Isostatic/hydrostatic Pressing Patents (Class 419/68)
  • Patent number: 11744005
    Abstract: An electronic component module includes a board, an electronic component, a sealing portion, a metal layer, and a magnetic layer. The board has a first main surface. The electronic component is provided on a first main surface of the board. The sealing portion seals the electronic component. The metal layer covers the sealing portion. The magnetic layer is provided between the sealing portion and the metal layer. The magnetic layer has a magnetic main body and a first cover sheet. The first cover sheet is provided between the magnetic main body and the metal layer. The first cover sheet has a first main surface and a second main surface. The first main surface faces the magnetic main body. The second main surface faces the metal layer. The second outer peripheral end of the second main surface is located inside the first outer peripheral end of the first main surface.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: August 29, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Hideki Shinkai
  • Patent number: 11733677
    Abstract: A method of additive manufacture involves building a container 8 and a structure by fusing powder 12, 13, 14, such that the container contains the structure and unfused powder. The container 8 may be used in a method for predicting powder degradation in an additive manufacturing process. Containers containing different types of structure may be built to measure the effect of building different types of structures on powder degradation. A structure to be built may be characterised by classes of structural features it contains and information obtained used from building containers used to predict how building the structure will degrade powder.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: August 22, 2023
    Assignee: LPW Technology Ltd.
    Inventor: Ben Ferrar
  • Patent number: 11635281
    Abstract: Antiballistic armour plate includes a ceramic body including a hard material, provided, on its inner face, with a back energy-dissipating coating. The ceramic body is monolithic. The constituent material of the ceramic body includes grains of ceramic material having a Vickers hardness that is higher than 15 GPa, and a matrix binding the grains, the matrix including a silicon nitride phase and/or a silicon oxynitride phase, the matrix representing between 5 and 40% by weight of the constituent material of the ceramic body. The maximum equivalent diameter of the grains of ceramic material is smaller than or equal to 800 micrometres. The constituent material of the ceramic body has an open porosity that is higher than 5% and lower than 14%. The metallic silicon content in the material, expressed per mm of thickness of the body, is lower than 0.5% by weight.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: April 25, 2023
    Assignee: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Malte Moeller, Gilles Rossiquet
  • Patent number: 11203063
    Abstract: Crack-free powder-based, near net shaped parts are fabricated using a die assembly and cold isostatic pressing. Soft materials are introduced on both sides of die components in order to balance compression loads applied to the die component, and thereby avoid deformation of the die component.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: December 21, 2021
    Assignees: The Boeing Company
    Inventors: Sami M. El-Soudani, Daniel Gordon Sanders, Shinichi Yajima
  • Patent number: 10328489
    Abstract: A dynamic compaction process comprises forming first and second preforms. Forming each preform includes utilizing a container having an interior and an exterior. Filling the interior of the container with a powder material; sealing the container; subjecting the exterior of the container to an instantaneous dynamic compaction, forming a solid powder metallurgy preform encased by the container. The container gets removed from each preform. The process includes inserting the first and second preforms in another container in a predefined pattern; the predefined pattern aligns the first and second preforms creating an interface. The process includes inserting a backstop against the predefined pattern in this container; subjecting the exterior of this container to an instantaneous dynamic compaction. The process includes bonding the first preform and second preform along the interface to form a component precursor; and removing the container from the precursor.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: June 25, 2019
    Assignee: United Technologies Corporation
    Inventors: Daniel A Bales, Thomas J Watson
  • Patent number: 10022823
    Abstract: A hard composite composition may comprise a binder and a polymodal blend of matrix powder. The polymodal blend of matrix powder may have at least one first local maxima at a particle size of about 0.5 nm to about 30 ?m, at least one second local maxima at a particle size of about 200 ?m to about 10 mm, and at least one local minima between a particle size of about 30 ?m to about 200 ?m that has a value that is less than the first local maxima.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: July 17, 2018
