Nickel Containing Patents (Class 420/108)
  • Patent number: 6821360
    Abstract: A heat-resisting steel comprising 0.15-0.30 wt. % C, 0.05-0.3 wt. % Si, 0.01-0.7 wt. % Mn, 1.8-2.5 wt. % Cr, 0.15-0.23 wt. % V, 1.5-2.5 wt. % W, 0.01-0.02 wt. % Ti, 0.01-0.08 wt. % Nb, 0.005-0.03 wt. % N, 0.001-0.015 wt. % B, and Fe and unavoidable impurities as the remainder; a heat-resisting steel comprising 0.15-0.30 wt. % C, 0.05-0.3 wt. % Si, 0.01-0.7 wt. % Mn, 1.8-2.5 wt. % Cr, 0.15-0.23 wt. % V, 1.5-2.5 wt. % W, 0.3-0.8 wt. % Mo, 0.01-0.02 wt. % Ti, 0.01-0.08 wt. % Nb, 0.005-0.03 wt. % N, 0.001-0.015 wt. % B, and Fe and unavoidable impurities as the remainder; and a heat-resisting steel that is obtained by subjecting one of the above heat-resisting steels to a heat treatment comprising the step of oil-cooling the heat-resisting steel to a temperature of 300° C. or lower. These heat-resisting steels are excellent in both high-temperature strength and impact properties.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: November 23, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryuichi Ishii, Yoichi Tsuda, Masayuki Yamada
  • Patent number: 6783610
    Abstract: A steel alloy, particularly adapted for the manufacture of railway wheels is provided. Such alloy comprises essentially, in weight percentage, carbon 0.67-0.77, manganese 0.70-0.85, silicon 0.65-0.85, phosphorus less than 0.025, sulfur less than 0.025, chromium 0.18-0.25, molybdenum 0.08-0.12, with the balance essentially iron. Another lower carbon alloy comprises essentially, in weight percentage, carbon 0.16-0.45, manganese 0.90-1.10, silicon 0.50-0.70, phosphorous less than 0.035, sulfur less than 0.035, nickel 1.0-1.5, chromium 0.40-0.60 and molybdenum 0.40-0.60.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: August 31, 2004
    Assignee: AMSTED Industries Incorporated
    Inventors: Mark S. Shirley, Richard A. Pilon
  • Patent number: 6776728
    Abstract: A weight member for a golf club head is made of a WFeNi alloy by a precision casting process. The WFeNi alloy includes wt 15%-40% of iron, wt 30%-60% of nickel, wt 15%-30% of tungsten, wt 1.5%-10.0% of chromium, and wt 0.5%-5.0% of molybdenum. Chromium improves the rust-resisting property of the weight member. Molybdenum reduces the risk of cracks in the weight member during welding. Uniformity of shining finishing of the weight member can be improved by controlling a mixture ratio of nickel to tungsten. Manganese, copper, vanadium, and niobium may be added to improve the mechanical properties of the weight member.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: August 17, 2004
    Assignee: Nelson Precision Casting Co., Ltd.
    Inventors: Chan-Tung Chen, Yan-Zheng Su
  • Patent number: 6758764
    Abstract: A weight member for a golf club head is made of a WFeNi alloy by a precision casting process. The WFeNi alloy includes nickel 30-60 wt %, tungsten 15-30 wt %, chromium 1.5-10.0 wt %, and iron that is the remaining portion. Chromium improves the rust resisting property of the weight member and lengthens the life of the weight member. Uniformity of shining finishing of the weight member can be improved by controlling a mixture ratio of nickel to tungsten. Silicon may be added to improve the flowability of the molten metal. Manganese, copper, vanadium, and niobium may be added to improve the mechanical properties of the weight member.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: July 6, 2004
    Assignee: Nelson Precision Casting Co., Ltd.
