soften the ingots, placing the ingots in a heated extrusion chamber, and extruding the softened ingots at pressures about 15% to 20% higher than typical pressures used to extrude aluminum alloys. A method of casting a boron carbide-aluminum alloy metal matrix composite includes heating ingots of the composite to about 700.degree. C. to melt the ingots, gently stirring the melt, removing dross from the melt, vigorously stirring the melt with an impeller without creating a vortex, degassing the melt with an argon diffuser wand, and continuously removing froth formed during degassing until the rate of froth formation is reduced and the melt gently bubbles.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: February 24, 1998
    Assignee: Alyn Corporation
    Inventor: Robin A. Carden
  • Patent number: 5697045
    Abstract: An aluminum alloy brazing agent containing a flux is made by compacting a powder mixture of a matrix powder and a flux powder at a first temperature so as to form a rigid piece, and then conducting a secondary forming of the rigid piece into a desired shape at a second temperature. The first temperature is lower than 480.degree. C., preferably lower than 400.degree. C., and more preferably room temperature, so that the compacting may be conducted in the air. The second temperature is 300.degree.-575.degree. C. for the secondary forming, which also may preferably be conducted in an non-oxidizing atmosphere, so that the brazing agent can be of an improved capability of brazing aluminum articles and be produced inexpensively.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 9, 1997
    Assignee: Showa Aluminum Corporation
    Inventors: Yasuhiro Osame, Shoichi Sato
  • Patent number: 5689796
    Abstract: The method of the invention is concerned with the manufacture of a molded copper-chromium family metal based alloy article which involves the steps of injection-molding a mixture of copper powder, a chromium family metal powder, an iron family metal powder and a thermoplastic organic binder made up of a polymer binder and low molecular binder in a ratio by volume of 5:1 to 1:1, dewaxing a molded body formed by the injection-molding by heating in a reducing atmosphere, and then sintering the dewaxed molded body at 1,100.degree. to 1,450.degree. C. in a reducing atmosphere. According to this method, molded articles having a high dimensional accuracy and high density can be provided.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: November 18, 1997
    Assignees: Citizen Watch Co., Ltd., Toho Kinzoku Co., Ltd.
    Inventors: Takao Kasai, Naoto Ogasawara, Naoyoshi Akiyoshi, Takeo Hamada
  • Patent number: 5682591
    Abstract: A method of making a metal composite part by compacting a metal powder composition in a die whose wall surfaces have been electrostatically coated with a lubricant, thereby eliminating or reducing a lubricant in the metal powder composition, resulting in a metal composite having greater density and strength. The method further includes providing an electrostatic charge to the metal powder composition. A powder metallurgy apparatus is also provided.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 28, 1997
    Assignee: Quebec Metal Powders Limited
    Inventors: Ion I. Inculet, James D. Brown, G. S. Peter Castle, Peter Hansen
  • Patent number: 5678162
    Abstract: A mold useful for injection molding, comprising: a porous network of metal and oxidized metal and a cured epoxy resin dispersed in the porous network. The mold can be prepared by a process comprising the sequential steps of (a) forming a mixture of a metal powder and a polymer binder; (b) heating the mixture at a temperature in the range from about 100.degree. C. to about 300.degree. C. to remove a majority of the polymer binder from the mixture; (c) heating the mixture resulting from step (b) at a temperature greater than about 300.degree. C. and less than the melting point of the metal in the presence of oxygen to oxidize at least a portion of the metal to form a self-adhering porous network of metal and oxidized metal; (d) contacting the self-adhering porous network with an epoxy resin to fill at least a portion of the porous network with epoxy resin; and (e) curing the body resulting from step (d) to form the mold. The shape of the mold can be performed by selective laser sintering of the mixture.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: October 14, 1997