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventor: Garrett T. Olsen
  • Patent number: 9308691
    Abstract: A device for producing a three dimensional object from a powdery material by solidifying the powdery material through the application of energy includes a working surface, an application device for applying the powdery material onto the working surface, and a solidifying device for solidifying the powdery material applied onto the working surface. The application device can apply predefined, locally different amounts of powdery material and includes a transfer device, which can be magnetized and/or electrostatically charged and discharged, as well as a magnetizing and/or charging device.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: April 12, 2016
    Assignee: Airbus Defence and Space GmbH
    Inventors: Juergen Silvanus, Katja Schmidtke
  • Patent number: 9180518
    Abstract: The disclosed method provides a way to fabricate a powder metal compact implementing a top fill through one or more of the upper tool members. The top fill step allows for pre-compaction chamber, defined at least in part by at least one of the upper tool members, to be filled with a powder metal after the upper tool member is initially lowered, but before compaction of the powder metal. The manner in which the pre-compaction chamber is filled allows for the formation of complex geometries in powder metal compacts that are not obtainable using conventional lower tool powder transfer motions and further minimizes or avoids unacceptable variations in powder fill to final part ratios across the powder metal compact.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: November 10, 2015
    Assignee: GKN Sinter Metals, LLC
    Inventors: John D. Gurosik, Keith M. Schalles
  • Patent number: 9034246
    Abstract: A method of forming a component (30) by isostatic pressing, the method comprising: providing a canister (4) suitable for isostatic pressing, the canister comprising first and second membranes (14, 16) which, in use, are disposed within the canister (4); the first and second membranes (14, 16) defining a component cavity (24) disposed between the first and second membranes (14, 16), a first tool cavity (26) disposed between the first membrane (14) and an adjacent wall (10) of the canister (4), and a second tool cavity (28) disposed between the second membrane (16) and another adjacent wall (12) of the canister (4); filling the component cavity (24) with the component powder for forming the component (30); filling the first and second tool cavities (26, 28) with a second tool powder; and isostatically pressing the canister (4) to form the component (30).
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: May 19, 2015
    Assignee: ROLLS-ROYCE plc
    Inventor: Wayne E. Voice
  • Patent number: 8834785
    Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 16, 2014
    Assignee: Climax Engineered Materials, LLC
    Inventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
  • Patent number: 8622021
    Abstract: A method of increasing mean time between cleans of a plasma etch chamber and chamber parts lifetimes is provided. Semiconductor substrates are plasma etched in the chamber while using at least one sintered silicon nitride component exposed to ion bombardment and/or ionized halogen gas. The sintered silicon nitride component includes high purity silicon nitride and a sintering aid consisting of silicon dioxide. A plasma processing chamber is provided including the sintered silicon nitride component. A method of reducing metallic contamination on the surface of a silicon substrate during plasma processing is provided with a plasma processing apparatus including one or more sintered silicon nitride components. A method of manufacturing a component exposed to ion bombardment and/or plasma erosion in a plasma etch chamber, comprising shaping a powder composition consisting of high purity silicon nitride and silicon dioxide and densifying the shaped component.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 7, 2014
    Assignees: Lam Research Corporation, Ceradyne Inc.
    Inventors: Travis R. Taylor, Mukund Srinivasan, Bobby Kadkhodayan, K. Y. Ramanujam, Biljana Mikijelj, Shanghua Wu
  • Patent number: 8580188
    Abstract: The invention relates to a method for producing a penetrator (10) from a tungsten heavy metal with a high fraction of tungsten and an outer sheath (7), which consists of a material that is more ductile in relation to the penetrator core (6). To produce a penetrator (10) of this type in a cost-effective manner, according to the invention a twin-hopper filling device, which corresponds to the dimensions of the penetrator core (6), is introduced concentrically into a compression mold (1) that corresponds to the outer dimensions of the penetrator (10). The inner pipe (3) is filled with a first tungsten powder blend with a high fraction of tungsten for producing the penetrator core (6), while the annular gap between the outer wall of the inner pipe and the inner wall of the compression mold (1) is filled with a second tungsten powder blend with a lower fraction of tungsten, (approximately between 85% and 91%), than the first powder blend.