    Inventors: Chan-Tung Chen, Yan-Zheng Su
  • Patent number: 6702981
    Abstract: High speed steel (HSS) compositions having less C and Cr contents than standard grades of HSS to permit carburization using conventional techniques. The alloys contain less than 0.40 wt. % C and less than 2% Cr. The low Cr content is a critical factor in enhancing the ease of carburizing the present steels. The resulting HSS compositions possess high hardness and fracture resistance. More particularly, the steels include, in % by weight: 0-0.4% C; 0.5-1.5% Cr; 1.5-3.5% Ni; 0.1-0.6% M; 0.15-0.65% Si; 0.03 max % P; 0.03 max % S; one or more members selected from the group consisting of 4.0-15.3% Mo; 1.0-5.7% V; up to 13% Co and up to 28% W, and wherein the aggregate amount of %Cr+%Mo+%V+%W+%Co is between 7.5-35% and balance essentially Fe and incidental impurities. A method for treating the above alloy includes the steps of carburizing at about 960° C. followed by quenching, preheating to about 870° C. followed by austenitizing at 1125° C.-1225° C.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: March 9, 2004
    Assignee: The Timken Company
    Inventor: Dennis W. Hetzner
  • Publication number: 20030152477
    Abstract: Bimetal saw band comprising a support band of high microstructural stability and fatigue strength, comprising 0.25 to 0.35% of carbon, 0.3 to 0.5% of silicon, 0.8 to 1.5% of manganese, 1.0 to 2.0% of molybdenum, 1.5 to 3.5% of chromium, 0.5 to 1.5% of nickel, 0.5 to 2.5% of tungsten, 0.15 to 0.30% of vanadium, 0.05 to 0.10% of niobium, 0.05 to 1.0% of copper, up to 0.2% of aluminum, up to 1% of cobalt, remainder iron including melting-related impurities, and tooth tips made from a steel with high wear resistance, comprising 1.0 to 2.0% of carbon, 3 to 6% of chromium, 1 to 5% of vanadium, 3 to 10% of molybdenum, 4 to 10% of tungsten, 4 to 10% of cobalt, up to 1% of silicon, up to 1% of manganese, up to 0.5% of niobium, up to 0.5% of nitrogen, remainder iron including melting-related impurities.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 14, 2003
    Inventors: Oskar Pacher, Werner Lenoir
  • Patent number: 6520868
    Abstract: A golf club head which comprises a steel alloy which contains maximum amounts of 0.03% of C by weight, 0.2˜0.6% of Si by weight, maximum amounts of 0.15% of Mn by weight, maximum amounts of 0.03% of P by weight, maximum amounts of 0.03% of S by weight, 10.5-13.5% of Cr by weight, 0.8-1.4% of Mo by weight, 0.8-1.4% of Al by weight, 0.8˜1.4% of Ni by weight, 0.02˜0.1% of Nb by weight, maximum amounts of 0.01% of N by weight, maximum amounts of 0.03% of Cu by weight, and the rest being Fe. The steel alloy is made by a metallurgical method involving vacuum melting process and normalizing process, whereby the main crystal structure of the steel alloy is Fe.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: February 18, 2003
    Inventor: Archer C. C. Chen
  • Patent number: 6500279
    Abstract: A material having capacity of absorbing vibration contains maximum amounts of 0.03% of C by weight, 0.2˜0.6% of Si by weight, maximum amounts of 0.15% of Mn by weight, maximum amounts of 0.03% of P by weight, maximum amounts of 0.03% of S by weight, 10.5˜13.5% of Cr by weight, 0.8˜1.4% of Mo by weight, 0.8˜1.4% of Al by weight, 0.8˜1.4% of Ni by weight, 0.02˜0.1% of Nb by weight, maximum amounts of 0.01% of N by weight, maximum amounts of 0.03% of Cu by weight, and the rest being Fe. The material being made by a metallurgical method involving vacuum melting process and normalizing process, whereby the main crystal structure of the material is Fe.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: December 31, 2002
    Inventor: Archer C. C. Chen
  • Patent number: 6485678
    Abstract: A unique iron base alloy for wear resistant applications, characterized in one aspect by its hardening ability when exposed to a certain temperature range, is useful for valve seat insert applications. The alloy also possesses excellent wear resistance, hot hardness and oxidation resistance. The alloy comprises less than 0.1 wt % carbon; about 18 to about 32 wt % molybdenum, about 6 to about 15 wt % chromium, about 1.5 to about 3% silicon, about 8 to about 15 wt % cobalt and at least 40% iron, with less than 0.5 wt % nickel. In another aspect, for lower temperature applications, the cobalt is optional, the nickel content can be up to 14 wt %, but the molybdenum must be in the range of about 29% to about 36%. In one further aspect, for higher temperature applications, the cobalt is optional, but may be used up to 15 wt %, nickel must be used at a level of between about 3 and about 14 wt %, and the molybdenum will be in the range of about 26 to about 36 wt %.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: November 26, 2002
    Assignee: Winsert Technologies, Inc.
    Inventors: Xuecheng Liang, Gary R. Strong
  • Patent number: 6413329
    Abstract: A high strength steel for dies has excellent machinability and including, by weight, 0.005 to 0.1% C, not more than 1.5% Si, not more than 2.0% Mn, from 3.0 to less than 8.0% Cr, not more than 4.0% Ni, 0.1 to 2.0% Al, not more than 3.5% Cu, and balance of Fe and unavoidable impurities including N and O, and which has a metal structure whose primary microstructure is martensite, wherein N and O as impurities are restricted to amount ranges of not more than 0.02% N and not more than 0.003% O. In the invention, an improvement in the machinability in heavy cutting an improvement in the precision electro discharge machining property and high-grade polishing property can be achieved when the above high strength steel has a chemical composition in which the value of (7.7×C (wt %))+(2.2×Si (wt %))+271.2×S (wt %)) is preferably not less than 2.5 and more preferably not more than 6.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: July 2, 2002
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hideshi Nakatsu, Yasushi Tamura, Yoshiyuki Murakawa
  • Patent number: 6379611
    Abstract: A high strength, low alloy, heat resistant steel having excellent weldability has an average crystal grain diameter of at most 110 &mgr;m and consists essentially of, by mass %: C: 0.03-0.15%, Si: at most 1%, Mn: at most 2%, P: at most 0.03%, S: at most 0.03%, Ni: at most 0.5%, Cu: at most 0.5%, Cr: 1.8-2.8%, V: 0.1-0.3%, Nb: 0.01-0.08%, Mo: 0.05-0.35%, W: 1.2-1.8%, Ti: 0.001-0.05%, B: 0-0.02%, Al: at most 0.1%, O: at most 0.1%, N: in an amount satisfying the formula [%N]≦[%Ti]+5[%B]+0.004, and a remainder of unavoidable impurities.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: April 30, 2002
    Assignees: Sumitomo Metal Industries, Ltd., Mitsubishi Heavy Industries, Ltd.
