Vanadium, Titanium Or Zirconium Containing Patents (Class 420/109)
  • Publication number: 20130028782
    Abstract: Provided is a welding metal in which the chemical component composition thereof is appropriately controlled; an A value that is specified by a predetermined relational expression satisfies the requirement of being 3.8% to 9.0%; an X value that is specified by a predetermined relational expression satisfies the requirement of being 0.5% or greater; the area percentage of carbide particles having a circle-equivalent diameter of 0.20 ?m or greater in the welding metal is 4.0% or less; and the number of carbide particles having a circle-equivalent diameter of 1.0 ?m or greater is 1000 particles/mm2 or less. This welding metal, which can exhibit not only high strength but also good low-temperature toughness and good drop-weight characteristics, is useful as a material for a pressure vessel in a nuclear power plant.
    Type: Application
    Filed: April 8, 2011
    Publication date: January 31, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hidenori Nako, Yoshitomi Okazaki, Ken Yamashita, Minoru Otsu, Hideaki Takauchi
  • Patent number: 8361249
    Abstract: A steel plate has a C content between 0.05 to 0.18% by mass (hereinafter, content will be expressed simply in “%”), a Si content between 0.10 to 0.50%, a Mn content between 1.2 to 2.0%, an Al content between 0.01 to 0.10%, a Cr content between 0.05 to 0.30% and a V content between 0.01 to 0.05%, and meets a condition expressed by expression (1). 6.7[Cr]+4.5[Mn]+3.5[V]?7.2%??(1) where [Cr], [Mn] and [V] represent a Cr content, a Mn content and a V content in percent by mass, respectively. The strength reduction of the steel sheet is small even if the steel sheet is subjected for a long time to a stress relief annealing process after being processed by welding. Cracks do not form in the steel plate when the steel plate is welded.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: January 29, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Satoshi Shimoyama, Hiroki Imamura
  • Publication number: 20120321504
    Abstract: An air hardenable steel alloy is disclosed comprising, in percent by weight: 0.18 to 0.26 carbon; 3.50 to 4.00 nickel; 1.60 to 2.00 chromium; 0 to 0.50 molybdenum; 0.80 to 1.20 manganese; 0.25 to 0.45 silicon; 0 to less than 0.005 titanium; 0 to less than 0.020 phosphorus; 0 up to 0.005 boron; 0 up to 0.003 sulfur; iron; and impurities. The air hardenable steel alloy has a Brinell hardness in a range of 352 HBW to 460 HBW. The air hardenable steel alloy combines high strength, medium hardness and toughness, as compared with certain know air hardenable steel alloys, and finds application in, for example, any of a steel armor, a blast-protective hull, a blast-protective V-shaped hull, a blast-protective vehicle underbelly, and a blast-protective enclosure.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Njall Stefansson, Bradley Hasek, Ronald E. Bailey, Thomas Parayil, Andrew Nichols
  • Publication number: 20120294752
    Abstract: Provided is a welding metal in which a predetermined chemical component composition is satisfied, the A value as specified by formula (1) is 3.8% to 9.0%, and the surface area percentage of carbide having a circle-equivalent diameter of 0.20 ?m or greater in the welding metal is 4.0% or less. A value=0.8×[C]?0.05×[Si]+0.5×[Mn]+0.5×[Cu]+[Ni]?0.5×[Mo]+0.2×[Cr]??(1) (Provided that [C], [Si], [Mn], [Cu], [Ni], [Mo] and [Cr] are the C, Si, Mn, Cu, Ni, Mo and Cr content (by mass percent), respectively) The welding metal is useful as a material for a pressure vessel of a nuclear power plant as the welding metal is high in strength and has good low-temperature toughness and drop-weight characteristics.
    Type: Application
    Filed: January 24, 2011
    Publication date: November 22, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hidenori Nako, Yoshitomi Okazaki, Ken Yamashita, Minoru Otsu, Hideaki Takauchi
  • Patent number: 8303734
    Abstract: The present invention provides a high strength thick steel material excellent in toughness and weldability reduced in amount of C and amount of N, containing suitable amounts of Si, Mn, Nb, Ti, B, and O, having contents of C and Nb satisfying C—Nb/7.74?0.004, having a density of Ti-containing oxides of a particle size of 0.05 to 10 ?m of 30 to 300/mm2, and having a density of Ti-containing oxides of a particle size over 10 ?m of 10/mm2 or less, produced by treating steel by preliminary deoxidation to adjust the dissolved oxygen to 0.005 to 0.015 mass %, then adding Ti and, furthermore, vacuum degassing the steel for 30 minutes or more, smelting it, then continuously casting it to produce a steel slab or billet, heating the steel slab or billet to 1100 to 1350° C., hot rolling the slab or billet to a thickness of 40 to 150 mm, then cooling it.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 6, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Patent number: 8303892
    Abstract: A lean alloy steel and roll shells made of same are provided. The lean alloy steel has improved properties in imparting high productivity and long service life for roll shells (or roll caster shells) utilized in the direct casting of molten materials (such as molten aluminum) to strips. The lean alloy steel includes iron (Fe) alloyed with carbon (C), chromium (Cr), molybdenum (Mo), vanadium (V), manganese (Mn), nickel (Ni), phosphorus (P), sulfur (S), silicon (Si), and/or niobium (Nb). The roll shells made from the heat treated lean alloy steel have high resistance to surface heat checking due to its very high yield strengths at molten aluminum temperatures (made, e.g., possible with its high carbide content), and have high casting speeds because of its high thermal conductivity (made, e.g., possible with its lean alloy composition).