    Type: Grant
    Filed: September 30, 2006
    Date of Patent: November 12, 2013
    Assignee: Rheinmetall Waffe Munition GmbH
    Inventors: Cornelis Taal, Rene Oudelhoven, Michael Vagedes, Uta Lenz
  • Publication number: 20130248351
    Abstract: This invention relates to a method of refurbishing sputter targets comprising: providing a sputter target comprising a temperature sensitive alloy, having regions depleted of material; providing a powder having a first phase comprising the desired temperature sensitive alloy onto the surface; and pressing the powder onto the surface to form a refurbished target, at temperatures lower than that which would damage the temperature sensitive alloy.
    Type: Application
    Filed: October 13, 2011
    Publication date: September 26, 2013
    Applicant: Dow Global Technologie, LLC.
    Inventors: Jennifer Gerbi, Robert Nilsson
  • Patent number: 8506882
    Abstract: A method for producing a high purity tungsten sputtering target. The method includes heat treating of high purity tungsten powder in order to consolidate it into a blank with density providing closed porosity. The consolidation may be achieved by hot pressing, HIP or any other appropriate method. Next, this plate is rolled to produce target blanks of approximate size and further increased density of the material. The method may be applicable to a variety of blanks including round shape target blanks, for example, consisting of tungsten, molybdenum, tantalum, hafnium, etc.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: August 13, 2013
    Assignee: Tosoh SMD, Inc.
    Inventor: Eugene Y. Ivanov
  • Patent number: 8465692
    Abstract: A method for producing a metal article may include: Producing a supply of a composite metal powder by: providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder; and consolidating the composite metal powder to form the metal article, the metal article comprising a sodium/molybdenum metal matrix. Also disclosed is a metal article produced accordance with this method.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: June 18, 2013
    Assignee: Climax Engineered Materials, LLC
    Inventors: Naresh Goel, Carl Cox, Dave Honecker, Eric Smith, Chris Michaluk, Adam DeBoskey, Sunil Chandra Jha
  • Patent number: 8425817
    Abstract: A mold assembly (100) for forming an object, the mold assembly comprising: a first mold portion (110) comprising an internal surface (112), an external surface (114) and an opening (116) leading from the internal surface to the external surface; and a second mold portion (120) positionable with respect to the opening (116) to cover the opening; wherein the first and second mold portions define an interior (130) for receiving a material to be molded into the object; and wherein the second mold portion comprises a surface (122) adapted to face the interior of the mold assembly and form a feature on the object.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: April 23, 2013
    Assignee: Rolls-Royce PLC
    Inventor: Michael N Wybrow
  • Publication number: 20120231159
    Abstract: A method of producing a reactive powder includes providing a bulk structure of reactive material comprising a first reactant and a second reactant, the bulk structure having a preselected average spacing between the first and the second reactants; and mechanically processing the bulk structure of reactive material to produce a plurality of particles from the bulk structure such that each of the plurality of particles comprises the first and second reactants having an average spacing that is substantially equal to the preselected average spacing of the bulk structure of reactive material. The first and second materials of the plurality of particles react with each other in an exothermic reaction upon being exposed to a threshold energy to initiate the exothermic reaction and remain substantially stable without reacting with each other prior to being exposed to the threshold energy.
    Type: Application
    Filed: October 25, 2010
    Publication date: September 13, 2012
    Applicant: The Johns Hopkins University
    Inventors: Timothy P. Weihs, Adam Stover
  • Patent number: 8197885
    Abstract: A method for producing a metal article according to one embodiment may include: Providing a supply of a sodium/molybdenum composite metal powder; compacting the sodium/molybdenum composite metal powder under sufficient pressure to form a preformed article; placing the preformed article in a sealed container; raising the temperature of the sealed container to a temperature that is lower than a sintering temperature of molybdenum; and subjecting the sealed container to an isostatic pressure for a time sufficient to increase the density of the article to at least about 90% of theoretical density.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 12, 2012
    Assignee: Climax Engineered Materials, LLC
    Inventors: Dave Honecker, Christopher Michaluk, Carl Cox, James Cole
  • Publication number: 20120020826
    Abstract: A method for producing an article (1) having a cavity (4), in which method a mould (2) provided with a core (3) is filled with article material, the article material is hardened around the core (3) to form the article (1), and the core (3) is removed from the solidified article (1). The core (3) is made of yttria tetragonal zirconia polycristal material (Y-TZP) or partially stabilized zirconium (PSZ), and after the hardening phase the core (3) is exposed to a steam atmosphere, after which the core (3) is removed from the article (1).