    Inventors: Nobuyoshi Komai, Fujimitsu Masuyama, Tomomitsu Yokoyama, Hiroyuki Hirata, Kaori Kawano, Takao Kan
  • Patent number: 6290905
    Abstract: A welding method for two members adapted to be welded and formed of a low-alloy steel for structural purposes causing the weld metal to develop martensite transformation during cooling after welding, so that the weld metal becomes expanded to a greater degree at room temperature than at a temperature at which the martensite transformation initiates. The welding material comprises a ferrous alloy containing C, Cr, Ni, Si, Mn, Mo and Nb, all of which meet substantially with the contents of the following equation (1): 170≦719−(795×C wt %)−(23.7×Cr wt %)−(26.5×Ni wt %)−(35.55×Si wt %)−(13.25×Mn wt %)−(23.7×Mo wt %)−(11.85×Nb wt %)<250  (1).
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: September 18, 2001
    Assignee: Kawasaki Steel Corporation
    Inventors: Osamu Watanabe, Akihiko Ohta, Chiaki Shiga, Satoshi Nishijima
  • Patent number: 6245290
    Abstract: A high-tensile-strength steel having excellent toughness throughout its thickness, excellent properties at welded joints, and a tensile strength (TS) of at least about 900 MPa (130 ksi), and a method for making such steel, are provided. Steels according to this invention preferably have the following composition based on % by weight: carbon (C): 0.02% to 0.1%; silicon (Si): not greater than 0.6%; manganese (Mn): 0.2% to 2.5%; nickel (Ni): 0.2% to 1.2%; niobium (Nb): 0.01% to 0.1%; titanium (Ti): 0.005% to 0.03%; aluminum (Al): not greater than 0.1%; nitrogen (N): 0.001% to 0.006%; copper (Cu): 0% to 0.6%; chromium (Cr): 0% to 0.8%; molybdenum (Mo): 0% to 0.6%; vanadium (V): 0% to 0.1%; boron (B): 0% to 0.0025%; and calcium (Ca): 0% to 0.006%. The value of Vs as defined by Vs=C+(Mn/5)+5P−(Ni/10)−(Mo/15)+(Cu/10) is 0.15 to 0.42. P and S among impurities are contained in an amount of not greater than 0.015% and not greater than 0.003%, respectively.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: June 12, 2001
    Assignees: ExxonMobil Upstream Research Company, Sumitomo Metal Industries, Ltd.
    Inventors: Jayoung Koo, Narasimha-Rao V. Bangaru, Michael J. Luton, Clifford W. Petersen, Kazuki Fujiwara, Shuji Okaguchi, Masahiko Hamada, Yu-ichi Komizo
  • Patent number: 6206983
    Abstract: The invention relates to medium carbon steels and low alloy steels having a concentration of a machinability enhancing agent (“MEA”), i.e. tin and/or antimony, at its ferrite grain boundaries which enhances the steel's machinability and to processes for producing such steels. The invention encompasses medium carbon steels and low alloy steels characterized by having MEA bulk contents of from about 0.02 to about 0.09 weight percent, by having the sum of the MEA bulk content and the copper bulk content being no greater than about 0.10 weight percent, and by having a microstructure at the time of machining having a concentration of MEA at ferrite grain boundaries in an amount at least about five times the MEA bulk content of the steel.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: March 27, 2001
    Assignee: University of Pittsburgh - of the Commonwealth System of Higher Education
    Inventors: Anthony J. DeArdo, C. Isaac Garcia
  • Patent number: 6126897
    Abstract: A carburizing steel having the following chemical composition:C: 0.1 to 0.25%,Si: 0.2 to 0.4%,Mn: 0.3 to 0.9%,P: 0.02% or less,S: 0.001 to 0.15%,Cr: 0.5 to 0.9%,Mo: 0.15 to 1%,Al: 0.01 to 0.1%,B: 0.0005 to 0.009%,N: less than 0.006%, andthe balance of Fe and incidental impurities, wherein % is on a weight basis. Also disclosed are a method for the manufacture of the carburizing steel, parts of constant velocity universal joints for drive shafts made of the carburizing steel, as well as a method for the manufacture of such parts. The carburizing steel may further contain Ni: 0.3-4.0%, and one or more elements selected from the group consisting of Ti, Nb, V and Zr: 0.01-0.3% for each. The parts of constant velocity universal joints for drive shafts are manufactured using the carburizing steel of the present invention as a material. When they are carburized and quenched, they exhibit a surface hardness (Hv) of 650-800, core hardness (Hv) of 250-450, and carburized case depth of 0.2-1.2 mm.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: October 3, 2000
    Assignees: Sumitomo Metal Industries, Ltd., NTN Corporation
    Inventors: Kenji Aihara, Yasuhide Fujioka, Kazuhiko Yoshida, Tatsuhiro Goto, Akira Wakita
  • Patent number: 6099797