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: November 6, 2012
    Assignee: Shultz Steel Company
    Inventors: Harshad V. Sheth, James N. Cordea
  • Publication number: 20120261038
    Abstract: A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40 ° C.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Applicants: KABUSHIKI KAISHA TOSHIBA, THE JAPAN STEEL WORKS, LTD.
    Inventors: Satoru OHSAKI, Kazuhiro MIKI, Tsukasa AZUMA, Koji KAJIKAWA, Shigeru SUZUKI, Masayuki YAMADA, Itaru MURAKAMI, Kenichi OKUNO, Liang YAN, Reki TAKAKU, Akihiro TANIGUCHI, Tetsuya YAMANAKA, Makoto TAKAHASHI, Kenichi IMAI, Osamu WATANABE, Joji KANEKO
  • Patent number: 8241559
    Abstract: The invention relates to a steel material having a high silicon content, and to a method for the production thereof, the steel material being particularly suitable for piston rings and cylinder sleeves. In addition to iron and production-related impurities, the steel material contains 0.5 to 1.2 wt. % carbon, 3.0 to 15.0 wt. % silicon and 0.5 to 4.5 wt. % nickel. Also, the steel material can contain small amounts of the following elements Mo, Mn, Al, Co Nb, Ti, V, Sn, Mg, B, Te Ta La, Bi, Zr, Sb, Ca, Sr, Cer, rare earth metals and nucleating agents such as NiMg, MiSiMg, FeMg and FeSIMg. due to the high Si content, a degree of saturation higher than 1.0 is attained, with the melting temperature of the steel material corresponding to normal cast iron. The steel material can be produced according to a conventional cast-iron technique and has a high resistance to wear and tear and a high structural strength (minimal distortion).
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: August 14, 2012
    Assignee: Federal-Mogul Burscheid GmbH
    Inventor: Laszlo Pelsoeczy
  • Publication number: 20120187093
    Abstract: A filler material for welding is characterized by the following chemical composition (amounts in % by weight): 0.05-0.15 C, 8-11 Cr, 2.8-6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 1-3 Re, 0.001-0.07 Ta, 0.01-0.06 N, 0-60 ppm Pd, max. 0.25 P, max. 0.02 S, remainder Fe and manufacturing-related unavoidable impurities. The material has outstanding properties, in particular a good creep rupture strength/creep resistance, a good oxidation resistance and a very high toughness.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 26, 2012
    Inventors: Mohamed Youssef Nazmy, Claus Paul Gerdes, Andreas Kuenzler, Sorin Keller
  • Patent number: 8187530
    Abstract: An object of this invention is to provide a steel for high-cleanliness spring which is useful for the production of a spring excellent in fatigue characteristics in high Si steels. The steel for high-cleanliness spring with excellent fatigue characteristics according to the invention contains: in terms of mass %, C: 1.2% or less (excluding 0%); Si: 1.8% to 4%; Mn: 0.1% to 2.0%; and total Al: 0.01% or less (excluding 0%), with the remainder being iron and inevitable impurities, in which the Si amount and a solute (SIMS) Ca amount in the steel satisfy a relationship of the following expression (1): Si×10?7?solute (SIMS) Ca?Si×5×10?7??(1) (in which each of the solute (SIMS) Ca and Si represents the amount thereof (mass %) in the steel).
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 29, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomoko Sugimura, Koichi Sakamoto, Yoshio Fukuzaki, Atsuhiko Yoshida, Takeshi Inoue
  • Publication number: 20120021246
    Abstract: To provide weld metal that has a high strength and toughness in the as-welded condition or in the annealed condition. The weld metal of the present invention contains by weight %, C: 0.04-0.15%, Si: 0.50% or less, Mn: 1.0-1.9%, Ni: 1.0-4.0%, Cr: 0.10-1.0%, Mo: 0.20 to 1.2%, Ti: 0.010-0.060%, Al: 0.030% or less, O: 0.15-0.060%, N: 0.010% or less, Fe and inevitable impurities as the remaining contents. The weld metal is further characterized by the fact that the ratio of Ti content (%) to Si content (%) i.e.,[compound type Ti]/[compound type Si] is more than 1.5, and the number A defined by the following formula is 0.50 or more, wherein A=[Ti]/([O]?1.1×[Al]+0.05×[Si]).