    Type: Application
    Filed: February 12, 2010
    Publication date: January 26, 2012
    Inventor: Jarkko Ilari Laine
  • Publication number: 20120009080
    Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 12, 2012
    Applicant: Climax Engineered Materials, LLC
    Inventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
  • Publication number: 20110317510
    Abstract: A restored metallic extrusion processing element comprises a tubular metal core around which is consolidated a powdered metal extrusion component that includes metallurgically bonded interior shell and exterior working portions. The interior shell portion covers the core and is characterized by a first multiple-crystalline microstructure, and the exterior working portion is characterized by a second multiple crystalline microstructure of densified powdered metal particles. The exterior working portion has an outside surface including outer working surface features that extend along the length of the extrusion processing element. A bond interface of metallurgical type defines a crystalline microstructure boundary between the first and second multiple-crystalline microstructures.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 29, 2011
    Applicant: Entek Manufacturing, Inc.
    Inventors: Craig Benjamin, Larry Keith
  • Publication number: 20110277812
    Abstract: A multilayered structure may include a doped buffer layer on a transparent conductive oxide layer.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 17, 2011
    Inventors: Benyamin Buller, Akhlesh Gupta
  • Patent number: 8029724
    Abstract: A method of making a cutting insert using powder metallurgical methods including using a press with a main pressing direction and a press tool setup with a die, a male core rod, a female core rod, a bottom punch, a top punch and a feed shoe. The insert has a noncylindrical hole perpendicular to the main pressing direction, herein referred to as a cross-hole. A cross-hole with increased dimensional accuracy is obtained if the powder also is compacted by the two core rods.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 4, 2011
    Assignee: Sandvik Intellectual Property AB
    Inventors: Peter Samuelsson, Per Lindskog, Hans Fernros
  • Publication number: 20110182761
    Abstract: A stator for a helicoidal down-hole drilling motor is formed with a through-hole, in addition to the main stator bore. The through-hole can be a straight hole extending parallel to the axis of the stator, or a hole of helical form, the helix extending about the axis of the stator. The through-hole can be used to accommodate a communications cable extending through the through-hole, and/or the through-hole can be connected to a fluid supply. The stator is produced from metal-based powder by producing an insert of accurate dimensions corresponding to the dimensions of a bore to be created in the finished stator, the bore having a length of at least 750 mm, supporting the insert within a mould cavity, filling the mould cavity with metal-based powder, subjecting the powder to isostatic pressing, and subsequently removing the material of the insert.
    Type: Application
    Filed: March 20, 2009
    Publication date: July 28, 2011
    Applicant: Advanced Interactive Materials Science Limited
    Inventor: Geoffrey Frederick Archer
  • Publication number: 20110180199
    Abstract: A method of fabricating and using a braze preform, the method comprising cold pressing a powdered brazing material in a die, thereby forming a braze preform in the die. The braze preform can then be diffusion brazed to a damaged component to repair the component.
    Type: Application
    Filed: April 17, 2007
    Publication date: July 28, 2011
    Applicant: United Technologies Corporation
    Inventors: Jason E. Huxol, Michael J. Minor
  • Publication number: 20110113924
    Abstract: In order to compact a blank from silicon powder, the latter is uniaxially pressed in a mold chamber.
    Type: Application
    Filed: April 21, 2009
    Publication date: May 19, 2011
    Inventors: Frank Asbeck, Armin Muller, Stefan Thomas
  • Publication number: 20110067998
    Abstract: An electrically conductive cadmium sulfide sputtering target, the method of making the same, and the method of manufacturing a photovoltaic cell using the same.