    Assignee: Board of Regents, Univ. of Texas System
    Inventors: Joel W. Barlow, Balasubramanian Badrinarayan, Joseph J. Beaman, David L. Bourell, Richard H. Crawford, Harris L. Marcus, James R. Tobin, Neal K. Vail
  • Patent number: 5678165
    Abstract: A plastically deformable aqueous mixture capable of being shaped into a body, the mixture being composed of any one or combination of ceramic, glass-ceramic, glass, molecular sieve, carbon, or metal powders, cellulose ether organic binder, water insoluble hydrophobic polymer co-binder having an average molecular weight of at least about 8,000, plasticizer, and water. A method of making a body which involves mixing the above components in a high shear mixer at a temperature of about 30.degree. C. to 70.degree. C. to form a homogeneous mixture, extruding the mixture at a temperature of about 30.degree. C. to 70.degree. C. into a green body, followed by drying and firing to produce the product body.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: October 14, 1997
    Assignee: Corning Incorporated
    Inventor: Shy-Hsien Wu
  • Patent number: 5678163
    Abstract: The present invention relates to an improved method of manufacturing an airbag initiator. Currently, an airbag initiator is comprised of three parts made out of two dissimilar materials plus a glass to metal seal. The present method builds the same airbag initiator with the body and the pins in one piece via a process called metal injection molding. The part is then placed in a furnace to remove a wax binder, then the temperature is ramped up slowly to remove a thermoplastic layer, and the temperature is further ramped up to form a sintered part. The sintered part being equal to or better than standards of wrought material. The initiator is then removed from the furnace and a glass bead is placed in a void area in the body of the initiator. The glass is melted forming a glass to metal seal between a first pin and the body of the initiator. A top portion of the initiator is then lapped off isolating the first pin from the body of the initiator.
    Type: Grant
    Filed: August 10, 1995
    Date of Patent: October 14, 1997
    Inventor: Eldon D. Rice
  • Patent number: 5666632
    Abstract: A two layer valve seat insert and a method for its manufacture is described. The method comprises the steps of preparing two powder mixtures; a first powder mixture for forming the valve seat face layer; a second powder mixture for forming the valve seat base layer; sequentially introducing a predetermined quantity of each of said first and said second powder mixtures into a powder compacting die and having an interface therebetween substantially perpendicular to the axis of said die; simultaneously compacting said first and said second powder mixtures to form a green compact having two layers and sintering said green compact, wherein at least one of the chemical composition or the physical characteristics of at least one of said first and said second powder mixtures is adjusted so as to result in said valve seat face layer and said valve seat base layer having substantially the same density after compaction.
    Type: Grant
    Filed: June 12, 1996
    Date of Patent: September 9, 1997
    Assignee: Brico Engineering Limited
    Inventor: Paritosh Maulik
  • Patent number: 5666631
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. The metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt. The dispersed nonmetallic compound particles are no larger than about 0.1 micron in particle size and have a volume fraction greater than about 0.15 within the metal matrix.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: September 9, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish, Edwin L. Kugler
  • Patent number: 5649280
    Abstract: A method of high retained strain forging is described for Ni-base superalloys, particularly those which comprise a mixture of .gamma. and .gamma.' phases, and most particularly those which contain at least about 30 percent by volume of .gamma.'. The method utilizes an extended subsolvus anneal to recrystallize essentially all of the superalloy and form a uniform, free grain size. Such alloys may also be given a supersolvus anneal to coarsen the grain size and redistribute the .gamma.'. The method permits the manufacture of forged articles having a fine grain size in the range of about ASTM 5-12 (5-60 .mu.m).
