Titanium, Zirconium Or Niobium Containing Patents (Class 420/110)
  • Patent number: 8097207
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45%; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245(Mo+3V+1.5Nb+0.75Ta)0.30+125Cr0.20+15.8Mn+7.4Ni+18Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: January 17, 2012
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Dominique Viale
  • Patent number: 8097096
    Abstract: The present invention provides a fire resistant steel material excellent in high temperature strength, toughness, and reheating embrittlement resistance containing, by mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.50%, Mn: 0.4% to 2.0%, Nb: 0.03% to 0.50%, Ti: 0.005% to less than 0.040%, N: 0.0001% to less than 0.0050%, and Al: 0.005% to 0.030%, limiting P: 0.03% or, less and S: 0.02% or less, satisfying C—Nb/7.74?0.005 and 2?Ti/N?12, and having a balance of Fe and unavoidable impurities and, further, a process for production of a fire resistant material comprising heating a steel slab comprised of this chemical composition to 1100 to 1350° C. and hot rolling it by a cumulative reduction rate at 1000° C. or less of 30% or more.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Kita Hiroshi, Hirokazu Sugiyama, Yoshiyuki Watanabe, Yasushi Hasegawa
  • Publication number: 20110314965
    Abstract: There is provided a metal powder for powder metallurgy including Zr and Si in a manner such that following conditions of (A) and (B) are satisfied, wherein a remainder thereof includes at least one element selected from the group consisting of Fe, Co and Ni, (A) the mass ratio of a content of Zr to a content of Si is 0.03 to 0.3, and (B) the content of Si is 0.35 to 1.5% by mass.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 29, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Hidefumi NAKAMURA
  • Publication number: 20110315277
    Abstract: The invention relates to a steel alloy for a low alloy steel for producing high-tensile, weldable, hot-rolled seamless steel tubing, in particular construction tubing. The chemical composition (in % by mass) is: 0.15-0.18% C; 0.20-0.40% Si; 1.40-1.60% Mn; max. 0.05% P; max. 0.01% S; >0.50-0.90% Cr; >0.50-0.80% Mo; >0.10-0.15% V; 0.60-1.00% W; 0.0130-0.0220% N; the remainder is made up of iron with production-related impurities; with the optional addition of one or more elements selected from Al, Ni, Nb, Ti, with the proviso that the relationship VIN has a value of between 4 and 12 and the Ni content of the steel is not more than 0.40%.
    Type: Application
    Filed: January 23, 2009
    Publication date: December 29, 2011
    Applicant: V & M Deutschland GmbH
    Inventors: Christoph Kaucke, Guido Kubla, Heinz Sanders, Charles Stallybrass, André Schneider, Markus Schütz
  • Publication number: 20110318605
    Abstract: A high strength steel sheet contains, in percent by mass, 0.03 to 0.2% of C, 0.5 to 2.5% of Si, 1 to 3.0% of Mn, 0.01 to 0.5% of Cr, 0.01 to 0.5% of Mo, 0.02 to 0.15% of Al, 0.15% or less of Ti, 0.15% or less of No, and 0.15% or less of V; wherein the remainder includes Fe and inevitable impurities, and the content of Si satisfies the following formula (1), ?-4.1[Si]?-2.4??(1), provided, ?=6.9×([C]+[Mn]/6+[Cr]/5+[Mo]/4+[Ti]/15+[Nb]/17+[V]/14)1/2 is given, wherein [ ] shows the quantity (mass percent) of each element contained in the steel sheet. The high strength steel sheet is improved in formability (particularly, elongation), and excellent in balance between strength and elongation.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yuichi FUTAMURA, Katsuhiro Yamamoto, Masaaki Miura
  • Publication number: 20110315276
    Abstract: A steel contains, by weight: C: 0.3% to 0.5%, Si: 0.1% to 0.5%, Mn: 0.1% to 1%, P: 0.03% or less, S: 0.005% or less, Cr: 0.3% to 1.5%, Mo: 1.0% to 1.5%, Al: 0.01% to 0.1%, V: 0.03% to 0.06%, Nb: 0.04% to 0.15%, Ti: 0 to 0.015%, N: 0.01% or less, the remainder of the chemical composition of the steel being constituted by Fe and impurities or residuals resulting from or necessary to steel production and casting processes. The steel enables to produce seamless tubes with a yield strength after heat treatment of 862 MPa or more which are particularly SSC-resistant.
    Type: Application
    Filed: February 12, 2010
    Publication date: December 29, 2011
    Applicant: VALLOUREC MANNESMANN OIL & GAS FRANCE
    Inventors: Christoph Bosch, Axel Kulgemeyer, Jean Leyer, Michel Piette
  • Patent number: 8048237
    Abstract: An ultra soft high carbon hot-rolled steel sheet has excellent workability. The steel sheet is a high carbon hot-rolled steel sheet containing 0.2 to 0.7% C, and has a structure in which mean grain size of ferrite is 20 ?m or larger, the volume percentage of ferrite grains having 10 ?m or smaller size is 20% or less, mean diameter of carbide is in a range from 0.10 ?m to smaller than 2.0 ?m, the percentage of carbide grains having 5 or more of aspect ratio is 15% or less, and the contact ratio of carbide is 20% or less.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 1, 2011
    Assignee: JFE Steel Corporation
    Inventors: Hideyuki Kimura, Takeshi Fujita, Nobuyuki Nakamura, Naoya Aoki, Masato Sasaki, Satoshi Ueoka, Shunji Iizuka
  • Publication number: 20110229364
    Abstract: A steel contains, by weight: C: 0.2% to 0.5%, Si: 0.1% to 0.5%, Mn: 0.1% to 1%, P: 0.03% or less, S: 0.005% or less, Cr: 0.3% to 1.5%, Mo: 0.3% to 1%, Al: 0.01% to 0.1%, V: 0.1% to 0.5%, Nb: 0.01% to 0.05%, Ti: 0 to 0.01%, W: 0.3% to 1%, N: 0.01% or less, the remainder of the chemical composition of the steel being constituted by Fe and impurities or residuals resulting from or necessary to steel production and casting processes. The steel can be used to produce seamless tubes with a yield strength after heat treatment of 861 MPa or more.