    Type: Application
    Filed: September 20, 2009
    Publication date: March 24, 2011
    Applicant: MIASOLE
    Inventor: Stephen Barry
  • Publication number: 20110058976
    Abstract: A method for producing a magnetizable metal shaped body comprising a ferromagnetic starting material that is present in powder and in particulate form, using the following steps: (a) first compaction of the starting material (S3) such that adjoining particles become bonded to each other by means of positive adhesion and/or integral bonding in sections along the peripheral surfaces thereof and while forming hollow spaces, (b) creating an electrically isolating surface coating on the peripheral surfaces of the particles in regions outside the joining sections (S4), and (c) second compaction of the particles (S5) provided with the surface coating, such that the hollow spaces are reduced in size or eliminated.
    Type: Application
    Filed: April 27, 2009
    Publication date: March 10, 2011
    Inventors: Paul Guempel, Stefan Glaeser, Beat Hofer
  • Publication number: 20110038750
    Abstract: In a hot isostatic pressing process or hot uniaxial pressing process for producing a net or near net shape product, a diffusion filter comprising boron nitride is provided between a graphite former and metal powder to be pressed thereagainst. The diffusion filter allows a controlled amount of carbon to diffuse into the surface of the pressed component. The boron nitride is conveniently applied as an aqueous slurry by spraying. In order to obtain adherence between the coating and the surfaces of the former, one or more thin ghost coat layers of slurry are applied to the surface of the graphite former before one or more layers of normal strength slurry are applied. Each layer of coating is allowed to dry before the next layer is applied, and the former may be heated to dry each layer. Pressed components of length greater than 2m can be processed, relative contraction of the component and former during cooling of the component being accommodated by the boron nitride coating on the former.
    Type: Application
    Filed: November 21, 2008
    Publication date: February 17, 2011
    Inventor: Geoffrey Archer
  • Publication number: 20110033725
    Abstract: A method of producing a net or near net-shape component from metal powder comprises producing an insert of accurate dimensions corresponding to the dimensions of a bore to be created in the finished component, the bore having a length of at least 750 mm, supporting the insert within a mould cavity, filling the mould cavity with metal powder, subjecting the powder to isostatic pressing, and subsequently removing the material of the insert. The mould can be an independent mould that is removed after an initial step to bind the powder together into a pre-form, and the pre-form is then encapsulated in a suitable containment, such as a canister or a sprayed coating. The insert can be a metallic insert of a material, such as copper, that is subsequently removable by chemical etching. The insert can be coated with a material that is amenable to removal by etching, and to enable the insert to be extracted.
    Type: Application
    Filed: March 20, 2009
    Publication date: February 10, 2011
    Inventor: Geoffrey Frederick Archer
  • Publication number: 20110014082
    Abstract: A method of forming a component (30) by isostatic pressing, the method comprising: providing a canister (4) suitable for isostatic pressing, the canister comprising first and second membranes (14, 16) which, in use, are disposed within the canister (4); the first and second membranes (14, 16) defining a component cavity (24) disposed between the first and second membranes (14, 16), a first tool cavity (26) disposed between the first membrane (14) and an adjacent wall (10) of the canister (4), and a second tool cavity (28) disposed between the second membrane (16) and another adjacent wall (12) of the canister (4); filling the component cavity (24) with the component powder for forming the component (30); filling the first and second tool cavities (26, 28) with a second tool powder; and isostatically pressing the canister (4) to form the component (30).
    Type: Application
    Filed: June 24, 2010
    Publication date: January 20, 2011
    Applicant: ROLLS-ROYCE PLC
    Inventor: Wayne E. VOICE
  • Publication number: 20100297462
    Abstract: In one embodiment, the present invention may be a method of forming a porous and/or dense article from metal powder (12), including adding to a mold a first feedstock comprising an agglomerated metal powder (12) and an agglomeration agent, forming said first feedstock into a green state dense article (22); and removing said agglomeration agent. Furthermore, the present invention may include a second feedstock including an agglomerated metal powder (12), a space filling material and an agglomeration agent which may be formed into a green state porous article (21). The present invention also includes a dense and/or porous article (22 and 21) manufactured by various methods, as well as methods for creating the dense and porous feedstocks. Moreover, the present invention may include an article which may be a medical implant.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 25, 2010
    Applicant: HOWMEDICA OSTEONICS CORP.
