Vanadium Containing Patents (Class 420/111)
  • Patent number: 11319621
    Abstract: The present invention relates to a steel for a mold, which has a composition containing, on % by mass basis: 0.35%?C?0.40%, 0.003%?Si?0.20%, 0.72%?Mn?0.94%, 5.65%?Cr?6.00%, 1.65%?Mo?2.00%, 0.71%?V?0.90%, and 0.001%?N?0.080%, with the balance being Fe and inevitable impurities.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 3, 2022
    Assignee: DAIDO STEEL CO., LTD.
    Inventor: Masamichi Kawano
  • Patent number: 9051635
    Abstract: A non-stainless steel alloy includes, in combination by weight, about 0.20% to about 0.33% carbon, about 4.0% to about 8.0% cobalt, about 7.0 to about 11.0% nickel, about 0.8% to about 3.0% chromium, about 0.5% to about 2.5% molybdenum, about 0.5% to about 5.9% tungsten, about 0.05% to about 0.20% vanadium, and up to about 0.02% titanium, the balance essentially iron and incidental elements and impurities.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 9, 2015
    Inventor: Herng-Jeng Jou
  • Publication number: 20150118098
    Abstract: The present invention relates to the application of at least partially bainitic or interstitial martensitic heat treatments on steels, often tool steels or steels that can be used for tools. The first tranche of the heat treatment implying austenitization is applied so that the steel presents a low enough hardness to allow for advantageous shape modification, often trough machining. Thus a steel product is obtained which can be shaped with ease and whose hardness can be raised to a higher working hardness with a simple heat treatment at low temperature (below austenitization temperature).
    Type: Application
    Filed: May 7, 2013
    Publication date: April 30, 2015
    Applicant: VALLS BESITZ GMBH
    Inventor: Isaac Valls
  • Publication number: 20150079420
    Abstract: The steel for hot forming has the following composition in weight %: C: 0.10-0.25, Mn: 1.4-2.8, Si: ?1.0, Cr: ?1.0, Ti: ?0.05, Nb: ?0.05, V: ?0.1, Mo: ?0.1, Al: ?0.05, P: ?0.02, S: ?0.005, Ca: ?0.005, O: ?0.01, N: ?0.02, B: ?0.0004, the remainder being iron and unavoidable impurities. Also disclosed is a strip, sheet or blank produced with such a steel, a method for producing a hot formed product, such a product and the use thereof.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Inventors: David Neal HANLON, Stefanus Matheus Cornelis VAN BOHEMEN
  • Publication number: 20150059933
    Abstract: A steel comprises, by mass percent, C: 0.10 to 0.15%, Si: not less than 0.02% and less than 0.10%, Mn: more than 0.90% and not more than 2.50%, P?0.030%, S?0.050%, Cr: 0.80 to 2.0%, V: 0.05 to 0.50%, Al: 0.01 to 0.07%, N?0.0080%, O?0.0030%, and one or more selected from Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, the balance being Fe and impurities. The composition satisfies [35?Mn/S?200], [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80], [140×Cr+125×Al+235×V?160] and [150?511×C+33×Mn+56×Cu+15×Ni+36×Cr+5×Mo+134×V?200].