    Type: Application
    Filed: March 25, 2010
    Publication date: January 26, 2012
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO
    Inventors: Hidenori Nako, Yoshitomi Okazaki, Ken Yamashita, Hideaki Takauchi, Minoru Otsu
  • Publication number: 20120020605
    Abstract: An outer ring, an inner ring and a roller serving as a bearing component that adopts as a source material a steel ensuring a large fracture toughness value and also having an alloy element added thereto in a reduced amount and also provides sufficient wear resistance, are configured of a steel containing 0.15-0.3% by mass of carbon, 0.15-0.7% by mass of silicon, and 0.15-1.0% by mass of manganese, with a remainder of iron and an impurity, and have a raceway/rolling contact surface included in a region having a carbon enriched layer and a nitrogen enriched layer. In the nitrogen enriched layer the raceway/rolling contact surface has a nitrogen concentration equal to or larger than 0.3% by mass.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 26, 2012
    Inventor: Nobuyuki Mori
  • Patent number: 8101029
    Abstract: A weld metal of a high-strength Cr—Mo steel formed by shielded metal arc welding contains: 0.04 to 0.10% by mass C, 0.15 to 0.5% by mass Si, 0.5 to 1.0% by mass Mn, 2.00 to 3.25% by mass Cr, 0.9 to 1.2% by mass Mo, 0.01 to 0.03% by mass Nb, 0.2 to 0.7% by mass V, 0.003% by mass or below and above 0% by mass B, 0.02 to 0.05% by mass O, and the balance of Fe and inevitable impurities. A residual extracted by electrolytic extraction from only an unaffected zone of the weld metal contains precipitated Cr in a Cr content below 0.3% by mass, and precipitated Nb in a Nb content of 0.005% by mass or above.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 24, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshitomi Okazaki, Ken Yamashita, Hirohisa Watanabe, Koichi Hosoi
  • Patent number: 8097096
    Abstract: The present invention provides a fire resistant steel material excellent in high temperature strength, toughness, and reheating embrittlement resistance containing, by mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.50%, Mn: 0.4% to 2.0%, Nb: 0.03% to 0.50%, Ti: 0.005% to less than 0.040%, N: 0.0001% to less than 0.0050%, and Al: 0.005% to 0.030%, limiting P: 0.03% or, less and S: 0.02% or less, satisfying C—Nb/7.74?0.005 and 2?Ti/N?12, and having a balance of Fe and unavoidable impurities and, further, a process for production of a fire resistant material comprising heating a steel slab comprised of this chemical composition to 1100 to 1350° C. and hot rolling it by a cumulative reduction rate at 1000° C. or less of 30% or more.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Kita Hiroshi, Hirokazu Sugiyama, Yoshiyuki Watanabe, Yasushi Hasegawa
  • Patent number: 8097099
    Abstract: The present invention provides an abrasion resistant steel having a hardness of HB400 to HB520, having little change of hardness during long term use, and superior in toughness, characterized by containing, by mass %, C: 0.21% to 0.30%, Si: 0.30 to 1.00%, Mn: 0.32 to 0.70%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1 to 2.0%, Mo: 0.1 to 1.0%, B: 0.0003 to 0.0030%, Al: 0.01 to 0.1%, and N: 0.01% or less, further containing one or more of V: 0.01 to 0.1%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.03%, Ca: 0.0005 to 0.05%, Mg: 0.0005 to 0.05%, and REM: 0.001 to 0.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Naoki Saitoh, Tatsuya Kumagai, Katsumi Kurebayashi, Hirohide Muraoka
  • Patent number: 8097207
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45%; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245(Mo+3V+1.5Nb+0.75Ta)0.30+125Cr0.20+15.8Mn+7.4Ni+18Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: January 17, 2012
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Dominique Viale
  • Patent number: 8097097
    Abstract: Disclosed is a stainless steel containing, by mass, 0.05% or less carbon, 1.5 to smaller than 3.5% Si, 3.0% or less Mn, 6.0 to 12.0% Cr, 4.0 to 10.0% Ni, 10.0% or less Co, 6.0% or less Cu, 0.5 to 3.0% Ti, 0 to 2.0% Al, less than 0.4% Mo, not more than 0.01% nitrogen, and the balance of Fe and unavoidable impurities. Preferably, it has a hardness of not lower than 59 HRC and may contain not more than 1.0% Nb and/or not more than 1.0% Ta. Alternatively, the stainless steel may further contain not more than 0.1% of Zr. The process for producing the steel includes producing a steel having a composition as described above by a consumable electrode remelting process, and then subjecting the steel to a solution treatment at a temperature of 1000 to 1150° C. and an aging treatment at a temperature of 400 to 550° C., thereby aging the stainless steel to a hardness of not lower than 59 HRC.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 17, 2012
    Assignee: Hitachi Metals Ltd.