    Type: Application
    Filed: November 25, 2009
    Publication date: September 22, 2011
    Applicant: Vallourec Mannesmann Oil & Gas France
    Inventor: Alfredo De Lima Figueiredo
  • Patent number: 7998285
    Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.1%?C<0.23%; 0%?Si?2%; 0%?Al?2%; 0.5%?Si+Al?2%; 0%?Mn?2.5%; 0%?Ni?5%; 0%?Cr?5%; 0%?Mo?1%; 0%?W?2%; 0.05%?Mo+W/2?1%; 0%?Cu?1.5%; 0%?B?0.02%; 0%?Ti?0.67%; 0%?Zr?1.34%; 0.05%<Ti+Zr/2?0.67%; 0%?S?0.15%; N<0.03%, optionally 0% to 1.5% of Cu; optionally Nb, Ta and V such that Nb/2+Ta/4+V?0.5%; optionally Se, Te, Ca, Bi, Pb contents ?0.1%; the rest being iron impurities. Additionally: 0.095%?C*=C?Ti/4?Zr/8+7×N/8, Ti+Zr/2?7×N/2?0.05% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=1 if B?0.0005% and K=0 if B<0.0005%. After austenitization, the method consists in: cooling at a speed >0.5° C./s between a temperature between AC3 and T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and about T?50° C.; then cooling at a speed 0.1<Vr<1150×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature and optionally planishing.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 16, 2011
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Publication number: 20110186182
    Abstract: The present invention relates to a steel material giving more effective case hardening for improving the fatigue strength and is characterized by containing, by mass %, C: 0.01 to 0.3%, Si: less than 0.1%, Mn: 0.4 to 3%, Cr: 0.5 to 3%, and Al: 0.01 to 0.3%, further containing one or both of Mo: 0.2 to 1.5%, and V: 0.05 to 1.0%, having a balance of Fe and unavoidable impurities, and comprising a structure having 50% or more of bainite.
    Type: Application
    Filed: October 19, 2009
    Publication date: August 4, 2011
    Inventors: Tetsushi Chida, Manabu Kubota, Toshimi Tarui, Daisuke Hirakami
  • Patent number: 7981360
    Abstract: A chromium-molybdenum-vanadium (Cr—Mo—V) cast steel including 0.04 to 0.08% by weight of niobium is disclosed. The cast steel may include 0.08 to 0.12% by weight carbon. The cast steel may also have a sulphur content of 0.015% by weight or less, and a phosphorus content of 0.02% by weight or less. The silicon content may be 0.30 to 0.60% by weight, the manganese content may be 0.50 to 0.80% by weight, the chromium content may be 1.20 to 1.50% by weight, the molybdenum content may be 0.90 to 1.10% by weight, and the vanadium content may be 0.20 to 0.30% by weight.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: July 19, 2011
    Assignee: Bharat Heavy Electricals Limited
    Inventors: Kulvir Singh, Jaipal Reddy Gurram, Sudhakar Reddy Katam, Pashupati Nath, Mallesh Pudtha, Vishnu Kumar Agrawal
  • Publication number: 20110097235
    Abstract: Embodiments of the present application are directed towards steel compositions that provide improved properties under corrosive environments. Embodiments also relate to protection on the surface of the steel, reducing the permeation of hydrogen. Good process control, in terms of heat treatment working window and resistance to surface oxidation at rolling temperature, are further provided.
    Type: Application
    Filed: December 27, 2010
    Publication date: April 28, 2011
    Inventors: Gustavo Lopez Turconi, Alfonso Izquierdo Garcia, Toshihiko Fukui
  • Publication number: 20110002808
    Abstract: The present invention provides a fire-resistant steel material superior in weld heat affected zone reheat embrittlement resistance and low temperature toughness when welded by large heat input and exposed to fire and a method of production of the same, that is, a material containing C: 0.012 to 0.050%, Mn: 0.80 to 2.00%, Cr: 0.80 to 1.90%, and Nb: 0.01 to less than 0.05%, restricting Cu to 0.10% or less, containing suitable quantities of Si, N, Ti, and Al, restricting the contents of Mo, B, P, S, and O, and having a balance of Fe and unavoidable impurities, having contents of C, Mn, Cr, Nb, and Cu satisfying ?1200C?20Mn+30Cr?330Nb?120Cu??80, having a steel structure as observed by an optical microscope of an area fraction of 80% or more of a ferrite phase, and having a balance of the steel structure of a bainite phase, martensite phase, and mixed martensite-austenite structure.