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: July 15, 1997
    Assignee: General Electric Company
    Inventors: Charles Philip Blankenship, Michael Francis Henry, Eric Scott Huron, John Michael Hyzak
  • Patent number: 5640666
    Abstract: A method of producing a composite powder by providing particles of (I) tungsten, niobium, zirconium, titanium or mixtures thereof, (II) silicon and (III) carbon in a proportion relative to each other so as to possess an overall chemical composition in that segment of the ternary diagram of FIGS. 2(a), 2(b), 2(c) and 2(d) designated A, and subjecting the particles to a mechanical alloying process under conditions and for a time sufficient to produce the composite powder. Also disclosed is a method of forming a substantially oxygen-free composition of matter comprising a matrix substance of WSi.sub.2, NbSi.sub.2, ZrSi.sub.2, TiSi.sub.2 or alloys thereof having SiC dispersed therein, the method comprising consolidating the above-described composite powder. Also disclosed is a method of forming oxidation- and wear-resistant coatings by subjecting the composite powder whose composition lies in segment A to a metallurgical process such as plasma spraying.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: June 17, 1997
    Assignee: University of Florida
    Inventors: S. Jayashankar, Michael J. Kaufman
  • Patent number: 5628044
    Abstract: High purity iron-zinc intermetallic calibration standards are produced using a slow diffusion technique. The alloys are pure to greater than 99.5 wt % and are homogenous to greater than 98%. The alloys can be used to calibrate instrumentation used to monitor and measure galvanneal and galvanized coatings. The alloy calibration standards for each of the iron-zinc phases allows instrumentation correction factors to be determined for iron-zinc coating analysis.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: May 6, 1997
    Assignee: Old Dominion University
    Inventors: Desmond C. Cook, Richard G. Grant, Patricia S. Cook
  • Patent number: 5613183
    Abstract: The disclosure relates to a method of binder removal from a green body before sintering or the like wherein the green body is initially heated to a temperature above the melting or flow point of the binder to liquify the binder and, at the elevated temperature, a small portion of the green body is brought into intimate contact with a non-supporting porous body of lower capillarity potential for the liquid binder. The liquid is drawn from all parts of the green body to the region of contact between the porous body and the green body and enters the body of lower capillarity potential preferentially, removing liquid from the green body through the surface of the green body only at said region of contact. The draining is continued with or without further increase in temperature until the green body is opened or becomes permeable.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: March 18, 1997
    Assignee: Witec Cayman Patents Limited
    Inventor: Raymond E. Wiech, Jr.
  • Patent number: 5604919
    Abstract: The preferred sintered parts made of oxygen-sensitive, non-reducible powders and their production by injection-molding are distinguished by the powders used being freed of their oxide layer by attritor milling in a water-free organic solvent, in the presence or absence of an additional reductant, the oxide particles being removed if necessary by filtration or screening in the presence of the organic solvent, the oxide-free powder being mixed as suspension with a polyacetal as binder under a protective gas, the organic solvent being distilled off, the mixture of powder and polyacetal being heated above the melting point of the polyacetal and being compounded to give a homogeneous composition, the granular material thus obtained being processed in an injection-molding machine made inert with argon to give shaped bodies, the shaped bodies being freed of binder under the action of oxalic acid in a closed ceramic container which nevertheless allows pressure equilibration under protective gas at atmospheric pressur
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: February 18, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Josef Sterzel, Hans Wohlfromm
  • Patent number: 5602350
    Abstract: The present invention discloses an improved method for compacting powdered materials, including ferrous alloys, non-ferrous metals or non-metal powders, wherein the improved method includes the use of an improved lubricant during the compaction process. The improved lubricant includes vinyl halides, generally, and polytetrafluroethylene, specifically. In a preferred embodiment of the present invention, 0.2 to 0.6 wt. % of the vinyl halide is added to the powdered form of the compactable material before the compaction and sintering of the compactable material.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: February 11, 1997
    Assignee: The Penn State Research Foundation
    Inventors: Randall M. German, Anthony Griffo, Tracy Potter
  • Patent number: 5603073
    Abstract: A high density, high strength and high compressive strain tungsten heavy alloy consists essentially of tungsten in the amount of approximately 90% by weight, and the rest Mn and Ni in an amount sufficient to cause sintering at between 1100.degree. and 1400.degree. C. The W--Ni--Mn alloy exhibits characteristics of intense shear bands (which could indicate failure by adiabatic shear during high strain-rate dynamic testing) thus making it an attractive material for kinetic energy penetrators. Moreover, the alloy provides an inexpensive high density material which can be produced in furnaces for conventional ferrous powder metal part manufacturing and other conventional non-ferrous powder metal part manufacturing by lowering the sintering temperature by 200.degree. to 300.degree. C.