    Inventors: Yoshiyuki Inoue, Fumio Tohyama
  • Publication number: 20120000336
    Abstract: An alloy, such as a tool steel containing, in percent by weight, 0.5%-0.7% carbon; 1.80%-2.50% chromium; 0.90%-1.20% molybdenum; 3.50%-5.50% nickel and 0.60%-1.50% vanadium. The steel alloyed accordingly is eminently suitable for heat treatments for influencing strength. With a carbon content of less than 0.7%, a partially martensitic metal structure having a high ductility can be formed by way of hardening processes. Due to surface hardening, the carbon content may in some portions on the outer surface be greater than 0.7%.
    Type: Application
    Filed: August 10, 2011
    Publication date: January 5, 2012
    Inventor: Andreas Schremb
  • Publication number: 20120003117
    Abstract: The invention relates to a manufacturing process for steel blanks. The invention relates in particular to a manufacturing process of a steel blank comprising electroslag remelting (ESR—ElectroSlag Remelting) or vacuum arc remelting (VAR—Vacuum Arc Remelting) to obtain very good mechanical properties. The blanks obtained can be used especially in the field of the manufacture of pressurised equipment elements and especially cannon tubes.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Inventors: Gérald Gay, Bruno Gaillard-Allemand
  • Publication number: 20110315277
    Abstract: The invention relates to a steel alloy for a low alloy steel for producing high-tensile, weldable, hot-rolled seamless steel tubing, in particular construction tubing. The chemical composition (in % by mass) is: 0.15-0.18% C; 0.20-0.40% Si; 1.40-1.60% Mn; max. 0.05% P; max. 0.01% S; >0.50-0.90% Cr; >0.50-0.80% Mo; >0.10-0.15% V; 0.60-1.00% W; 0.0130-0.0220% N; the remainder is made up of iron with production-related impurities; with the optional addition of one or more elements selected from Al, Ni, Nb, Ti, with the proviso that the relationship VIN has a value of between 4 and 12 and the Ni content of the steel is not more than 0.40%.
    Type: Application
    Filed: January 23, 2009
    Publication date: December 29, 2011
    Applicant: V & M Deutschland GmbH
    Inventors: Christoph Kaucke, Guido Kubla, Heinz Sanders, Charles Stallybrass, André Schneider, Markus Schütz
  • Publication number: 20110314965
    Abstract: There is provided a metal powder for powder metallurgy including Zr and Si in a manner such that following conditions of (A) and (B) are satisfied, wherein a remainder thereof includes at least one element selected from the group consisting of Fe, Co and Ni, (A) the mass ratio of a content of Zr to a content of Si is 0.03 to 0.3, and (B) the content of Si is 0.35 to 1.5% by mass.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 29, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Hidefumi NAKAMURA
  • Patent number: 8057737
    Abstract: A forging steel has a dissolved Mg concentration within the range of 0.04-5 ppm by mass and a dissolved Al concentration within the range of 50-500 ppm.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: November 15, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Tetsushi Deura, Motohiro Nagao, Atsushi Tomioka, Shogo Fukaya
  • Publication number: 20110268600
    Abstract: The invention provides a steel material with satisfactory hydrogen embrittlement resistance, and particularly it relates to high-strength steel with satisfactory hydrogen embrittlement resistance and a strength of 1200 MPa or greater, as well as a process for production thereof. At least one simple or compound deposit of oxides, carbides or nitrides as hydrogen trap sites which trap hydrogen with a specific trap energy is added to steel, where the mean sizes, number densities, and length-to-thickness ratios (aspect ratio) are in specific ranges. By applying the specific steel components and production process it is possible to obtain high-strength steel with excellent hydrogen embrittlement resistance.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 3, 2011
    Applicant: Nippon Steel Corporation
    Inventors: Shingo YAMASAKI, Daisuke Hirakami, Toshimi Tarui, Seiki Nishida
  • Patent number: 8025746
    Abstract: A casing is formed from an alloy which contains, by mass, 0.08-0.20% C, 0.05-0.45% Si, 0.10-0.30% Mn, 0.80-1.40% Ni, 1.00-1.40% Cr, 1.20-1.60% Mo, 0.10-0.30% V, 0.06-0.10% Ti, 0.0005-0.0010% B, not more than 0.01% P, not more than 0.01% S, and not more than 0.005% Al, the balance being Fe and unavoidable impurity elements. The casing has excellent high-temperature strength, high toughness and excellent weldability, and is applicable to casings used in high-temperature high-pressure steam environments.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: September 27, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hirotsugu Kawanaka, Masahiko Arai, Tateki Nakamura
  • Patent number: 8012272
    Abstract: The present invention provides a tool steel containing, by mass percent, 0.55 to 0.85% of C, 0.20 to 2.50% of Si, 0.30 to 1.20% of Mn, 0.50% or less of Cu, 0.01 to 0.50% of Ni, 6.00 to 9.00% of Cr, 0.1 to 2.00% of Mo+0.5 W, and 0.01 to 0.40% of V, with the balance of Fe and inevitable impurities, in which, when an area rate of a coarse carbide having a circle equivalent diameter of 2 ?m or more in a cross section parallel to a forging direction is represented by L(%) and an area rate of the coarse carbide in a cross section perpendicular to the forging direction is represented by T(%), the area rate L is 0.001% or more, the area rate T is 0.001% or more, and the ratio L/T is within a range from 0.90 to 3.00. The tool steel of the invention exhibits an isotropic size change in quenching and tempering.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 6, 2011
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventor: Takayuki Shimizu
  • Patent number: 8007715
    Abstract: A steel has the following chemical composition (amounts in % by weight): 0.05-0.14 C, 8-13 Cr, 1-2.6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 2.1-4.0 Re, 0-0.07 Ta, 0-60 ppm Pd, remainder Fe and unavoidable impurities. The steel can be used effectively as a welding additive material and has outstanding properties at very high temperatures, in particular a good creep rupture strength/resistance and a good oxidation resistance.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: August 30, 2011
    Assignee: ALSTOM Technology Ltd.