    Type: Application
    Filed: October 15, 2009
    Publication date: January 6, 2011
    Inventors: Masaki Mizoguchi, Yasushi Hasegawa, Yoshiyuki Watanabe
  • Publication number: 20100322814
    Abstract: A high-strength steel sheet is provided which, even when subjected to long-term stress-relief annealing after welding, decreases little in strength and which has satisfactory low-temperature HAZ toughness. The high-strength steel sheet has a chemical composition adequately regulated and has a CP value defined by the following equation (1) of 5.40% or higher and a carbon equivalent (Ceq) defined by the following equation (2) of 0.45% or lower. CP value=125[Ti]+111[Nb]+60[V]+15[Mo] (1) ([Ti], [Nb], [V], and [Mo] indicate the contents (mass %) of Ti, Nb, V, and Mo, respectively.) Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 (2) ([C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] indicate the contents (mass %) of C, Mn, Cr, Mo, V, Cu, and Ni, respectively.
    Type: Application
    Filed: March 16, 2009
    Publication date: December 23, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Makoto Kariyazaki
  • Publication number: 20100247368
    Abstract: A bainitic steel alloy and a method for making such an alloy are disclosed, in which the bainite plates are particularly small, less than 50 nanometres in width. In preferred embodiments of the invention, each bainite plate is surrounded by a film of retained austenite; the level of retained austenite in the alloy is greater than 10%; and the alloy is substantially free of blocky unstable austenite and cementite.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 30, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Martin J. RAWSON, Mathew J. PEET, Harshad K.D.H BHADESHIA, Scott D. WOOD, Paul O. HILL, Emma E. BOOTH
  • Patent number: 7794651
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: September 14, 2010
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20100189592
    Abstract: A tool steel, in particular a hot-work steel, has the following composition: 0.26 to 0.55% by weight C; less than 2% by weight Cr; 0 to 10% by weight Mo; 0 to 15% by weight W; wherein the W and Mo contents in total amount to 1.8 to 15% by weight; carbide-forming elements Ti, Zr, Hf, Nb, Ta forming a content of from 0 to 3% by weight individually or in total; 0 to 4% by weight V; 0 to 6% by weight Co; 0 to 1.6% by weight Si; 0 to 2% by weight Mn; 0 to 2.99% by weight Ni; 0 to 1% by weight S; remainder: iron and inevitable impurities. The hot-work steel has a significantly higher thermal conductivity than known tool steels.
    Type: Application
    Filed: June 8, 2007
    Publication date: July 29, 2010
    Applicant: ROVALMA S.A.
    Inventor: Isaac Valls Angles
  • Publication number: 20100186855
    Abstract: The invention relates to a steel and a processing method for high-strength fracture-splittable machine components that are composed of at least two fracture-splittable parts. The steel and method are characterized in that the chemical composition of the steel (expressed in percent by weight) is as follows: 0.40%?C?0.60%; 0.20%?Si?1.00%; 0.50%?Mn?1.50%; 0%?Cr?1.00%; 0%?Ni?0.50%; 0%?Mo?0.20%; 0%?Nb?0.050%; 0%?V?0.30%; 0%?Al?0.05%; 0.005%?N?0.020%, the rest being composed of iron and smelting-related impurities and residual matter.
    Type: Application
    Filed: July 27, 2007
    Publication date: July 29, 2010
    Inventors: Roman Diederichs, Axel Stueber, Robert Lange
  • Publication number: 20100147424
    Abstract: An abrasion resistant steel excellent in bending formability and suitable for members, e.g., power shovels, which come into contact with earth and sand, and a production method thereof are provided. Specifically, the steel contains, on a percent by mass basis, 0.05% to 0.35% of C, 0.05% to 1.0% of Si, 0.1% to 2.0% of Mn, 0.1% to 1.2% of Ti, 0.1% or less of Al, at least one element of 0.1% to 1.0% of Cu, 0.1% to 2.0% of Ni, 0.1% to 1.0% of Cr, 0.05% to 1.0% of Mo, 0.05% to 1.0% of W, and 0.0003% to 0.0030% of B, if necessary at least one element of 0.005% to 1.0% of Nb and 0.005% to 1.0% of V, and the remainder including Fe and incidental impurities, where DI* represented by the following formula is less than 60: DI*=33.85×(0.1×C*)0.5×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo*+1)×(1.5×W*+1)??(1) where C*=C?1/4×(Ti?48/14N), Mo*=Mo×(1?0.5×(Ti?48/14N)), and W*=W×(1?0.5×(Ti?48/14N)).
    Type: Application
    Filed: May 26, 2008
    Publication date: June 17, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Yasuhiro Murota, Misao Ishikawa, Yoshinori Watanabe, Shinichi Suzuki, Nobuo Shikanai
  • Publication number: 20100047106
    Abstract: This invention provides a forging steel excellent in forgeability, which forging steel comprises, in mass %, C: 0.001 to less than 0.07%, Si: 3.0% or less, Mn: 0.01 to 4.0%, Cr: 5.0% or less, P: 0.2% or less, S: 0.35% or less, Al: 0.0001 to 2.0%, N: 0.03% or less, one or both of Mo: 1.5% or less (including 0%) and Ni: 4.5% or less (including 0%), and a balance of iron and unavoidable impurities; wherein Di given by the following Equation (1) is 60 or greater: Di=5.
    Type: Application
    Filed: April 10, 2008
    Publication date: February 25, 2010
    Inventors: Hajime Saitoh, Tatsuro Ochi, Masayuki Hashimura
  • Publication number: 20100028196
    Abstract: The present invention provides a high strength heat treated steel wire for spring having a tensile strength of 2000 MPa or more which is coiled in the cold state and can achieve both sufficient atmospheric strength and coilability and spring steel used for that steel wire, that is, a high strength heat treated steel wire for a spring characterized by comprising, by mass %, C: 0.5 to 0.9%, Si: 1.0 to 3.0%, Mn: 0.1 to 1.5%, Cr: 1.0 to 2.5%, V: over 0.15 to 1.0%, and Al: 0.005% or less, controlling N to 0.007% or less, further containing one or two of Nb: 0.001 to less than 0.01% and Ti: 0.001 to less 0.005%, and having a tensile strength of 2000 MPa or more, having cementite-based spheroidal carbides and alloy-based spheroidal carbides in a microscopic visual field satisfying an area percentage of carbides with a circle equivalent diameter of 0.