    Type: Grant
    Filed: September 1, 1992
    Date of Patent: February 11, 1997
    Assignee: Southwest Research Institute
    Inventor: Animesh Bose
  • Patent number: 5590386
    Abstract: In a method of making alloy of tungsten and lanthana, lanthanum hydroxide is blended with tungsten metal powder, the mixture is pressed to form a pressed ingot, optionally presintered, and sintered to form the alloy. The use of lanthanum hydroxide as the source of the lanthana dopant allows the pressed or presintered ingots to be stored in air prior to sintering for prolonged periods without becoming degraded from exposure to atmospheric moisture.
    Type: Grant
    Filed: July 26, 1995
    Date of Patent: December 31, 1996
    Assignee: Osram Sylvania Inc.
    Inventors: Thomas J. Patrician, Harry D. Martin, III
  • Patent number: 5580516
    Abstract: A powder of tantalum, niobium, or an alloy thereof, having an oxygen content less than about 300 ppm, and the production thereof without exposure to a temperature greater than about 0.7 T.sub.H. A powder metallurgy formed product of tantalum, niobium, or an alloy thereof, having an oxygen content less than about 300 ppm, and the production thereof without exposure to a temperature greater than about 0.7 T.sub.H.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 3, 1996
    Assignee: Cabot Corporation
    Inventor: Prabhat Kumar
  • Patent number: 5574955
    Abstract: A method and a device for heating powder, especially for preheating powder in view of subsequent compacting, are disclosed. The powder is divided into partial flows which are heated separately to a predetermined temperature. Then, the partial flows are brought together to form a common flow of heated powder. The partial flows are so heated that an uniform temperature is attained over essentially the entire cross-section of each of the partial flows before these are brought together. The device comprises a storage container (10) for the powder, and a heating unit (20) for receiving powder from the storage container (10) and heating it. The heating unit (20) comprises a plurality of spaced-apart heating surfaces (27) defining between them a plurality of flow channels (28) for the powder.
    Type: Grant
    Filed: April 11, 1995
    Date of Patent: November 12, 1996
    Assignee: Hoganas AB
    Inventors: Mats Stromgren, Michael Johansson
  • Patent number: 5523170
    Abstract: An article with a high temperature superalloy body having a directionally oriented microsuucture and a structural discontinuity, such as a crack, or surface erosion or wear portion, is repaired, to provide a repaired article, using a mixture of Ni base ahoy powders. One powder includes a careful balance of the temperature depressants Si and B. In the one powder, Si is included in the range of about 0.05-2.2 wt. % to provide about 0.02-1.3 wt. % Si in a repaired portion as bonded with the article. In that same powder, B is include in the range of about 0.2-1.2 wt. % to provide about 0.08-0.7 wt. % in that repaired portion. In the repair method, the repaired portion can be provided, when shorter brazing times are used, with improved mechanical properties by diffusing the brazed alloy and aging the repaired structure in the range of about 1600.degree.-1700.degree. F. for a time in the range of about 1-16 hours.