    Type: Application
    Filed: February 28, 2013
    Publication date: March 5, 2015
    Inventors: Hideki Imataka, Masayuki Horimoto, Yuya Gyotoku, Kosuke Tanaka
  • Publication number: 20150027591
    Abstract: A steel material for nitriding has a composition comprising, by mass percent, C: more than 0.15% and not more than 0.35%, Si?0.20%, Mn: 0.10 to 2.0%, P?0.030%, S?0.050%, Cr: 0.80 to 2.0%, V: 0.10 to 0.50%, Al: 0.01 to 0.06%, N?0.0080%, O?0.0030%, and optionally one or more elements of Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, the balance being Fe and impurities. The composition satisfies the conditions of [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80] and [140×Cr+125×Al+235×V?160]. The microstructure is a ferritic-pearlitic structure, a ferritic-bainitic structure, or a ferritic-pearlitic-bainitic structure. The area fraction of ferrite is 20% or more and the precipitate content of V is 0.10% or less.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 29, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuya Gyotoku, Masayuki Horimoto, Hideki Imataka, Kosuke Tanaka
  • Publication number: 20150024237
    Abstract: A hot stamping steel material, which secures good hydrogen embrittlement resistance even when the steel sheet after hot stamping is subjected to processing leading to remaining of stress, such as piercing and which is easily practicable, wherein the steel sheet has the chemical composition of: C: 0.18 to 0.26%; Si: more than 0.02% and not more than 0.05%; Mn: 1.0 to 1.5%; P: 0.03% or less; S: 0.02% or less; Al: 0.001 to 0.5%; N: 0.1% or less; O: 0.001 to 0.02%; Cr: 0 to 2.0%; Mo: 0 to 1.0%; V: 0 to 0.5%; W: 0 to 0.5%; Ni: 0 to 5.0%; B: 0 to 0.01%; Ti: 0 to 0.5%; Nb: 0 to 0.5%; Cu: 0 to 1.0%; and balance: Fe and impurities, in terms of % by mass, the concentration of a Mn-containing inclusion is not less than 0.010% by mass and less than 0.25% by mass, and the number ratio of a Mn oxide to the inclusion having a maximum length of 1.0 to 4.0 ?m is 10.0% or more.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 22, 2015
    Inventors: Hiroyuki Tanahashi, Toshimasa Tomokiyo
  • Publication number: 20150004051
    Abstract: A high strength spring steel suppresses ferrite decarburization in a surface layer of a predetermined wire rod manufactured by hot rolling therefrom and possesses excellent decarburization resistance, as compared to conventional high strength spring steel, by optimizing the amount of C, Si, Mn, Cr, Mo and Sb to be added. The spring steel contains, under a certain relationship: 0.35 mass %?C?0.45 mass %; 1.75 mass %?Si?2.40 mass %; 0.1 mass %?Mn?1.0 mass %; 0.01 mass %?Cr<0.50 mass %; 0.01 mass %?Mo?1.00 mass %; P?0.025 mass %; S?0.025 mass %; and O?0.0015 mass %; and at least one selected from 0.035 mass %?Sb?0.12 mass % and 0.035 mass %?Sn?0.20 mass %.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 1, 2015
    Inventors: Minoru Honjo, Kiyoshi Uwai, Shinji Mitao
  • Patent number: 8865061
    Abstract: The invention relates to a steel alloy for a low alloy steel for producing high-tensile, weldable, hot-rolled seamless steel tubing, in particular construction tubing. The chemical composition (in % by mass) is: 0.15-0.18% C; 0.20-0.40% Si; 1.40-1.60% Mn; max. 0.05% P; max. 0.01% S; >0.50-0.90% Cr; >0.50-0.80% Mo; >0.10-0.15% V; 0.60-1.00% W; 0.0130-0.0220% N; the remainder is made up of iron with production-related impurities; with the optional addition of one or more elements selected from Al, Ni, Nb, Ti, with the proviso that the relationship V/N has a value of between 4 and 12 and the Ni content of the steel is not more than 0.40%.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 21, 2014
    Assignee: Vallourec Deutschland GmbH
    Inventors: Christoph Kaucke, Guido Kubla, Heinz Sanders, Charles Stallybrass, André Schneider, Markus Schütz
  • Patent number: 8821652