    Type: Application
    Filed: November 9, 2006
    Publication date: February 4, 2010
    Inventors: Masayuki Hashimura, Hiroshi Hagiwara, Takayuki Kisu, Kouichi Yamazaki, Tatsuroi Ochi, Takashi Fujita
  • Patent number: 7635406
    Abstract: A low alloy steel, which has a chemical composition by mass %, of C: 0.1 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, S: 0.0001 to 0.005%, Al: 0.005 to 0.08%, Ti: 0.005 to 0.05%, Cr: 0.1 to 1.5%, Mo: 0.1 to 1%, O: 0.0004 to 0.005%, Ca: 0.0005 to 0.0045%, Nb: 0 to 0.1%, V: 0 to 0.5%, B: 0 to 0.005%, Zr: 0 to 0.10%, P?0.03%, and N?0.006%, with the balance being Fe and impurities, is manufactured by adjusting the value of ([Ti]/47.9)([N]/14)/([Ca])/40.1) satisfies not less than 0.0008 and not more than 0.0066, at the time of melting the said low alloy steel, wherein [Ti], [N] and [Ca] are the contents in the molten steel by mass % of Ti, N and Ca respectively. The thus-manufactured low steel alloy has a high SSC resistance with a yield stress of not less than 758 MPa.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: December 22, 2009
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Mitsuhiro Numata, Tomohiko Omura, Yoshihiko Higuchi
  • Publication number: 20090277542
    Abstract: The present invention provides a steel material for automobile chassis parts which has high fatigue characteristics, does not require much cost for heat treatment, and further is superior in shapeability and a method of production of automobile chassis parts using this steel material, that is, one being a steel material to which Nb and Mo have been compositely added and having a difference 50 to 150 points between a Vicker's hardness of the center of plate thickness and a maximum value of Vicker's hardness within 0.5 mm from the surface after bending by a bending R of the plate outer surface of 2 to 5 times the plate thickness. The surface is high in hardness and the center part is low in hardness, so the fatigue characteristics and shapeability are superior. Note that if annealing under conditions giving a tempering parameter ? defined by ?=T(20+log(t)) of 14000 to 19000 (where T is the absolute temperature, t is the time (h), and the temperature rise is 660° C.
    Type: Application
    Filed: August 8, 2007
    Publication date: November 12, 2009
    Inventors: Hideyuki Nakamura, Isao Anai, Yasushi Yamamoto, Takaaki Fukushi, Izuru Yamamoto, Masaaki Kondo, Satoru Shimazu
  • Publication number: 20090274572
    Abstract: The invention provides a high-strength pearlitic steel rail, which is inexpensive, and has a tensile strength of 1200 MPa or more, and is excellent in delayed fracture properties. Specifically, the rail contains, in mass percent, C of 0.6 to 1.0%, Si of 0.1 to 1.5%, Mn of 0.4 to 2.0%, P of 0.035% or less, S of 0.0005 to 0.010%, and the remainder is Fe and inevitable impurities, wherein tensile strength is 1200 MPa or more, and size of a long side of an A type inclusion is 250 mm or less in at least a cross-section in a longitudinal direction of a rail head, and the number of A type inclusions, each having a size of a long side of 1 mm to 250 mm, is less than 25 per observed area of 1 mm2 in the cross-section in the longitudinal direction of the rail head.
    Type: Application
    Filed: March 16, 2007
    Publication date: November 5, 2009
    Applicant: JFE Steel Corporation
    Inventors: Minoru Honjo, Tatsumi Kimura, Shinichi Suzuki, Nobuo Shikanai
  • Patent number: 7597841
    Abstract: Provided is a weld metal for Cr—Mo steels which is suppressed in the formation of ferrite bands and therefore has heightened toughness and tensile strength and at the same time, good SR cracking resistance. The weld metal according to the present invention contains C: 0.02 to 0.06% (mass %, which will equally apply hereinafter), Si: 0.1 to 1.0%, Mn: 0.3 to 1.5%, Cr: 2.0 to 3.25%, Mo: 0.8 to 1.2%, Ti: 0.010 to 0.05%, B: 0.0005% or less (inclusive of 0%), N: 0.002 to 0.0120%, O: 0.03 to 0.07%, and the balance being Fe and inevitable impurities, wherein a ratio of the Ti content [Ti] to the N content [N] satisfies the following range: 2.00<[Ti]/[N]<6.25.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 6, 2009
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshitomi Okazaki, Koichi Hosoi
  • Publication number: 20090238713
    Abstract: The invention relates to an ultrahigh-strength thin steel sheet excellent in the hydrogen embrittlement resistance, the steel sheet including, by weight %, 0.10 to 0.60% of C, 1.0 to 3.0% of Si, 1.0 to 3.5% of Mn, 0.15% or less of P, 0.02% or less of S, 1.5% or less of Al, 0.003 to 2.0% of Cr, and a balance including iron and inevitable impurities; in which grains of residual austenite have an average axis ratio (major axis/minor axis) of 5 or more, the grains of the residual austenite have an average minor axis length of 1 ?m or less, and the grains of the residual austenite have a nearest-neighbor distance between the grains of 1 ?m or less.