    Type: Grant
    Filed: December 28, 1994
    Date of Patent: June 4, 1996
    Assignee: General Electric Company
    Inventors: David E. Budinger, Jim D. Reeves, Robert A. Anderson
  • Patent number: 5523049
    Abstract: A heat sink composed of thermally conductive particles dispersed in a monolithic structure having a continuous microstructure; and the method of forming a heat sink by molding the heat sink from a thermoplastic or epoxy material which has been filled with thermally conductive particles, debinding the molded heat sink and densifying the debound heat sink into a monolithic structure.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: June 4, 1996
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert L. Terpstra, Barbara K. Lograsso, Iver E. Anderson, Jeffrey A. Moore
  • Patent number: 5520748
    Abstract: A process for manufacturing an Alnico system permanent magnet is disclosed in which the alloy powder of the Alnico system having the proper composition is manufactured through a rapid solidification process, so that the crushability and the formability should be superior, the sintered density should be high, and the magnetic properties should be excellent, as well as cheap in its manufacturing cost and simple in its manufacturing process. An alloy of Alnico system is subjected to a rapid solidification with a spinning solidifier wheel speed of 6-40 m/sec, thereby manufacturing a microcrystalline rapidly solidified powder. The powder is ground into a finer powder, and then a press-forming is carried out. Then a sintering is carried out at a temperature of 1100.degree.-1350.degree. C. for 0.5-4 hours. Then based on a single heat treatment, an external magnetizing force of 1-15 kOe is applied in a temperature range of 600.degree.-1000.degree. C., thereby carrying out a heat treatment under a magnetizing force.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: May 28, 1996
    Assignees: Pohang Iron & Steel Co., Ltd., Research Institute of Industrial Science & Technology
    Inventors: Choong J. Yang, Seung D. Choi, Woo Y. Lee, Young G. Son
  • Patent number: 5508000
    Abstract: According to the present invention, silicide grains are coupled with each other in a linked manner so as to provide a metal silicide phase, and grains forming a Si phase are dispersed in the gaps of the metal silicide phase discontinuously so as to provide a mixed structure of a sputtering target of high density and containing carbon at a rate less than 100 ppm. Because of the high density and high strength of the target, generation of particles at the time of sputtering can be reduced, and because of the reduced content of carbon, mixing of carbon in a thin film formed by the sputtering can be prevented.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: April 16, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takasi Yamanobe, Mituo Kawai, Tooru Komatu, Hiromi Shizu, Noriaki Yagi
  • Patent number: 5490968
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. The metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt. The dispersed nonmetallic compound particles are no larger than about 0.1 micron in particle size and have a volume fraction greater than about 0.15 within the metal matrix.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: February 13, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish, Edwin L. Kugler
  • Patent number: 5476633
    Abstract: An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S, and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/.degree.C. and a temporal stability of less than 1 ppm/year.
    Type: Grant
    Filed: July 6, 1994
    Date of Patent: December 19, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Witold M. Sokolowski, Marc S. Lane, Cheng H. Hsieh, Timothy P. O'Donnell
  • Patent number: 5468445
    Abstract: A novel metal filled via composition for use with ceramics. The via composition can be formulated to have a volume shrinkage approximating that of the ceramic material, and thus overcomes the problem of volume shrinkage mismatch between the via (particularly copper filled via) and ceramic upon sintering. The novel via composition exhibits enhanced adhesion to the ceramic. A sintering process by which shrinkage of the novel via composition is controlled and adhesion is improved is also disclosed.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: November 21, 1995
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, Renuka S. Divakaruni, Govindarajan Natarajan, Srinivasa S. N. Reddy, Manfred Sammet
  • Patent number: 5466311
    Abstract: A method of manufacturing an Ni--Al intermetallic compound matrix composite comprising steps of a) providing an aluminum powder, b) providing a reinforced material, c) providing a reducing solution containing a reducing agent and nickel ions to be reduced, d) adding the aluminum powder and the reinforced material into the reducing solution, and e) permitting the reducing agent to reduce the nickel ions to be respectively deposited on the aluminum powder and the reinforced material. Such method permits the Ni--Al, Ni--Al+B intermetallic compound matrix composite to be produced inexpensively/efficiently/fastly.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: November 14, 1995
    Assignee: National Science Council
    Inventors: Chen-Ti Hu, Wen-Chih Chiou
  • Patent number: 5466277
    Abstract: A sintered Al-alloy, which has a composition of 0.2 to 2.0% of Mg, 10.0 to 35.0% of Si, from 0.2 to 4.0% of Cu, and Al and unavoidable impurities in balance, is produced by using a mixture of the main powder (10.0-35.0% of Si, 0.2-2.0% of Cu, and Al and unavoidable impurities in balance) and at least one metal or mother-alloy powder selected from (a)-(i): (a) Mg powder; (b) Al--Mg powder; (c) Al--Cu powder; (d) Al--Mg--Si powder; (e) Al--Cu--Si powder; (f) Al--Mg--Cu powder; (g) Al--Mg--Cu--Si powder; (h) Mg--Cu powder; and, (i) Mg--Cu--Si powder.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: November 14, 1995
    Assignee: Showa Denko K.K.