    Inventors: John Lapszynski, Robert W. Klein, Michael A. DeLuise
  • Patent number: 7803294
    Abstract: Method for determining a reference for a powder press, which comprises a die plate for attaching a die and an upper adaptor plate which may be actuated by a drive which is hydraulic, mechanical, electric or the like for attaching an upper punch, a lower adaptor plate which may be actuated by a hydraulic drive for attaching a lower punch or the die plate and at least one distance measuring system for the upper and lower punch and/or the die plate with the following steps: a reference die and at least one reference punch are made, the reference die is attached to the die plate, by an optical measuring device usefully arranged on a base plate and/or die plate, the position of the upper edge of the reference die is measured and the position value stored, the reference die is removed, the adaptor plate with the reference punch previously attached therein, is moved in the direction of the die until the lower edge of the reference punch has reached the stored position of the upper edge of the reference die, the sum
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: September 28, 2010
    Assignee: Fette GmbH
    Inventors: Thomas Pannewitz, Martin Plucinski, Andreas Groth, Andreas Teetzen
  • Patent number: 7713469
    Abstract: Device for monitoring the production of tablets in a rotary press, with die bores in a circular die plate for the accommodation of a powder to be pressed, upper- and lower stamps, a pressing station for pressing the powder in the die bores by means of the upper and lower stamps, a tablet stripper for stripping off the tablets ejected by the lower stamps from the upper side of the circular die plate and a machine computer, wherein a contactless working temperature measurement device, being in communication with the machine computer, with a measurement plane between the pressing station and the tablet stripper, is arranged in the press room of the rotary press, and the measurement time of the temperature measurement device is such that at least some of the tablets per rotation of the circular die plate can be established in their temperature.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: May 11, 2010
    Assignee: Fette GmbH
    Inventors: Ingo Schmidt, Werner Seifert
  • Patent number: 7682417
    Abstract: A cold work steel article. The article comprises a material which comprises, in addition to Fe, the elements C, Si, Mn, P, S, Cr, Mo, Ni, V, W, Cu, Co, Al, N and O in certain concentrations and has been produced by by a powder metallurgical process. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: March 23, 2010
    Assignee: Bohler Edelstahl GmbH
    Inventors: Ingrid Schemmel, Stefan Marsoner, Werner Liebfahrt
  • Publication number: 20100003157
    Abstract: The invention relates to mixtures of metal, alloy or composite powders which have a mean particle diameter D50 of not more than 75 ?m, preferably not more than 25 ?m, and are produced in a process in which a starting powder is firstly deformed to give platelet-like particles and these are then comminuted in the presence of milling aids together with further additives and also the use of these powder mixtures and shaped articles produced therefrom.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 7, 2010
    Applicant: H.C. Starck GmbH
    Inventors: Roland Scholl, Ulf Waag, Aloys Eiling
  • Publication number: 20090324984
    Abstract: Provided are a method for producing a clad material, and a clad material which can prevent a brazing filler metal layer from having a higher melting point so as to prevent the strength degradation and thermal deformation of a metal material, which can reduce production costs, which can reduce in thickness the layer to prevent sagging of the brazing filler metal upon brazing and which can improve press formability. A powder press-fixing machine 12 is used to press-fix metal powder to surfaces of a base material 1 uncoiled from a coil 2 by an uncoiler 3. In order to provide a required composition of brazing filler metal, at least two kinds of metal powder is mixed, the mixed powder being press-fixed to the base material 1 to form the brazing filler metal layer 11, the brazing filler metal constituting the layer 11 having the composition such that copper is added with at least phosphor to lower a melting point of the same relative to that of copper, thus producing the clad material 8.
    Type: Application
    Filed: August 22, 2007
    Publication date: December 31, 2009
    Applicant: IHI CORPORATION
    Inventors: Chitoshi Mochizuki, Hiroshi Kaita, Takeshi Kayama
  • Publication number: 20090277301
    Abstract: The invention relates to mixtures of metal, alloy or composite powders which have a mean particle diameter D50 of not more than 75 ?m, preferably not more than 25 ?m, and are produced in a process in which a starting powder is firstly deformed to give platelet-like particles and these are then comminuted in the presence of milling aids together with further additives and also the use of these powder mixtures and shaped articles produced therefrom.