    Type: Application
    Filed: December 28, 2006
    Publication date: September 24, 2009
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Shinshu TLO Co., Ltd.
    Inventors: Junichiro Kinugasa, Fumio Yuse, Yoichi Mukai, Shinji Kozuma, Hiroshi Akamizu, Kouji Kasuya, Muneaki Ikeda, Koichi Sugimoto
  • Publication number: 20090098403
    Abstract: A low alloy steel is provided for oil country tubular goods with a yield strength between 654 MPa and 757 MPa, and possessing excellent resistance to HIC and SSC in high-pressure hydrogen sulfides environment, and comprising, by mass %: 0.10 to 0.60% C; 0.05 to 0.5% Si; 0.05 to 3.0% Mn; 0.025% or less P; 0.010% or less S; 0.005 to 0.10% Al; 0.01% or less O (oxygen); 3.0% or less Cr; and 3.0% or less Mo, wherein the amount of Cr and Mo content is 1.2% or more, with the balance being Fe and impurities, and the number of nonmetallic inclusions whose major axis is 10 ?m or more is 10 per square millimeter in the inspected cross section. The present invention provides a low alloy steel for oil country tubular goods possessing excellent resistance to sulfide stress cracking, and a seamless steel pipe.
    Type: Application
    Filed: September 16, 2008
    Publication date: April 16, 2009
    Inventors: Tomohiko Omura, Yuji Arai, Kuniaki Tomomatsu, Toshiharu Abe
  • Publication number: 20090092516
    Abstract: The present invention provides spring use heat treated steel which is cold coiled, can achieve both sufficient atmospheric strength and coilability, has a tensile strength of 2000 MPa or more, and can improve the performance as a spring by heat treatment after spring fabrication, that is, high strength spring-use heat treated steel characterized by containing, by mass %, C: 0.45 to 0.9%, Si: 1.7 to 3.0%, and Mn: 0.1 to 2.0%, restricting N: to 0.007% or less, having a balance of Fe and unavoidable impurities, and satisfying, in terms of the analyzed value of the extracted residue after heat treatment, [amount of Fe in residue on 0.2 ?m filter/[steel electrolysis amount]×100?1.1.
    Type: Application
    Filed: March 29, 2007
    Publication date: April 9, 2009
    Inventors: Masayuki Hashimura, Tatsuro Ochi, Takayuki Kisu, Hiroshi Hagiwara
  • Publication number: 20090053095
    Abstract: Steels having a pearlitic structure and containing 0.6 to 0.8 wt. % carbon; 0.70 to 1.00 wt. % silicon and 0.8 to 1.2 wt. % manganese can be further alloyed with chromium, molybdenum, vanadium, niobium and/or copper and used to make railway wheels, railway rims and railway rails that are particularly resistant to rolling contact fatigue and, hence, shelling.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 26, 2009
    Applicant: TRANSPORTATION TECHNOLOGY CENTER, INC.
    Inventors: Francisco C. Robles Hernandez, Daniel Hunter Stone
  • Publication number: 20090047166
    Abstract: A low alloy steel comprising, by mass %, C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.5%, Cr: 1.0 to 2.0%, Mo: 0.05 to 2.0%, Al: 0.10 % or less and Ti: 0.002 to 0.05%, and with a Ceq value obtained by the following formula (1) of 0.65 or more, with the balance being Fe and impurities, wherein in the impurities, P is 0.025% or less, S is 0.010% or less, N is 0.007% or less, and B is less than 0.0003%, and the number per unit area of M23C6 type precipitates (M: a metal element) whose grain diameter is 1 ?m or more is 0.1/mm2 or less. This invention provides a low alloy steel possessing both hardenability and toughness and improves the resistance to sulfide stress corrosion cracking. Ceq=C+(Mn/6)+(Cr+Mo+V)/5 ??formula (1) where C, Mn, Cr, Mo and V in the formula (1) denote the mass % of respective elements.
    Type: Application
    Filed: October 1, 2008
    Publication date: February 19, 2009
    Inventors: Kuniaki Tomomatsu, Tomohiko Omura, Yuji Arai, Toshiharu Abe
  • Publication number: 20090010795
    Abstract: The invention relates to a cold-working steel having a chemical composition, in % by weight, of 1.3-2.4 (C+N), whereof at least 0.5 C, 0.1-1.5 Si, 0.1-1.5 Mn, 4.0-5.5 Cr, 1.5-3.6 (Mo+W/2), but max 0.5 W, 4.8-6.3 (V+Nb/2), but max 2 Nb, and max 0.3 S, in which the content of (C+N) and of (V+Nb/2) are balanced in relation to each other such that the contents of these elements are within an area that is defined by the coordinates A, B, C, D, A in the system of coordinates in FIG. 11, where the coordinates of [(C+N), (V+Nb/2)] for these points are A: [1.38, 4.8], B: [1.78, 4.8], C: [2.32, 6.3], D: [1.92, 6.3], and a balance essentially only iron and impurities at normal contents.