    Inventors: Shin Miura, Youichi Hirose, Mitsuaki Sato
  • Patent number: 5462576
    Abstract: The invention relates to a heavy metal alloy comprising from about 85 to 98 weight-% tungsten that is essentially present in the form of globular tungsten grains, and nickel and cobalt in a Ni/Co weight ratio approximately between 1.6 and 3.5 as binder elements in an austenitic binder phase which also contains tungsten in solid solution, wherein the alloy sintered from the appropriate powders is subjected to a heat treatment, and a method for its production. The alloy permits the attainment of very high strength values with the retention of high ductility.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: October 31, 1995
    Assignee: NWM de Kruithoorn B.V.
    Inventors: Peter Stuitje, Ronald Harkema, Cornelie Taal
  • Patent number: 5456740
    Abstract: A getter-filter composite membrane element, comprising a sinterable getter material and a sinterable metal filter material, the composite element defining a matrix of substantially interconnected pores. Membrane elements may be comprised of at least three alternating layers of a first sinterable getter material layer and a second sinterable metal filter material layer, the first getter layer being located between the second filter layers, the second layers acting to hold the getter layer, and to retain the getter particles. Also disclosed is a method of making the getter-filter element.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: October 10, 1995
    Assignee: Millipore Corporation
    Inventors: James T. Snow, Walter Plante, Robert S. Zeller
  • Patent number: 5455001
    Abstract: A method for manufacturing an intermetallic compound comprises (a) preparing a powder, (b) canning said powder in a tube, (c) executing a first heat treatment to said tube-canned powder, and (d) treating said tube-canned powder for obtaining an intermetallic compound. This invention offers a simple, efficient, and inexpensive method for producing an intermetallic compound possessing excellent mechanical properties.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: October 3, 1995
    Assignee: National Science Council
    Inventor: Chen-Ti Hu
  • Patent number: 5447800
    Abstract: A martensitic hot work tool steel die block for use in the manufacture of die casting die components and other hot work tooling components and a method for manufacturing the same. The article has a hardness within the range of 35 to 50 HRC and a minimum transverse Charpy V-notch impact toughness of 5 foot pounds when heat treated to a hardness of 44 to 46 HRC and when tested at both 72.degree. F. and 600.degree. F. The article is a hot worked, heat treated and fully dense consolidated mass of prealloyed particles of the composition, in weight percent, 0.32 to 0.45 carbon, 0.20 to 2.00 manganese, 0.05 to 0.30 sulfur, up to 0.03 phosphorous, 0.80 to 1.20 silicon, 4.75 to 5.70 chromium, 1.10 to 1.75 molybdenum, 0.80 to 1.20 vanadium, and balance iron. The alloy may be any conventional wrought AISI hot work tool steel or wrought maraging or precipitation-hardening steel having 0.05 to 0.30 percent sulfur, and having sulfide particles which exhibit a maximum size of 50 microns in their longest dimension.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: September 5, 1995
    Assignee: Crucible Materials Corporation
    Inventors: Carl J. Dorsch, Kenneth E. Pinnow, William Stasko
  • Patent number: 5445790
    Abstract: A process for densifying a powder metallurgical product comprising steps of preparing a powdery starting material, pre-sintering the powdery starting material at a relatively low temperature, executing a pore-eliminating process for eliminating pores resulting from the preceding step on the powdery starting material, and sintering the powdery starting material at a relatively high temperature. It is beneficial to produce a product having a large dimension, a desired shape, and excellent mechanical properties, and being appropriate for or capable of suffering any post-treatment.