    Abstract: This invention reveals steel alloys for use in manufacturing reinforcing wires for rubber products, such as tires. The steel filaments made with such steel alloys have an outstanding combination of strength and ductility. The steel alloys of this invention can be manufactured into filaments having a tensile strength in the range of 4000 MPa to 5000 MPa. Additionally, these can be patented in a low-cost process due to their having a very fast rate of isothermal transformation. This allows the steel in the steel wire being patented to transform from a face-centered cubic microstructure to an essentially body-centered cubic microstructure within a very short period. This invention more specifically discloses a steel alloy composition which is particularly suitable for use in manufacturing reinforcing wire for rubber products which consists essentially of (a) iron, (b) about 1.05 to about 1.7 weight percent carbon, (c) about 0.2 to about 0.8 weight percent manganese, (d) about 0.1 to about 0.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: August 8, 2000
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Anand Waman Bhagwat, Sameer Suresh Vijayakar, Dong Kwang Kim
  • Patent number: 6048491
    Abstract: A steel alloy ahs the following composition in weight % 0.075-0.15% C from traces to max. 1.0 Si, 1-3 Mn, 2-5 Cr, 1-4 Ni, wherein the total amount of Mn+Cr+Ni>6, 0.1-1.0 Mo, which wholly or partly can be replaced by the double amount of W, max. 0.015 P, max 0.02 S, balance essentially only iron and impurities and accessory elements in normal amounts.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: April 11, 2000
    Assignee: Uddeholm Tooling Aktiebolag
    Inventors: Lars-.ANG.ke Norstrom, Henrik Jesperson
  • Patent number: 5972130
    Abstract: A steel and tool made therefrom which in a tempered condition of 388 BHN or softer has high strength, high wear resistance together with excellent toughness in the range of 15% elongation and 35 ft-lbs. charpy and having the following composition:______________________________________ C .33-.39 Mn .50-.70 P .025 max. S .025 max. Si .40-.60 Ni 1.05-1.35 Cr 1.33-1.68 Mo .40-.60 Cu .60-.90 Al .010-.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: October 26, 1999
    Assignee: A. Finkl & Sons Co.
    Inventors: Algirdas A. Underys, Charles W. Finkl
  • Patent number: 5866066
    Abstract: An age hardenable martensitic steel alloy having a unique combination of very high strength and good toughness consists essentially of, in weight percent, about______________________________________ C 0.21-0.34 Mn 0.20 max. Si 0.10 max. P 0.008 max. S 0.003 max. Cr 1.5-2.80 Mo 0.90-1.80 Ni 10-13 Co 14.0-22.0 Al 0.1 max. Ti 0.05 max. Ce 0.030 max. La 0.010 max. ______________________________________the balance essentially iron. In addition, cerium and sulfur are balanced so that the ratio Ce/S is at least about 2 and not more than about 15. A small but effective amount of calcium can be present in place of some or all of the cerium and lanthanum.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: February 2, 1999
    Assignee: CRS Holdings, Inc.
    Inventors: Raymond M. Hemphill, David E. Wert, Paul M. Novotny, Michael L. Schmidt
  • Patent number: 5855845
    Abstract: Steel for the manufacture of molds for injection molding of plastics, wherein its chemical composition contains, by weight: 0.35%.ltoreq.C.ltoreq.0.5%, 0%.ltoreq.Si.ltoreq.0.5%, 0.2%.ltoreq.Mn.ltoreq.2.5%, 0%.ltoreq.Ni.ltoreq.4%, 0%.ltoreq.Cr.ltoreq.4%, 0%.ltoreq.Mo+W/2.ltoreq.2%, 0%.ltoreq.Cu.ltoreq.1%, 0%.ltoreq.V+Nb/2+Ta/4.ltoreq.0.5%, 0.005%.ltoreq.Al.ltoreq.0.2%, 0%.ltoreq.B.ltoreq.0.015%, 0%.ltoreq.Ti+Zr/2.ltoreq.0.3%, 0%.ltoreq.S+Se+Te .ltoreq.0.2%, 0%.ltoreq.Pb+Bi.ltoreq.0.2%, 0%.ltoreq.Ca.ltoreq.0.1%, the remainder being iron and impurities resulting from the production, the analysis simultaneously satisfying the following relationships: Cr+3.times.(Mo+W/2)+10.times.(V+Nb/2+Ta/4).gtoreq.1, R=3.8.times.C+10.times.Si+3.3.times.Mn+2.4.times.Ni+1.4.times.(Cr+Mo+W/2). ltoreq.11, Qu=3.8.times.C+1.1.times.Mn+0.7.times.Ni+0.6.times.Cr+1.6.times.(Mo+W/2)+k B.gtoreq.3, with kB=0.5 if B.gtoreq.0.0005% and kB=0 if not, and: R.ltoreq.Max(2.33.times.Qu-1, 0.9.times.Qu+4).
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: January 5, 1999
    Assignee: Creusot Loire Industrie Societe Anonyme
    Inventors: Jean Beguinot, Gilbert Primon, Frederic Chenou
  • Patent number: 5772957
    Abstract: An iron composition and method for processing the composition that produces a steel alloy having enhanced low temperature toughness, without compromising other desirable mechanical properties, is described. The composition can be used to produce devices, such as saw chain, particularly useful for low temperature applications. In general, the steel composition comprises from about 0.2 weight percent to about 0.4 weight percent nickel, from about 0.2 to about 0.4 weight percent chromium, from about 0.5 weight percent to about 1.0 weight percent carbon, from about 0.3 to about 0.5 weight percent manganese, from about 0.1 to about 0.35 weight percent silicon, and from about 0.08 weight percent to about 0.20 weight percent molybdenum. After heat treating, the steel composition has an average fracture toughness of greater than about 42 ksi in.sup.1/2, and an average modified Charpy energy-to-failure of greater than about 2 ft.lbs at temperatures greater than about -20.degree. F.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: June 30, 1998
    Assignee: Blount, Inc.