    Type: Application
    Filed: April 12, 2007
    Publication date: January 8, 2009
    Applicant: Uddeholm Tooling Aktiebolag
    Inventors: Magnus Tidesten, Lennart Jonson, Odd Sandberg
  • Patent number: 7445750
    Abstract: The invention relates to a tool steel, the composition of which comprises (the percentages being expressed in % by weight): 0.8 ? C ? 1.5 5.0 ? Cr ? 14 0.2 ? Mn ? 3 Ni ? 5 V ? 1 Nb ? 0.1 Si + Al ? 2 Cu ? 1 S ? 0.3 Ca ? 0.1 Se ? 0.1 Te ? 0.1 1.0 ? Mo + ½W ? 4 0.06 ? Ti + ½Zr ? 0.15 0.004 ? N ? 0.02 the balance of the composition consisting of iron and impurities resulting from the smelting, it being furthermore understood that: 2.5×10?4%2?(Ti+½Zr)×N, to a process for manufacturing parts made in this steel and to the parts obtained.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: November 4, 2008
    Assignee: USINOR
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20080159901
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Application
    Filed: May 12, 2005
    Publication date: July 3, 2008
    Inventors: Jean Beguinot, Dominique Viale
  • Patent number: 7387691
    Abstract: A hot forged non-heat treated steel for induction hardening, comprising by mass percent, C: 0.35 to 0.45%, Si: 0.20 to 0.60%, Mn: 0.40 to 0.80%, S: 0.040 to 0.070%, Cr: 0.10 to 0.40%, Ti: 0.020 to 0.100%, Ca: 0.0005 to 0.0050%, B: 0.0005 to 0.0030%, O: 0.0015 to 0.0050%, Mo: 0 to 0.05%, P: 0.025% or less, V: 0.03% or less, Al: 0.009% or less and N: 0.0100% or less, and the balance being Fe and impurities, with Fn1=C+(Si/10)+(Mn/5)+(5Cr/22)+1.65V?(5/7S)+1.51×(Ti?3.4N)?0.63, Ca/O?1.0, and 25.9×Fn1+27.5×(Ti?3.4N)?7.9?5.7, has more excellence in the machinability than a conventional steel and also has fatigue strength equal to or more than that of a conventional steel, while using the steel product in a hot forged state as a starting material.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: June 17, 2008
    Assignees: Sumitomo Metal Industries, Ltd., Honda Motor Co., Ltd.
    Inventors: Daisuke Suzuki, Hitoshi Matsumoto, Hideki Imataka, Hayato Onda, Tetsuya Asai
  • Publication number: 20080138234
    Abstract: A chromium-molybdenum-vanadium (Cr—Mo—V) cast steel including 0.04 to 0.08% by weight of niobium is disclosed. The cast steel may include 0.08 to 0.12% by weight carbon. The cast steel may also have a sulphur content of 0.015% by weight or less, and a phosphorus content of 0.02% by weight or less. The silicon content may be 0.30 to 0.60% by weight, the manganese content may be 0.50 to 0.80% by weight, the chromium content may be 1.20 to 1.50% by weight, the molybdenum content may be 0.90 to 1.10% by weight, and the vanadium content may be 0.20 to 0.30% by weight.
    Type: Application
    Filed: March 20, 2006
    Publication date: June 12, 2008
    Applicant: BHARAT HEAVY ELECTRICALS LIMITED
    Inventors: Kulvir Singh, Jaipal Reddy Gurram, Sudhakar Reddy Katam, Pashupati Nath, Mallesh Pudtha, Vishnu Kumar Agrawal
  • Publication number: 20070267110
    Abstract: A method is provided for manufacturing a high-strength, as-welded steel pipe product, with a minimum yield strength in excess of 80 ksi (552 MPa), suitable for use in oil and gas well casings, without the need for a post-weld heat treatment which would otherwise be required to obtain an as-welded pipe having that level of strength.
    Type: Application
    Filed: May 17, 2006
    Publication date: November 22, 2007
    Inventors: Steven S. Hansen, Joseph D. Russo
  • Patent number: 7264684
    Abstract: A steel for steel pipes which comprises, on the percent by mass basis, C: 0.2 to 0.7%, Si: 0.01 to 0.8%, Mn: 0.1 to 1.5%, S: 0.005% or less, P: 0.03% or less, Al: 0.0005 to 0.1%, Ti: 0.005 to 0.05%, Ca: 0.0004 to 0.005%, N: 0.007% or less, Cr: 0.1 to 1.5%, Mo: 0.2 to 1.0%, Nb: 0 to 0.1%, Zr: 0 to 0.1%, V: 0 to 0.5% and B: 0 to 0.005%, with the balance being Fe and impurities, in which non-metallic inclusions containing Ca, Al, Ti, N, O, and S are present, and in the said inclusions (Ca %)/(Al %) is 0.55 to 1.72, and (Ca %)/(Ti %) is 0.7 to 19 can be used as a raw material for oil country tubular goods, being used at a greater depth and in severer corrosive circumstances, such as casings and tubings for oil and/or natural gas wells, drilling pipes and drilling collars for excavation, and the like.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: September 4, 2007
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Mitsuhiro Numata, Tomohiko Omura, Yoshihiko Higuchi
  • Patent number: 7229507
    Abstract: A high speed tool steel, which is high in impact value and free from variations in tool performance, comprising, by mass %, of: 0.4?C?0.9; Si?1.0; Mn?1.0; 4?Cr?6; 1.5–6 in total of either or both of W and Mo in the form of (½W+Mo) wherein W?3; 0.5–3 in total of either or both of V and Nb in the form of (V+Nb); wherein carbides dispersed in the matrix of the tool steel have an average grain size of ?0.5 ?m and a dispersion density of particles of the carbides is of ?80×103 particles/mm2.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: June 12, 2007