    Type: Application
    Filed: July 9, 2007
    Publication date: November 12, 2009
    Applicant: H.C. Starck GmbH
    Inventors: Roland Scholl, Ulf Waag, Aloys Eiling
  • Publication number: 20090272437
    Abstract: A photovoltaic cell can include a transparent conductive layer including cadmium stannate.
    Type: Application
    Filed: May 1, 2009
    Publication date: November 5, 2009
    Applicant: First Solar, Inc.
    Inventors: Dale Roberts, John German, Keith J. Burrows, Benyamin Buller, Boil Pashmakov
  • Publication number: 20090257903
    Abstract: The present invention relates to a high speed steel with a chemical composition that comprises, in % by weight: 0.6-2.1 C 3-5 Cr 4-14 Mo max 5 W max 15 Co 0.5-4 V, balance Fe and impurities from the manufacturing of the material, which steel is powder metallurgically manufactured and has a content of Si in the range of 0.7<Si?2.
    Type: Application
    Filed: September 7, 2006
    Publication date: October 15, 2009
    Inventor: Stefan Sundin
  • Publication number: 20090169412
    Abstract: A method of making a cutting insert using powder metallurgical methods including using a press with a main pressing direction and a press tool setup with a die, a male core rod, a female core rod, a bottom punch, a top punch and a feed shoe. The insert has a noncylindrical hole perpendicular to the main pressing direction, herein referred to as a cross-hole. A cross-hole with increased dimensional accuracy is obtained if the powder also is compacted by the two core rods.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 2, 2009
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Peter SAMUELSSON, Per Lindskog, Hans Fernros
  • Patent number: 7524361
    Abstract: Provided is a hydrogen separation membrane prepared by compression-molding metal microparticles having hydrogen adsorbing properties, wherein the microparticles are composed of 0.5 to 50% by weight of a first metal powder and 50 to 99.5% by weight of a second metal powder having a relatively larger average particle diameter than the first metal powder.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: April 28, 2009
    Assignee: Korea Institute of Energy Research
    Inventors: Jong-Soo Park, Wang-Lai Yoon, Ho-Tae Lee, Dong-Won Kim, Sung-Ho Cho, Shin-Kun Ryi, Seung-Hoon Choi
  • Publication number: 20090074603
    Abstract: A method for fabricating a magnesium-based composite material, the method includes the steps of: (a) providing a large amount of magnesium-based powder and a large amount of nanoscale reinforcements; (b) uniformly mixing the magnesium-based powder and the nanoscale reinforcements to form a mixture; and (c) compacting the mixture at a high velocity in a protective gas to achieve the magnesium-based composite material. High velocity compaction equipment for fabricating the magnesium-based composite material includes a sealing chamber, a gas pumping device, a mold, and a hammer. The gas pumping device is connected to the sealing chamber. The mold is disposed in the sealing chamber with an aperture formed on the top thereof. The hammer is disposed in the sealing chamber and above the mold, and moving along longitudinal thereof at a controllable ramming speed.
    Type: Application
    Filed: April 9, 2008
    Publication date: March 19, 2009
    Applicants: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Kam-Shau Chan, Cheng-Shi Chen, Qing-Chun Du, Wen-Zhen Li
  • Patent number: 7494617
    Abstract: A method for manufacturing a single-element matrix cobalt-based granular media alloy composition formulated as Cof1-(MuOv)f2, M representing a base metal selected from the group consisting of magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), aluminum (Al), silicon (Si), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), indium (In), lanthanum (La), hafnium (Hf), tantalum (Ta), and tungsten (W), u and v representing the number of atoms of base metal M and oxygen (O) per oxide formula, respectively, and f1 and f2 being mole fractions represented by the equation f1+(u+v)f2=1. The method includes the steps of blending a Co-M master alloy powder and a Cou?Ov? powder into a corresponding (CoaM1?a)f1?-(Cou?Ov?)f2? formula, and densifying the blended powders.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: February 24, 2009
    Assignee: Heraeus Inc.