    Type: Grant
    Filed: May 5, 1994
    Date of Patent: August 29, 1995
    Assignee: National Science Council
    Inventors: Chen-Ti Hu, Wen-Chih Chiou
  • Patent number: 5441695
    Abstract: The invention relates to a process for the manufacture by sintering of a titanium part, characterized in that is consists of:(a) mixing a titanium hydride powder with a temporary binding agent,(b) injecting the mixture obtained into a mold to obtain a part in the desired shape,(c) removing the binding agent,(d) heating the part in a hydrogen atmosphere up to the desired sintering temperature,(e) replacing the hydrogen atmosphere by a vacuum or a non-reactive atmosphere once the sintering temperature has been reached, and(f) cooling the part in a non-reactive gas atmosphere.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: August 15, 1995
    Assignee: Asulab S.A.
    Inventor: Thomas Gladden
  • Patent number: 5427734
    Abstract: The object of the invention is to provide a manufacturing method of a complex shaped R--Fe--B type sintered anisotropic magnet improved the moldability of injection molding and preventing the reaction between R ingredients and binder and controlled the degradation of magnetic characteristics due to residual carbon and oxygen. Utilizing the R--Fe--B type alloy powder or the resin coated said alloy powder, and methylcellulose and/or agar and water, instead of the usual thermoplastic binder, it is mixed and injection molded. The molded body is dehydrated by the freeze vacuum dry method to control the reaction between R ingredients and of the R--Fe--B alloy powder and water; furthermore, by administering the de-binder treatment in the hydrogen atmosphere, and sintering it after the dehydrogen treatment, residual oxygen and carbon in the R--Fe--B sintered body is drastically reduced, improving the moldability during the injection molding to obtain a three dimensionally complex shape sintered magnet.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: June 27, 1995
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Osamu Yamashita, Masahiro Asano, Tsunekazu Saigo
  • Patent number: 5421852
    Abstract: Disclosed is a hard alloy with high hardness, high abrasion resistance, high corrosion resistance and high rigidity, which is excellent in performance in use for tools. The hard alloy contains more than 80% by weight of WC with less than 2 .mu.m of average particle size, more than 0.2% by weight and less than 2% by weight of Co and the remaining part of one or more metals, carbides, nitrides and carbonitrides of the metals in the IVa, Va and VIa families in the periodic table, such as 2.0 to 7.0% by weight of one or more of Mo and Mo.sub.2 C, and the alloy contains Co.sub.x W.sub.y C.sub.z in the sintered product. By the addition of Mo or Mo.sub.2 C and VC the growth of particles in the hard phase is inhibited and at the same time the wettability of WC--Co is increased.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: June 6, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masao Maruyama, Hiroshi Nakagaki, Minori Shirane
  • Patent number: 5418071
    Abstract: In the present invention, metal silicide grains form an interlinked structure of a metal silicide phase, and Si grains which form a Si phase are discontinuously dispersed between the metal silicide phase to provide a sputtering target having a high density two-phased structure and having an aluminum content of 1 ppm or less. Because of the high density and high strength of the target, the generation of particles from the target during sputtering is reduced, and due to the reduced carbon content of the target, the mixing of carbon into the thin film during sputtering can be prevented.
    Type: Grant
    Filed: February 4, 1993
    Date of Patent: May 23, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takashi Yamanobe, Takashi Ishigami, Mituo Kawai, Noriaki Yagi, Toshihiro Maki, Minoru Obata, Shigeru Ando
  • Patent number: 5415833
    Abstract: A method for forming molten carbonate fuel cell (MCFC) anodes by adjusting the reaction condition of pack cementation is disclosed. The method includes the steps of embedding a base metal sheet containing at least Ni in a pack containing alloy metal powder, an activator and a filler, pre-heating the pack to remove the organic material included in the base metal sheet, and maintaining the pack under a H.sub.2 /N.sub.2 atmosphere at a temperature of 500.degree. C. to 800.degree. C. for one to eight hours to form a Ni alloy. The method has a simplified procedure and is very useful to manufacture MCFC anodes having a very low creep deformation rate while porosity is in an appropriate range.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: May 16, 1995
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-jin Kweon, Hai-soo Chun, Ha-chull Chung, Je-hong Youn, Gwun-pil Park
  • Patent number: 5415831
    Abstract: The method serves to produce a material based on a doped intermetallic compound. In carrying out the method, at least two differently doped powders each based on the intermetallic compound are selected. One of the two powders predominantly has coarse-grained particles. On the other hand, another powder is formed from comparatively fine-grained particles composed of a material having a lower creep strength but a higher ductility than the material of the coarse-grained powder. The at least two powders are mixed with one another in a ratio serving to establish a desired mixed microstructure and then hot-compacted and heat-treated to form the material.Material produced by this method is suitable for components which are exposed to high mechanical loads at high temperatures, such as, in particular, gas-turbine blades or turbine wheels of turbo chargers.