    Inventors: Iain A. Thomson, Larry G. Ward, James Peck, Dwayne E. Lewis
  • Patent number: 5746842
    Abstract: Steel for forming a gear by carburizing and quenching consisting essentially of: 0.1 to 0.35 wt. % C, 0.5 to 2.5 wt. % Si, 0.2 to 2.5 wt. % Mn, 0.01 to 2.5 wt. % Cr, 0.01 to 0.7 wt. % Mo, and the balance being Fe and inevitable impurities. The steel has an Ac.sub.3 point parameter (Ac.sub.3) and an ideal critical diameter (D.sub.I), the Ac.sub.3 point parameter being in a range of 850.degree. to 960 .degree. C., the ideal critical diameter (D.sub.I) being in a range of 30 to 250 mm, and the Ac.sub.3 point parameter (Ac.sub.3) and the ideal critical diameter (D.sub.I) being defined by the following equations.Ac.sub.3 =920-203.sqroot.C+44.7 Si+31.5.times.Mo-30.times.Mn-11.times.CrD.sub.I =7.95.sqroot.C(1+0.70.times.Si) (1+3.3.times.Mn)(1+2.16.times.Cr) (1+3.0.times.Mo)The steel has a non-carburized portion after carburizing and quenching, an internal structure of the non-carburized portion comprising a dual phase of martensite and ferrite, said ferrite having an area percentage of 10 to 70% in the dual phase.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: May 5, 1998
    Assignee: Toa Steel Co., Ltd.
    Inventors: Toyoaki Eguchi, Hiroshi Majima
  • Patent number: 5720920
    Abstract: The present invention relates to a steel having excellent corrosion resistance and workability and more particularly to a steel having excellent corrosion resistance and workability in an exhaust system of internal combustion engines in, for example, internal combustion engines in automobiles and ships. A steel having excellent corrosion resistance and a steel having excellent corrosion resistance and workability, characterized by comprising Si: not less than 0.01 to less than 1.2%, Mn: 0.1 to 1.5%, Cr: 2.5 to 9.9%, and Al: more than 3.0 to 8.0%, and, reduced to, C: not more than 0.02%, P: not more than 0.03%, S: not more than 0.01%, and N: not more than 0.02%, and further comprising 0.01 to 0.5% in total of Nb, V, Ti, Zr, Ta, and Hf so as to meet a particular conditional formula, or further comprising at least one member selected from Cu, Mo, Sb, Ni, W, rare earth elements, and Ca, with the balance consisting of Fe and unavoidable impurities.
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: February 24, 1998
    Assignee: Nippon Steel Corporation
    Inventors: Kenji Kato, Akihiro Miyasaka
  • Patent number: 5714116
    Abstract: A steel composition useful for the manufacture of articles and components having high abrasion resistance.
    Type: Grant
    Filed: April 24, 1996
    Date of Patent: February 3, 1998
    Assignee: Creusot Loire Industrie (Societe Anonyme)
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Patent number: 5645794
    Abstract: Low alloy steel for the manufacture of molds for plastics or for rubber, the chemical composition of which comprises, by weight, 0.24% to 0.35% of carbon, 1% to 2.5% of manganese, 0.3% to 2.5% of chromium, 0.1% to 0.8% of molybdenum plus tungsten divided by 2, up to 2.5% of nickel, 0% to 0.3% of vanadium, less than 0.5% of silicon, 0.002% to 0.005% of boron, 0.005% to 0.1% of aluminum, 0% to 0.1% of titanium and less than 0.02% of phosphorus. The chemical composition must furthermore satisfy the relationship:U=409(% C)+19.3[% Cr+% Mo+% W/2+% V]+29.4(% Si)+10(% Mn)+7.2(% Ni)<200and the relationship:R=3.82(% C)+9.79(% Si)+3.34(% Mn)+11.94(% P)+2.39(% Ni)+1.43(% Cr)+1.43(% Mo+% W/2)<11.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: July 8, 1997
    Assignee: Creusot Loire Inudstrie
    Inventors: Jean Beguinot, Frederic Chenou, Gilbert Primon
  • Patent number: 5639421
    Abstract: A precipitation hardening steel excellent in machinability, toughness (10J/cm.sup.2 or above), hardness (HRC43 or above) after aging treatment and suitable to a metallic mold for plastics, which consists by weight percentage of C: 0.05-0.18%, Si:0.15-1.00%, Mn:1.0-2.0%, Ni:2.5-3.5%, Cr:0.7-2.0%, Al:0.5-1.5%, Cu:0.7-1.7%, Mo:0.1-0.4%, S:0.05-0.35%, and the balannce of Fe, and H-value obtained through the following equation indicates zero or a positive value:H=(3.843 Mn+4.378 Cr.sup.0.58)-(4.220 S+8.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: June 17, 1997
    Assignee: Daido Tokushuko Kabushhiki Kaisha
    Inventors: Jiro Ichikawa, Toshihiro Kitagawa
  • Patent number: 5562881
    Abstract: Special-steel alloys for high-load-bearing chains and corresponding chain parts containing portions of carbon, silicon, manganese, phosphorus, sulfur, chromium, molybdenum, nickel and aluminum. In order to impart a higher strength and toughness for this purpose to the special-steel an additional alloy proportion of tungsten is used in a given weight ratio.