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shiho Fukumoto, Keiji Inoue
  • Patent number: 7083686
    Abstract: A steel product for oil country tubular good according to the invention comprises, in mass %, 0.10% to 0.35% C, 0.10% to 0.50% Si, 0.10% to 0.80% Mn, up to 0.030% P, up to 0.010% S, 0.30% to 1.20% Cr, 0.20% to 1.00% Mo, 0.005% to 0.40% V, 0.005% to 0. 100% Al, up to 0.0100% N, up to 0.0010% H, 0 to 0.01% Ca, 0 to 0.050% Ti, 0 to 0.050% Nb, and 0 to 0.0050% B, and the balance of Fe and impurities. The Cr, Mo, and V contents and the grain size GS satisfy expression (1): 0.7?(1.5×Cr+2.5×Mo+V)?GS/10?2.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: August 1, 2006
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Takahito Itou
  • Patent number: 7074286
    Abstract: A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: July 11, 2006
    Assignee: UT-Battelle, LLC
    Inventors: Ronald L. Klueh, Philip J. Maziasz, Vinod Kumar Sikka, Michael L. Santella, Sudarsanam Suresh Babu, Maan H. Jawad
  • Patent number: 7074283
    Abstract: A low alloy steel, characterized by consisting of, by mass %, C: 0.2–0.55%, Si: 0.05–0.5%, Mn: 0.1–1%, S: 0.0005–0.01%, O(Oxygen): 0.0010–0.01%, Al: 0.005–0.05%, Ca: 0.0003–0.007%, Ti: 0.005–0.05%, Cr: 0.1–1.5%, Mo: 0.1–1% and Nb: 0.005–0.1%, and the balance Fe and impurities; and also characterized by the impurities whose contents are restricted to P?0.03% and N?0.015%; and further characterized by containing composites of inclusions of not greater than 7 ?m in major axis with appearance frequency of not less than 10 pieces of composites per 0.1 mm2 of the steel cross section, wherein the composite comprises an outer shell of carbonitride of Ti and/or Nb surrounding a nucleus of oxysulfide of Al and Ca. The low alloy steel suppresses pitting caused by inclusions and suppresses SSC induced by pitting.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: July 11, 2006
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Tomohiko Omura
  • Patent number: 7048811
    Abstract: The present invention provides an electric resistance welded steel pipe for a hollow stabilizer excellent in workability, which steel pipe contains, in mass, 0.20 to 0.35% of C, 0.10 to 0.50% of Si, 0.30 to 1.00% of Mn, 0.01 to 0.10% of Al, 0.10 to 1.00% of Cr, 0.005 to 1.00% of Mo, 0.001 to 0.02% of Ti, 0.0005 to 0.0050% of B and 0.0010 to 0.0100% of N, satisfying the expression N/14<Ti/47.9, the balance consisting of Fe and unavoidable impurities and further has an ideal critical diameter (Di) being 1.0 (in) or more, an n-value in the axial direction of the steel pipe being 0.12 or more, a difference in hardness between the electric resistance welded seam portion and the base steel being Hv 30 or less, an average grain size of ferrite being 3 to 40 ?m, an area percentage of the ferritic crystal grains having the aspect ratios of 0.5 to 3.0 being 90% or more in the entire ferrite phase, and having an average grain size of 20 ?m or less in the second phase.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: May 23, 2006
    Assignee: Nippon Steel Corporation
    Inventors: Masahiro Ohgami, Tetsuya Magatani, Naoki Takasugi, Osamu Takeda
  • Patent number: 6953508
    Abstract: A welding method includes performing welding to form a weld metal consisting essentially of, in mass %, C: 0.01-0.15%, Si: 0.02-0.6%, Mn: 0.6-3.0%, Al: 0.004-0.08%, Ti: 0.003-0.03%, B: at most 0.005%, Cu: 0-1.2%, Ni: 0-3%, Cr: 0-1.2%, Mo: 0-2%, V: 0-0.05%, Nb: 0-0.05%, and a remainder of Fe and unavoidable impurities. The amounts of impurities are P: at most 0.03%, S: at most 0.03%, N: at most 0.01%, Ca or Mg: at most 0.005%. The value of Pcm expressed by the following Equation (3) is in the range of 0.23-0.35%, and the time T until the weld metal is cooled to 100° C. after welding satisfies the following Equation (1): T(seconds)?exp(7.0×Pw+4.66)??Equation (1) Pw=Pcm+HD/60??Equation (2) Pcm(mass %)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B??Equation (3) HD [ml/100 g]: amount of hydrogen in the weld metal immediately after welding.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: October 11, 2005
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomoaki Ikeda, Akio Yamamoto, Shigemichi Yamauchi, Nobuaki Takahashi, Masahiko Hamada
  • Patent number: 6916444
    Abstract: This invention related to a novel iron base alloy using residual austenite to improve wear resistance for valve seat insert material for internal combustion engines. The residual austenite is stable even after heat treatment and liquid nitrogen chilling. The alloy comprises of 2.0-4.0 wt % carbon, 1.0-3.0 wt % silicon, 0-4.0 wt % manganese, 3.0-9.0 wt % chromium, 5.0-15.0 wt % molybdenum, 3.0-15.0 wt % nickel, 0-6.0 wt % vanadium, 0-4.0 wt % niobium, 0-6.0 wt % cobalt, and the balance being iron with impurities.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: July 12, 2005
    Assignee: Alloy Technology Solutions, Inc.