    Type: Grant
    Filed: December 13, 1993
    Date of Patent: May 16, 1995
    Assignee: ABB Research Ltd.
    Inventors: Robert Baumann, Joachim Rosler, Christoph Tonnes
  • Patent number: 5403542
    Abstract: Method of manufacturing a sintered carbonitride alloy comprising wet milling powders of forming binder phase containing Co, Ni and mixture thereof and powder forming hard constituents of nitrides and carbonitrides with Ti as the main component to a mixture with desired composition; compacting said mixture to form compact; heating the compact at 100-300 C. in oxygen or air and subjecting said compact in multiple heating steps to effect sintering.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: April 4, 1995
    Assignee: Sandvik AB
    Inventors: Gerold Weinl, Rolf G. Oskarsson, Per Gustafsson
  • Patent number: 5399312
    Abstract: A process for fabricating Thallium-based superconducting tapes comprising the steps of: (1) preparing a powder mixture having a nominal composition of (Tl.sub.1-x-y Bi.sub.y Pb.sub.z)(Ba.sub.2-z Sr.sub.z)Ca.sub.2 Cu.sub.3 O.sub.9 ; (2) placing the powder mixture into a silver tube and drawing and/or swaging the silver tube containing the powder mixture into a wire having a pre-determined diameter, wherein x and y are real numbers between 0.2 and 0.4, and z is a real number between 0 and 2; (3) rolling the wire into a tape having a pre-determined thickness; and (4) subjecting the tape to a two-stage single-sintering process at two respective sintering temperatures. The two-stage single-sintering process of the present invention allows Thallium-based superconducting tapes to be fabricated which exhibit substantially increased critical current density, without causing a substantially increased cost and complexity, as do other prior art processes, such as the double-sintering process.
    Type: Grant
    Filed: October 4, 1993
    Date of Patent: March 21, 1995
    Assignee: Industrial Technology Research Institute
    Inventors: Ru-Shi Liu, Sheng-Feng Wu, Chung-Ho Tai, Der-Shiuh Shy
  • Patent number: 5397531
    Abstract: Metal injection-molded green bodies (2) are formed from a granulated feedstock comprising metal powder and a binder comprising:a) 15-25 volume % paraffin waxb) 20-30 volume % microcrystalline waxc) 45-60 volume % polyethylene.The paraffin wax has two melting regions around 45.degree. C. and 63.degree. C. and the microcrystalline wax exhibits four melting regions in the range 62.degree. C. and 144.degree. C. By raising the temperature of the oven in a controlled manner, first the paraffin wax and then the microcrystalline wax melts and is vapourised and entrained in a flow of carrier gas which flows over supporting trays (5), as indicated by the horizontal arrows (a). The requirement for wicking powder is eliminated by the staged removal of the wax and the polyethylene can subsequently be removed at a higher temperature by thermal depolymerisation in the same apparatus.
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: March 14, 1995
    Assignee: Advanced Materials Technologies Pte Limited
    Inventors: D. Dunstan H. Peiris, Jian G. Zhang
  • Patent number: 5366688
    Abstract: A heat sink composed of metal particles dispersed in a binder or a sintered structure in which the binder is removed; and the method of forming a heat sink by molding the heat sink from a thermoplastic or epoxy material which has been filled with metal particles.
    Type: Grant
    Filed: March 10, 1994
    Date of Patent: November 22, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert L. Terpstra, Barbara K. Lograsso, Iver E. Anderson, Jeffrey A. Moore