    Type: Grant
    Filed: June 26, 1995
    Date of Patent: October 8, 1996
    Assignee: J.D. Theile GmbH & Co., KG
    Inventor: J urgen Berghoff
  • Patent number: 5508002
    Abstract: Disclosed is a spring steel for a high corrosion resistant and high strength, which exhibits an excellent drawability without softening heat treatment after hot rolling, and which has a strength of 1900 MPa or more by quenching and tempering and an excellent corrosion resistance. The spring steel contains elements of C, Si, Mn and Cr, and elements of Ni and/or Mo in suitable amounts, the balance being essentially Fe and inevitable impurities, wherein the elements satisfy the following requirement:2.5.ltoreq.(FP).ltoreq.4.52.0.ltoreq.(FP/log D).ltoreq.4.0where D is a diameter (mm) of the rolled material, and FP=(0.23[C]+0.1).times.(0.7[Si]+1).times.(3.5[Mn]+1).times.(2.2[Cr]+1).tim es.(0.4[Ni]+1).times.(3[Mo]+1) in which [element] represents mass % of the element.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: April 16, 1996
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Yasunobu Kawaguchi, Masataka Shimotsusa, Kan Momozaki, Takenori Nakayama, Shigeaki Miyauchi, Yoshinori Yamamoto, Norio Ohkouchi
  • Patent number: 5279902
    Abstract: An air hardened steel having a reduced nickel content and acceptable impact hardness. The air hardened steel may include 0.18-0.35 w/o carbon, 1.3-1.75 w/o silicon, 1.3-2.0 w/o manganese, 0.65-2.1 w/o chromium, 0.9-2.0 w/o nickel and 0.2-0.35 w/o molybdenum and the balance impurities, deoxidants, and iron.
    Type: Grant
    Filed: December 3, 1991
    Date of Patent: January 18, 1994
    Assignee: Kennametal Inc.
    Inventor: James P. Materkowski
  • Patent number: 5268044
    Abstract: A high strength, high fracture toughness steel alloy consisting essentially of, in weight percent, about______________________________________ C 0.2-0.33 Mn 0.20 max. Si 0.1 max. P 0.008 max. S 0.004 max. Cr 2-4 Ni 10.5-15 Mo 0.75-1.75 Co 8-17 Ce Effective amount-0.030 La Effective amount-0.01 Fe Balance ______________________________________and an article made therefrom are disclosed. A small but effective amount of calcium can be present in this alloy in substitution for some or all of the cerium and lanthanum. The alloy is an age-hardenable martensitic steel alloy which provides a unique combination of tensile strength and fracture toughness. The alloy provides excellent mechanical properties when hardened by vacuum heat treatment with inert gas cooling and has a low ductile-to-brittle transition temperature.
    Type: Grant
    Filed: June 30, 1992
    Date of Patent: December 7, 1993
    Assignee: Carpenter Technology Corporation
    Inventors: Raymond M. Hemphill, David E. Wert, Paul M. Novotny, Michael L. Schmidt
  • Patent number: 5133928
    Abstract: A steel composition is especially suitable for pressure vessels and comprises carbon (0.32-0.37%), silicon (0.15-0.35%), manganese (0.60-0.90%), chromium (0.80-1.10%), molybdenum (0.35-0.55%), aluminum (0.01-0.05%), phosphorus up to a maximum of 0.02%, sulphur up to a maximum of 0.005% and nickel up to a maximum of 0.25%. The composition gives enhanced strength and toughness for the purpose using straightforward heat treatment methods.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: July 28, 1992
    Assignee: Chesterfield Cylinders Limited
    Inventor: Frederick K. Oldfield
  • Patent number: 5122336
    Abstract: The invention relates to a high-hardness steel for armouring having the following chemical composition by weight: 0.4 to 0.7% of carbon, 0.3 to 1.5% of manganese, 0.1 to 2% of chromium, 0.5 to 1.5% of silicon, 1 to 5% of nickel, 0.2 to 1% of molybdenum, less than 0.015% of phosphorus and less than 0.005% of sulphur, the remainder being iron and residual impurities resulting from the smelting of the materials necessary for the production.The invention also relates to a process for the production of such a steel.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: June 16, 1992
    Assignee: Creusot-Loire Industrie
    Inventors: Remi Roux, Laurent Sangoy, J. Henri Leger
  • Patent number: 5110379
    Abstract: A low alloy hot work implement which retains its fine grain size at elevated working temperatures up to the range of 2,200 degrees F. to 2,250 degrees F. characterized in having a substantial content of N in the range of 75-150 ppm and, preferably, Co in the range of 0.01 to 0.1 the implement being further characterized by relatively narrow ranges of C, Mn, Si, Ni, Cr, Mo, and V, and substantial contents of Al which furnishes the basis for a substantial presence of aluminum nitrides in the final product.