    Inventors: Mohamed Nazmy, Paul Claus Gerdes, Andreas Kuenzler
  • Patent number: 8002910
    Abstract: The present invention pertains to steel with high mechanical resistance at room temperature and up to 130° C., good toughness and good corrosion resistance in the metal base as well as good resistance to cracking in the heat affected zones (HAZ) once the tubing is welded together, and more specifically to heavy gauge seamless steel tubing with high mechanical resistance, good toughness and good corrosion resistance called catenary conduit. The advantages of the present invention with respect to those of an the state of technology reside in providing a chemical composition for steel used to manufacture heavy gauge seamless steel tubing with high mechanical resistance, good toughness, good fissure resistance in the HAZ and good corrosion resistance and a process for manufacturing this product. These advantages are obtained by using a composition made up basically of Fe and a specific chemical composition.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: August 23, 2011
    Assignees: Tubos De Acero De Mexico S.A., Dalmine S.p.A.
    Inventors: Marco Mario Tivelli, Alfonso Izquierdo Garcia, Dionino Colleluori, Guiseppe Cumino
  • Patent number: 7998285
    Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.1%?C<0.23%; 0%?Si?2%; 0%?Al?2%; 0.5%?Si+Al?2%; 0%?Mn?2.5%; 0%?Ni?5%; 0%?Cr?5%; 0%?Mo?1%; 0%?W?2%; 0.05%?Mo+W/2?1%; 0%?Cu?1.5%; 0%?B?0.02%; 0%?Ti?0.67%; 0%?Zr?1.34%; 0.05%<Ti+Zr/2?0.67%; 0%?S?0.15%; N<0.03%, optionally 0% to 1.5% of Cu; optionally Nb, Ta and V such that Nb/2+Ta/4+V?0.5%; optionally Se, Te, Ca, Bi, Pb contents ?0.1%; the rest being iron impurities. Additionally: 0.095%?C*=C?Ti/4?Zr/8+7×N/8, Ti+Zr/2?7×N/2?0.05% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=1 if B?0.0005% and K=0 if B<0.0005%. After austenitization, the method consists in: cooling at a speed >0.5° C./s between a temperature between AC3 and T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and about T?50° C.; then cooling at a speed 0.1<Vr<1150×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature and optionally planishing.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 16, 2011
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Publication number: 20110036469
    Abstract: The present invention provides a steel plate that exhibits excellent low-temperature toughness in a base material and a weld heat-affected zone and has small strength anisotropy, wherein the steel includes, by mass, C: 0.04%-0.10%; Si: 0.02%-0.40%; Mn: 0.5%-1.0%; P: 0.0010%-0.0100%; S: 0.0001%-0.0050%; Ni: 2.0%-4.5%; Cr: 0.1%-1.0%; Mo: 0.1%-0.6%; V: 0.005%-0.1%; Al: 0.01%-0.08%; and N: 0.0001%-0.0070%, with the balance including Fe and inevitable impurities, a Ni segregation ratio at a portion located at one-fourth of a thickness of the steel plate in a steel-plate thickness direction from a surface of the steel plate is 1.3 or lower, a degree of flatness of a prior austenite grain is in a range from 1.05 to 3.0, an effective diameter of crystal grain is 10 ?m or lower, and a Vickers hardness number is in a range of 265 HV to 310 HV.