    Inventor: Xuecheng Liang
  • Patent number: 6837945
    Abstract: The invention concerns a steel article, which consists of an alloy having a chemical composition, which contains in weight-%: 1.2 to 2.5 C; 0.8 to 2.0 Si, which partly can be replaced by aluminium, which may exist in an amount of max 1.0%; 0.1 to 1.5 Mn; 0.5 to 1.5 Cr; 1.2 to 5.0 (V+Nb/2), however max 1.0 Nb; balance iron and impurities in normal amounts, and having a microstructure which contains 4 to 12 volume-% of MC-carbides. The steel article can be used for manufacturing of cold-work tools, particularly pilger rolls for cold rolling of tubes. The invention also relates to a method of manufacturing the article.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: January 4, 2005
    Assignee: Uddeholm Tooling Aktiebolag
    Inventors: Odd Sandberg, Bo Rydell
  • Publication number: 20040238080
    Abstract: The present invention is related to a steel composition, a process for producing a steel product having said composition, and said steel product itself. According to the invention, a cold-rolled, possibly hot dip galvanized steel sheet is produced with thicknesses lower than 1 mm, and tensile strengths between 800 MPa and 1600 MPa, while the A80 elongation is between 5 and 17%, depending on the process parameters. The composition is such that these high strength levels may be obtained, while maintaining good formability and optimal coating quality after galvanising. The invention is equally related to a hot rolled product of the same composition, with higher thickness (typically about 2 mm) and excellent coating quality after galvanising.
    Type: Application
    Filed: July 16, 2004
    Publication date: December 2, 2004
    Inventors: Sven Vandeputte, Christophe Mesplont, Sigrid Jacobs
  • Publication number: 20040200552
    Abstract: A high speed tool steel, which is high in impact value and free from variations in tool performance, comprising, by mass %, of: 0.4≦C≧0.9; S1≦1.0; Mn≦1.0; 4≦Cr≧6; 1.5-6 in total of either or both of W and Mo in the form of (1/2 W+Mo) wherein W≦3; 0.5-3 in total of either or both of V and Nb in the form of (V+Nb); wherein carbides dispersed in the matrix of the tool steel have an average grain size of ≦0.5 &mgr;m and a dispersion density of particles of the carbides is of ≧80×103 particles/mm2.
    Type: Application
    Filed: March 12, 2004
    Publication date: October 14, 2004
    Applicant: HITACHI METALS, LTD.
    Inventors: Shiho Fukumoto, Keiji Inoue
  • Patent number: 6797231
    Abstract: The invention provides a steel for machine structural use, which is excellent in machinability, comprising, in percent by mass, C: 0.1-0.6%. Si: 0.01-2.0%, Mn: 0.2-2.0%, S: 0.005-0.2%, Al: not more than 0.009%, Ti: not less than 0.001% but less than 0.04%, Ca: 0.0001-0.01%, O (oxygen): 0.0010-0.01%, and N: not more than 0.02% and satisfying the following relations (1) to (3): n0/S (%)≧2500  (1) n1/n0≦0.1  (2) n2≧10  (3) where n0: total number of sulfide inclusions not smaller than 1 &mgr;m per mm2 of a cross section parallel to the direction of rolling (number/mm2); n1: number of MnS inclusions having not smaller than 1 &mgr;m and containing not less than 1.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: September 28, 2004
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Naoki Matsui, Koji Watari, Takayuki Nishi, Toru Kato, Hitoshi Matsumoto, Hiroaki Tahira
  • Publication number: 20040081575
    Abstract: Disclosed is a corrosion resistant steel suitable for the material of printer shafts. The steel has good machinability, corrosion resistance sufficient for ordinary indoor use without plating the product surfaces, and improved straightness after wire drawing and cold workability, and further, is less expensive. Alloy composition is, by weight percent, C: 0.005-0.200%, Si: up to 1.0%, Mn: up to 2.0%, P: up to 0.05%, Cu: up to 2.0%, Ni: up to 2.0%, Cr: 2.0-9.0%, one or both of Ti and Zr: [Ti%]+0.52[Zr%]=0.03-1.20%, one or both of S: 0.01-0.50% and Se:0.01-0.40%, N: up to 0.050% and O: up to 0.030%, and the balance of Fe and inevitable impurities, with the conditions of [S%]≧32[C%]/12, and 0<L ≦0.5, wherein L=4[C%]/([Ti%]+0.52[Zr%]). The inclusions therein are, Ti-based, Zr-based, or Ti—Zr-based compound or compounds containing C and one or both of S and Se.
    Type: Application
    Filed: October 9, 2003
    Publication date: April 29, 2004
    Inventors: Koichi Ishikawa, Toshiharu Noda, Tetsuya Shimizu
  • Publication number: 20040047757
    Abstract: In order to provide a high-hardness, high-toughness steel, Si, Al, Cr, Mo, V, W, Ni, and Co are more appropriately added so that the steel can have an HRC hardness of 50 or higher and a Charpy impact value of 5 kgf m/cm2 or more by tempering at a high temperature of 600° C. or higher. The steel is a martensite steel containing at least C: 0.15 to 1.2% by weight and Si: 0.05 to 1.8% by weight, wherein Si is partially replaced by 0.15 to 1.6% by weight of Al. The steel further contains Ni: 0.3 to 2.5% by weight; Cr: 0.1 to 3.5% by weight; Mo: 0.1 to 1.7% by weight, wherein the amount of Mo is not more than the upper limit determined by the relation formula: Mo(% by weight)=1.7−0.5×(Si(% by weight)+Al(% by weight)); one or both of V: 0.05 to 0.40% by weight and W: 0.1 to 1.0% by weight; at least one alloying element of Mn, Co, Cu, Ti, B, and Nb; inevitable impurities including P, S, N, and O; and the balance consisting essentially of Fe.
    Type: Application
    Filed: March 19, 2003
    Publication date: March 11, 2004
    Applicant: KOMATSU LTD.
    Inventor: Takemori Takayama