    Type: Grant
    Filed: April 18, 1991
    Date of Patent: May 5, 1992
    Assignee: A. Finkl & Sons Co.
    Inventor: Charles W. Finkl
  • Patent number: 5102619
    Abstract: A high strength vacuum melted ferrous alloy having enhanced fracture toughness comprising not more than about 0.01% by weight sulfur, not more than about 0.1% manganese, and titanium in an amount in atomic percent of not less than about twice the atomic percentage of sulfur present in the alloy. Other detailed limits of titanium, zirconium, and niobium are also disclosed.
    Type: Grant
    Filed: June 6, 1989
    Date of Patent: April 7, 1992
    Assignee: Latrobe Steel Company
    Inventors: Warren M. Garrison, Jr., Jack W. Bray, James L. Maloney, III
  • Patent number: 5094923
    Abstract: An air hardened steel having a reduced nickel content and acceptable impact toughness. The air hardened steel may include 0.18-0.35 w/o carbon, 1.3-1.75 w/o silicon, 1.3-2.0 w/o manganese, 0.65-2.1 w/o chromium, 0.9-2.0 w/o nickel and 0.2-0.35 w/o molybdenum and the balance impurities, deoxidants, and iron.
    Type: Grant
    Filed: April 24, 1990
    Date of Patent: March 10, 1992
    Assignee: Kennametal Inc.
    Inventor: James P. Materkowski
  • Patent number: 5032356
    Abstract: A high fatigue strength metal band saw backing material of the present invention comprises 0.27 to 0.40% of C, not more than 0.35% of Si, 0.3 to 1.2% of Mn, 0.45 to 0.75% of Ni, more than 3.0% to 4.5% of Cr, 1.5 to 2.3% of one or two of Mo and W in terms of "Mo+W/2", 0.03 to 0.2% of one or two of V and Nb in terms of "V+Nb/2", in terms of percent by weight, the balance Fe and inevitable impurities. The metal band saw can maintain its high fatigue strength even if it is subjected to heat treatment under the same conditions as those for high speed steel used as an edge material and thus exhibits excellent properties as a metal band saw backing material.
    Type: Grant
    Filed: April 17, 1990
    Date of Patent: July 16, 1991
    Assignee: Hitachi Metals, Ltd.
    Inventors: Atushi Kumagai, Toshio Okuno, Yoshihiro Minagi, Katuaki Fukushima
  • Patent number: 5023049
    Abstract: The invention relates to a precipitation hardening tool steel for mould tools. The steel contains, expressed in weight-%:0.01-0.1 Cfrom traces to max 2 Si0.3-3.0 Mn1-5 Cr0.1-1 Moand Ni as a toughness and hardenability improving element, and Ni and Al as a compound and/or Cu for precipitation hardening purposes, wherein the contents of Ni and Al and/or Cu amount to1-7 Ni1.0-3.0 Al and/or1.0-4.0 Cu,wherein 1.5.times.Al+Cu.gtoreq.2.0, balance essentially only iron, impurities and accessory elements in normal amounts. The invention also relates to a mould tool made from the steel according to the invention.
    Type: Grant
    Filed: May 10, 1990
    Date of Patent: June 11, 1991
    Assignee: Uddeholm Tooling Aktiebolag
    Inventors: Larsake Norstrom, Anders Cederlund, Henrik Jespersson
  • Patent number: 5009843
    Abstract: A spring steel having a good durability and a good sag-resistance consisting essentially of by weight 0.35-0.55% carbon, 1.80-3.00% silicon, 0.50-1.50% manganese, 0.50-3.00% nickel, 0.10-1.50% chromium, 0.01-0.05% aluminum and 0.010-0.025% nitrogen, the remainder being iron and inevitable impurities.The spring steel has been completed for the purpose of obtaining a spring steel having a high toughness in a high hardness of not less than HRC 55 and having a good sag-resistance, in particular examining the contents of nickel, chromium and nitrogen in addition to the carbon content.
    Type: Grant
    Filed: May 22, 1990
    Date of Patent: April 23, 1991
    Assignees: Aichi Steel Works, Ltd., Toyota Jidosha Kabushiki Kaisha, Chuo Hatsujo Kabushiki Kaisha
    Inventors: Atsushi Sugimoto, Osamu Nakano, Shigeru Yasuda, Chikatoshi Maeda, Toshio Ozone, Makoto Kawagoe
  • Patent number: 4902473
    Abstract: A brake disc material which does not crack under a great braking action, such as in a large-sized truck, consisting of 0.03 percent to 1 percent of carbon, 1.2 percent to 20 percent of chromium, and 0.1 percent to 1 percent of molybdenum, the balance being essentially iron.
    Type: Grant
    Filed: November 16, 1987
    Date of Patent: February 20, 1990
    Assignee: Nippon Steel Corporation
    Inventors: Hiroto Arata, Kenji Shiga, Daihachiro Sakurai, Kazuo Fujisawa, Isao Souma, Yusiyo Watanabe, Akira Tanaka
  • Patent number: 4820486
    Abstract: The present invention relates to low alloy steel and specifically to nickel-chrome-molybdenum steel.A low alloy steel having excellent stress corrosion cracking resistance containing C:.ltoreq.0.40%, Si:.ltoreq.0.15%, Mn:.ltoreq.0.20%, P:.ltoreq.0.010%, S:.ltoreq.0.030%, Ni: 0.50 to 4.00%, Cr: 0.50 to 2.50%, Mo: 0.25 to 4.00% and V:.ltoreq.0.30%, said Si, Mn and P being fulfilled with relationship of Si+Mn+20P.ltoreq.0.30%, the remainder comprising Fe and unavoidable impurities, the prior austenite crystal grain size being in excess of 4 of ASTM crystal grain size number.