    Type: Application
    Filed: October 1, 2009
    Publication date: February 17, 2011
    Inventors: Hitoshi Furuya, Naoki Saitoh, Motohiro Okushima, Yasunori Takahashi
  • Patent number: 7879159
    Abstract: A precipitation-hardened stainless maraging steel which exhibits a combination of strength, toughness, and corrosion resistance comprises by weight about: 8 to 15% chromium (Cr), 2 to 15% cobalt (Co), 7 to 14% nickel (Ni), and up to about 0.7% aluminum (Al), less than about 0.4% copper (Cu), 0.5 to 2.6% molybdenum (Mo), 0.4 to less than about 0.75% titanium (Ti), up to about 0.5% tungsten (W), and up to about 120 wppm carbon (C), the balance essentially iron (Fe) and incidental elements and impurities, characterized in that the alloy has predominantly lath martensite microstructure essentially without topologically close packed intermetallic phases and strengthened primarily by a dispersion of intermetallic particles primarily of the eta-Ni3Ti phase and wherein the titanium and carbon (Ti) and (C) levels are controlled such that C can be dissolved during a homogenization step and subsequently precipitated during forging to provide a grain-pinnning dispersion.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: February 1, 2011
    Assignee: QuesTek Innovations, LLC
    Inventors: James Wright, Jin-Won Jung
  • Publication number: 20110000587
    Abstract: Steel is described having a chemical composition, in weight-%, of 0.3 to 0.5% carbon (C), from traces to a max. of 1.5% silicon (Si), 0.2 to 1.5% manganese (Mn), 0.01 to 0.2% sulfur (S), 1.5 to 4% chromium (Cr), 1.5 to 5% nickel (Ni), 0.5 to 2% molybdenum (Mo), which at least partially may be replaced by twice as much tungsten (W), 0.2 to 1.5% vanadium (V), from traces to a max. of 0.2% rare earth metals, and a balance essentially of only iron, impurities and accessory elements in normal amounts. In addition, a method for manufacturing a blank of the steel and a process for manufacturing a cutting tool body or holder for cutting tools of the steel is described.
    Type: Application
    Filed: March 17, 2009
    Publication date: January 6, 2011
    Applicant: Uddeholms AB
    Inventors: Staffan Gunnarsson, Anna Medvedeva
  • Patent number: 7815755
    Abstract: The present invention relates to the following seamless steel pipes excellent in strength, toughness and weldability, particularly suitable for submarine flow lines, and a manufacturing method thereof. An as-quenched seamless steel pipe having a chemical composition consisting of, by mass%, C: 0.03 to 0.08%, Mn: 0.3 to 2.5%, Al: 0.001 to 0.10%, Cr: 0.02 to 1.0%, Ni: 0.02 to 1.0%, Mo: 0.02 to 0.8%, Ti: 0.004 to 0.010%, N: 0.002 to 0.008%, Ca: 0.0005 to 0.005%, and the balance Fe and impurities, with not more than 0.25% of Si, not more than 0.05% of P, not more than 0.005% of S, less than 0.005% Nb, and less than 0.0003% of B as the impurities, and having a microstructure consisting of not more than 20 volume% of polygonal ferrite, not more than 10 volume% of a mixed microstructure of martensite and retained austenite, and balance bainite. B can be 0.0003 to 0.001%. Mg and/or REM can be contained. The manufacturing method is characterized by the cooling rate during quenching.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: October 19, 2010
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yuji Arai, Kunio Kondo, Nobuyuki Hisamune
  • Patent number: 7815750
    Abstract: The present invention provides a method of production of a steel soft nitrided machine part comprising: preparing a steel material containing, by mass %, C: 0.15-0.30%, Si: 0.03-1.00%, Mn: 0.20-1.5%, S: 0.04-0.06%, Cr: 0.01-0.5%, Mo: 0.40-1.5%, Nb: 0.005-0.05%, Ti: 0.005-0.03%, V: 0.2-0.4%, Ni: 0.05-1.5%, N: 0.002-0.0048%, a balance of Fe and unavoidable impurities, limiting P to 0.02% or less, limiting Ceq. (equation (1)) to 0.65-0.85, controlling DI (equation (2)) to 80-155, log Kp (equation (3)) to 2.5-8, and Si and Mn contents according to equation (4), heating the steel material to 1150-1280° C., hot forging the steel material to the shape of the part, cooling the steel material at a 0.5-1.5° C/sec cooling rate to obtain a hot forged part having a micrometallic structure with more than 50% of bainite, machining the hot forged part, and soft nitriding the machined hot forged part at 550-650° C. for 30 minutes or more.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: October 19, 2010
    Assignees: Nippon Steel Corporation, Honda Motor Co., Ltd.
    Inventors: Makoto Okonogi, Kenichiro Naito, Kohki Mizuno, Hideki Matsuda, Seiji Kobayashi
  • Publication number: 20100247368
    Abstract: A bainitic steel alloy and a method for making such an alloy are disclosed, in which the bainite plates are particularly small, less than 50 nanometres in width. In preferred embodiments of the invention, each bainite plate is surrounded by a film of retained austenite; the level of retained austenite in the alloy is greater than 10%; and the alloy is substantially free of blocky unstable austenite and cementite.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 30, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Martin J. RAWSON, Mathew J. PEET, Harshad K.D.H BHADESHIA, Scott D. WOOD, Paul O. HILL, Emma E. BOOTH
  • Patent number: 7794651
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: September 14, 2010
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20100221139
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45%; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245(Mo+3V+1.5Nb+0.75Ta)0.30+125Cr0.20+15.8Mn+7.4Ni+18Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Application
    Filed: May 10, 2010
    Publication date: September 2, 2010
    Applicant: INDUSTEEL CREUSOT
    Inventors: Jean BEGUINOT, Dominique Viale
  • Publication number: 20100193089
    Abstract: Disclosed is a hot-working tool steel having improved toughness and high-temperature strength. Also disclosed is a method for producing the hot-working tool steel. The hot-working tool steel comprises the following components (by mass): C: 0.34-0.40%, Si: 0.3-0.5%, Mn: 0.45-0.75%, Ni: 0-0.5% (exclusive), Cr: 4.9-5.5%, (Mo+1/2W): 2.5-2.9% (provided that Mo and W are contained singly or in combination), and V: 0.5-0.7%, with the remainder being Fe and unavoidable impurities. Preferably, the cross-sectional structure of the hot-working tool steel upon quenching contains a granular structure and an acicular structure, wherein the granular structure (A %) accounts for 45 area % or less, the acicular structure (B %) accounts for 40 area % or less, and the remaining austenite (C %) accounts for 5 to 20 volume %.