    Inventor: Abdelouahab Ziani
  • Publication number: 20090010792
    Abstract: A method of fabricating a sputtering target assembly comprises steps of mixing/blending selected amounts of powders of at least one noble or near-noble Group VIII metal at least one Group IVB, VB, or VIB refractory metal; forming the mixed/blended powder into a green compact having increased density; forming a full density compact from the green compact; cutting a target plate slice from the full density compact; diffusion bonding a backing plate to a surface of the target plate slice to form a target/backing plate assembly; and machining the target/backing plate assembly to a selected final dimension. The disclosed method is particularly useful for fabricating large diameter Ru—Ta alloy targets utilized in semiconductor metallization processing.
    Type: Application
    Filed: July 2, 2007
    Publication date: January 8, 2009
    Applicant: HERAEUS INC.
    Inventors: Wuwen Yi, Bernd Kunkel, Carl Derrington, ShinHwa Li, Anand Deodutt
  • Patent number: 7467937
    Abstract: In one aspect of the present invention, a high-temperature, high-pressure press apparatus has a cartridge assembly adapted for connection to a unitary frame. An anvil is attached at a front end of a cylindrical body of the cartridge and a hydraulic chamber within the body is adapted to apply axial pressure to the anvil. A threaded end of the anvil is adapted for mating with a threaded inside diameter of a borehole disposed within a wall of the frame. A radial compression element disposed around an outer diameter of the body is adapted to limit radial expansion of the body proximate the hydraulic chamber. At least one mechanism is attached to the radial compression element; the at least one mechanism being adapted to preload the threaded connection between the cartridge assembly and the frame.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 23, 2008
    Inventors: David R. Hall, Ronald Crockett, Timothy C. Duke, Scott Dahlgren
  • Publication number: 20080279710
    Abstract: A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications.
    Type: Application
    Filed: May 8, 2007
    Publication date: November 13, 2008
    Inventors: Aruna Zhamu, Jinjun Shi, Jiusheng Guo, Bor Z. Jang
  • Publication number: 20080274004
    Abstract: This invention relates to the formation manufacturing method for constructing a thermoelectric device, by dispensing a slurry composed of thermoelectric solids in a carrier fluid across a substrate. The process uses a mold to confine the slurry, and heat and pressure to cure the thermoelectric slurry into a solid. The specific method of curing the thermoelectric material is outlined, employing a new method of condensing the particulate solids into dense thermoelectric elements.
    Type: Application
    Filed: April 29, 2008
    Publication date: November 6, 2008
    Applicant: Romny Scientific, Inc.
    Inventor: Andrew C. Miner
  • Publication number: 20080188922
    Abstract: An endoprosthesis that includes a composite having a metal matrix and a plurality of stiffening particles in the matrix. The metal of the metal matrix can include titanium, niobium, tantalum, or alloys thereof The stiffening particles can include a metal core and a thin surface layer. The thin surface layer can include oxides, carbides, nitrides, or combinations thereof.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 7, 2008
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventor: Jonathan S. Stinson
  • Publication number: 20080181806
    Abstract: There is provided a compression molding machine capable of manufacturing briquettes by compression molding a material efficiently. The compression molding machine includes a mold device (12) formed with a molding chamber and a plunger (15) provided so as to be capable of advancing and retreating in the axial direction to compression mold the material in the molding chamber. The molding device (12) includes an axially fixed pressure receiving member (16) facing to a tip end surface (15a) of the plunger (15), an outside mold (44) in sliding contact with the outer peripheral surface of the plunger (15), and supporting means which supports the outside mold (44) so that the outside mold (44) moves in an extrusion direction of the plunger (15) in association with the movement of the plunger (15) in the extrusion direction.
    Type: Application
    Filed: March 17, 2006
    Publication date: July 31, 2008
    Inventors: Hiroshi Ueno, Masafumi Sedo, Mitsuma Matsuda, Shigenobu Hasui, Shinji Urata, Tetsuo Shigemi