    Type: Grant
    Filed: March 31, 1986
    Date of Patent: April 11, 1989
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Kazutoshi Shimogori, Kazuo Fujiwara, Kiyoshi Sugie, Kikuo Morita, Takenori Nakayama, Mutsuhiro Miyakawa, Yasushi Torii
  • Patent number: 4729872
    Abstract: Isotropic tool steel consisting essentially of necessary elements as tool steel, less than 0.005 weight % of S and less than 30 ppm of O, the balance being substantially Fe. The necessary elements are, by weight, 0.10-0.70% of C, 2.00% or less of Si, 2.00% or less of Mn, 7.00% or less of Cr, 0.20-12.00% of W and/or Mo alone or in combination (1/2W+Mo), 3.00% or less of V. They may further include at least one of 4.00% or less of Ni, 6.50% or less of Co and 0.20% or less of N. The isotropic tool steel has cleanliness with respect to non-metallic inclusions defined by JIS G 0555 of dA60.times.400.ltoreq.0.010% and d(B+C)60.times.400.ltoreq.0.020%, and a ratio of transverse direction toughness to longitudinal direction toughness of more than 0.70. Since it is highly resistant to the generation and propagation of cracks and fracture, dies for hot working made therefrom can enjoy a long life.
    Type: Grant
    Filed: September 10, 1986
    Date of Patent: March 8, 1988
    Assignee: Hitachi Metals, Ltd.
    Inventors: Tamiya Kishida, Mitsuru Suzuki, Toshio Okuno, Atsusuke Nakao
  • Patent number: 4726417
    Abstract: A compound roll for rolling composed of a shell made of adamite having a carbon content of 1.4-2.5 weight % and a core made of forged or cast steel, the shell being metallurgically bonded to the core by casting an adamite melt around the already prepared core, and the shell having a large residual compressive stress. The adamite shell has a composition consisting essentially, by weight, of 1.4-2.5% of C, 0.6-0.8% of Si, 0.8-1.0% of Mn, 0.5-2.5% of Ni, 1.0-4.0% of Cr, 0.2-2.0% of Mo and the balance being essentially Fe. The residual compressive stress of the shell is desirably at least 20 kg/mm.sup.2 so that cracks are effectively prevented from penetrating into the depths of the shell, thereby preventing the breakage of the compound roll at a roll body thereof.
    Type: Grant
    Filed: September 12, 1986
    Date of Patent: February 23, 1988
    Assignee: Hitachi Metals, Ltd.
    Inventor: Yoshikazu Sano
  • Patent number: 4721600
    Abstract: A superplastic hot working method for a duplex-phase, nitrogen-containing ferrous alloy and stainless steel, and a superplastic duplex-phase ferrous alloy are disclosed. The ferrous alloy comprises: at least one of Si and Mn in an amount of not less than 0.5% and not less than 1.7%, respectively; and N: at least 0.01% in solid solution, wherein Si eq and Mn eq which are defined as:Si eq=Si+(2/3)(Cr+Mo), and Mn eq=Mn+2 Ni+60 C+50 N,satisfy the formula:(5/6)(Si eq)-15/2.ltoreq.Mn eq.ltoreq.(11/5)(Si eq)-77/5,and its superplastic hot working is carried out by deforming the alloy heated to 700.degree.-1200.degree. C. at a strain rate of 1.times.10.sup.-6 S.sup.-1 to 1.times.10.sup.0 S.sup.-1. In another aspect, superplastic hot working of a duplex-phase stainless steel comprising Cr: 10.0-35.0%, Ni: 2.0-18.0%, Mo: 0-6.0%, and N: 0.005-0.3% and having the values of Si eq and Mn eq as above is carried out by deforming the steel at a strain rate of from 1.times.10.sup.-6 S.sup.-1 to 1.times.10.sup.1 S.sup.
    Type: Grant
    Filed: March 27, 1986
    Date of Patent: January 26, 1988
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yasuhiro Maehara, Yoshio Tarutani
  • Patent number: 4650645
    Abstract: A heat-resisting steel suitable for use in valve parts of internal combustion engine is disclosed, which consists essentially by weight percentage of 0.3-0.5% of C, more than 1.0% to 2.5% of Si, 0.1-2.0% of Mn, 0.5-7.0% of Cr, 0.3-2.0% of Mo and 0.1-1.0% of V as basic ingredients, at least one of 0.3-2.0% of Cu and 0.001-0.05% of REM as sub-ingredients and if necessary, at least one of 0.1 to less than 2.0% of Ni, 0.1-1.5% of W and 0.03-1.0% of Nb+Ta, and the balance of Fe and inevitable impurities.
    Type: Grant
    Filed: December 3, 1984
    Date of Patent: March 17, 1987
    Assignee: Daido Steel Company Limited
    Inventors: Tetsuo Kato, Susumu Isobe, Kenkichi Matsunaga