    Type: Application
    Filed: September 14, 2007
    Publication date: August 5, 2010
    Applicant: Hitachi Metals, Ltd.
    Inventors: Kouta Kataoka, Hideshi Nakatsu, Yasushi Tamura, Masayuki Nagasawa
  • Publication number: 20100189591
    Abstract: The invention relates to a steel and a processing method for producing machine components formed from solid stock, particularly for vehicle construction, having a primarily bainitic structure, characterized in that the chemical composition thereof has the following contents in weight percent: 0.10%?C?0.25%, 0.15%?Si?0.40%, 1.00%?Mn?1.50%, 1.00%?Cr?2.00%, 0.20%?Ni?0.40%, 0.05%?Mo?0.20%, 0.010%?Nb?0.040%, 0.05%?V?0.25%, 0.01%?Al?0.05%, 0.005%?N?0.025%, 0%?B?0.0050%, with the remainder being iron and the steel making-related accompanying elements and residual materials.
    Type: Application
    Filed: August 12, 2008
    Publication date: July 29, 2010
    Inventors: Roman Diederichs, Axel Stueber, Robert Lange
  • Publication number: 20100186855
    Abstract: The invention relates to a steel and a processing method for high-strength fracture-splittable machine components that are composed of at least two fracture-splittable parts. The steel and method are characterized in that the chemical composition of the steel (expressed in percent by weight) is as follows: 0.40%?C?0.60%; 0.20%?Si?1.00%; 0.50%?Mn?1.50%; 0%?Cr?1.00%; 0%?Ni?0.50%; 0%?Mo?0.20%; 0%?Nb?0.050%; 0%?V?0.30%; 0%?Al?0.05%; 0.005%?N?0.020%, the rest being composed of iron and smelting-related impurities and residual matter.
    Type: Application
    Filed: July 27, 2007
    Publication date: July 29, 2010
    Inventors: Roman Diederichs, Axel Stueber, Robert Lange
  • Publication number: 20100150772
    Abstract: A hot-forming steel alloy comprising, in addition to iron and impurity elements, carbon, silicon, manganese, chromium, molybdenum, vanadium and nitrogen within the concentration ranges set forth in the claims. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: November 19, 2009
    Publication date: June 17, 2010
    Applicant: BOEHLER EDELSTAHL GMBH & CO. KG
    Inventors: Ingo SILLER, Herbert SCHWEIGER, Devrim CALISKANOGLU, Silvia ZINNER
  • Publication number: 20100111748
    Abstract: High cleanliness spring steel useful in manufacturing a spring with SiO2-based inclusions being extremely controlled and excellent in fatigue properties is provided. High cleanliness spring steel which is steel containing; C: 1.2% (means mass %, hereafter the same with respect to the component) or below (not inclusive of 0%), Si: 1.2-4%, Mn: 0.1-2.0%, Al: 0.01% or below (not inclusive of 0%), and the balance comprising iron with inevitable impurities, wherein; the total of oxide-based inclusions of 4 or above of L (the large diameter of an inclusion)/D (the short diameter of an inclusion) and 25 ?m or above of D and oxide-based inclusions of less than 4 L/D and 25 ?m or above of L, in the oxide-based inclusions of 25 mass % or above of oxygen concentration and 70% (means mass %, hereafter the same with respect to inclusions) or above of SiO2 content when Al2O3+MgO+CaO+SiO2+MnO=100% is presumed, out of inclusions in the steel, is 20 nos./500 g or below.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomoko SUGIMURA, Sei Kimura, Koichi Sakamoto, Atsuhiko Yoshida, Takeshi Inoue
  • Publication number: 20100098578
    Abstract: A lean alloy steel and roll shells made of same are provided. The lean alloy steel has improved properties in imparting high productivity and long service life for roll shells (or roll caster shells) utilized in the direct casting of molten materials (such as molten aluminum) to strips. The lean alloy steel includes iron (Fe) alloyed with carbon (C), chromium (Cr), molybdenum (Mo), vanadium (V), manganese (Mn), nickel (Ni), phosphorus (P), sulfur (S), silicon (Si), and/or niobium (Nb). The roll shells made from the heat treated lean alloy steel have high resistance to surface heat checking due to its very high yield strengths at molten aluminum temperatures (made, e.g., possible with its high carbide content), and have high casting speeds because of its high thermal conductivity (made, e.g., possible with its lean alloy composition).
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventors: Harshad V. Sheth, James N. Cordea
  • Patent number: 7695576
    Abstract: Disclosed is an improved low alloy high speed tool steel, which exhibits constant toughness with small dispersion of the properties after heat treatment and regardless of the size of the products. The steel consists essentially of, by weight %, C: 0.50-0.75%, Si: 0.02-2.00%, Mn: 0.1-3.0%, P: up to 0.050%, S: up to 0.010%, Cr: 5.0-6.0%, W: 0.5-2.0%, V: 0.70-1.25%, Al: up to 0.1%, O: up to 0.01% and N: up to 0.04% and the balance of Fe. In the steel [Mo+0.5W](Mo-eq.) is 2.5-5.0%, [Mo-eq.]/V is 2-4. In the annealed state the steel contains carbides of the types of MC+M6C and/or M23C6(M7C3), and after quenching from a temperature of 1100-1200° C. it contains substantially no remaining carbide or, even contains, almost all the carbides are of MC.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: April 13, 2010
    Assignee: Daido Steel Co., Ltd.
    Inventor: Kozo Ozaki
  • Patent number: 7686898
    Abstract: A maraging heat-treatment steel includes 8.5 to 9.5% by weight of Cr, 0.15 to 0.25% by weight of Mn, 2 to 2.7% by weight of Ni, 0.5 to 2.5% by weight of Mo, 0.4 to 0.8% by weight of V, 0.001 to 0.15% by weight of Si, 0.06 to 0.1% by weight of C, 0.11 to 0.15% by weight of N, 0.02 to 0.04% by weight of Nb, maximum 0.007% by weight of P, maximum 0.005% by weight of S, maximum 0.01% by weight of Al, iron and standard impurities, wherein a weight ratio of vanadium to nitrogen V/N is in a range between 4.3 and 5.5.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 30, 2010
    Assignee: Alstom Technology Ltd
    Inventors: Mohamed Nazmy, Markus Staubli, Andreas Kuenzler
  • Patent number: 7682417
    Abstract: A cold work steel article. The article comprises a material which comprises, in addition to Fe, the elements C, Si, Mn, P, S, Cr, Mo, Ni, V, W, Cu, Co, Al, N and O in certain concentrations and has been produced by by a powder metallurgical process. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: March 23, 2010
    Assignee: Bohler Edelstahl GmbH
    Inventors: Ingrid Schemmel, Stefan Marsoner, Werner Liebfahrt
  • Publication number: 20100047108
    Abstract: The invention relates to a manufacturing process for steel blanks. The invention relates in particular to a manufacturing process of a steel blank comprising electroslag remelting (ESR—ElectroSlag Remelting) or vacuum arc remelting (VAR—Vacuum Arc Remelting) to obtain very good mechanical properties. The blanks obtained can be used especially in the field of the manufacture of pressurised equipment elements and especially cannon tubes.
    Type: Application
    Filed: August 2, 2007
    Publication date: February 25, 2010
    Inventors: Gérald Gay, Bruno Gaillard-Allemand
  • Publication number: 20100037992
    Abstract: The invention relates to a method for transforming steel blanks. The invention in particular relates to a method for transforming a steel blank comprising kneading in order to obtain very good mechanical properties. The obtained products may notably be used for forming a pressure device component.
    Type: Application
    Filed: August 2, 2007
    Publication date: February 18, 2010
    Inventors: Gérald Gay, Bruno Gaillard-Allemand, Dominique Thierree
  • Patent number: 7662246
    Abstract: An iron-based alloy for use in a material for high-pressure components. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: February 16, 2010
    Assignees: Boehler Hochdrucktechnik GmbH, Boehler Edelstahl GmbH
    Inventors: Johann Zand, Johannes Schedelmaier, Manfred Pölzl
  • Publication number: 20100003162
    Abstract: It is proposed to make a change to the barrel material and also its constituent proportions and to undertake a production method which is already known from the large caliber barrel but which is specially adapted for medium caliber barrels. A barrel is created which is now made from a NiCrMoV steel blank which as an ingot was remelted in the ESR (electro-slag remelting) process before forging and the forged bars were quenched and tempered in a liquid quenching and tempering process. A barrel for a machine gun is thus disclosed which has the quality/characteristics of a large caliber barrel.
    Type: Application
    Filed: May 18, 2007
    Publication date: January 7, 2010
    Inventors: Wolfgang Arrenbrecht, Walter Grimm
  • Publication number: 20090274574
    Abstract: A forging steel has a dissolved Mg concentration within the range of 0.04-5 ppm by mass and a dissolved Al concentration within the range of 50-500 ppm.
    Type: Application
    Filed: April 24, 2007
    Publication date: November 5, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Tetsushi Deura, Motohiro Nagao, Atsushi Tomioka, Shogo Fukaya