    Abstract: Steel for induction hardening wherein coarsening of austenite crystal grains can be prevented even at a high temperature of over 1100° C. such as which occurs at projecting parts of steel parts at the time of induction hardening, the steel for induction hardening characterized by containing, by mass %, C: 0.35 to 0.6%, Si: 0.01 to 1%, Mn: 0.2 to 1.8%, S: 0.001 to 0.15%, Al: 0.001 to 1%, Ti: 0.05 to 0.2%, and Nb: 0.001 to 0.04%, restricting N: 0.0060% or less, P: 0.025% or less, and O: 0.0025% or less, satisfying Nb/Ti?0.015, and having a balance of iron and unavoidable impurities.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: September 2, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Shuji Kozawa, Manabu Kubota
  • Patent number: 8801872
    Abstract: A case hardened gear steel having enhanced core fracture toughness includes by weight percent about 16.3Co, 7.5Ni, 3.5Cr, 1.75Mo, 0.2W, 0.11C, 0.03Ti, and 0.02V and the balance Fe, characterized as a predominantly lath martensitic microstructure essentially free of topologically close-packed (TCP) phases and carburized to include fine M2C carbides to provide a case hardness of at least about 62 HRC and a core toughness of at least about 50 ksi?in.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 12, 2014
    Assignee: QuesTek Innovations, LLC
    Inventors: James A. Wright, Jason Sebastian
  • Publication number: 20140193288
    Abstract: The present invention provides a spring steel, which is finally formed into a spring, by making use of, at a maximum, the temper softening resistance effect due to alloying elements while suppressing the formation of hard inclusions of SiO2 and the generation of decarburization, which may cause deterioration of fatigue characteristics of the spring. The spring steel is characterized by comprising, in % by mass, C: 0.50 to 0.70%, Si: 1.00 to 5.00%, Mn: 0.30 to 2.00%, P: 0.0002 to 0.0500%, S: 0.0002 to 0.0500%, Cr: 0.10 to 3.50%, Al: 0.0005 to 0.0500%, and N: 0.0020 to 0.0100%, with the balance being Fe and inevitable impurities, wherein the H-value defined by the following equation (a) is 160 or more, and the C-value defined by the following equation (b) is 3.25 or less: H=33.6[C]+10.0[Si]+5.95[Mn]+11.1[Cr]+90.0??(a), and C=[Si]/[Mn]??(b).
    Type: Application
    Filed: August 15, 2012
    Publication date: July 10, 2014
    Inventors: Shinya Teramoto, Manabu Kubota
  • Patent number: 8663400
    Abstract: Provided is a low alloy steel for high-pressure hydrogen gas environments, which contains, by mass percent, C: 0.15 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.05 to 3.0%, P: not more than 0.025%, S: not more than 0.010%, Al: 0.005 to 0.10%, Mo: 0.5 to 3.0%, V: 0.05 to 0.30%, O (oxygen): not more than 0.01%, N: not more than 0.03%, and the balance Fe and impurities, and has tensile strength of not less than 900 MPa. This low alloy steel desirably contains B of 0.0003 to 0.003%, but in this case, N is limited to not more than 0.010%. It is desirable to contain at least one among Cr, Nb, Ti, Zr, and Ca. The contents of Mo and V desirably satisfy the following formula (1): [Mo(%)]·[V(%)]0.2?0.32??(1).
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 4, 2014
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomohiko Omura, Mitsuo Miyahara, Hiroyuki Semba, Masaaki Igarashi
  • Publication number: 20140056749
    Abstract: A low-chromium hot-work tool steel consisting of (in wt-%): C 0.08-0.40, N 0.015-0.30, C+N 0.30-0.50, Cr 1-4, Mo 1.5-3, V 0.8-1.3, Mn 0.5-2, Si 0.1-0.5, optionally Ni<3, Co?5, B<0.01, Fe balance apart from impurities, and a process for making a low-chromium hot-work tool steel article having increased tempering resistance.
    Type: Application
    Filed: March 1, 2012
    Publication date: February 27, 2014
    Applicant: UDDEHOLMS AB
    Inventors: Jürgen Andersson, Henrik Jesperson, Hans-Olof Andrén, Lars-Erik Svensson
  • Patent number: 8647449
    Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are families of alloys capable of forming crack-free weld overlays after multiple welding passes.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: February 11, 2014
    Assignee: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Publication number: 20140034194
    Abstract: A steel for nitriding having a chemical composition consisting of, by mass percent, C: 0.07-0.14%, Si: 0.10-0.30%, Mn: 0.4-1.0%, S: 0.005-0.030%, Cr: 1.0-1.5%, Mo: ?0.05% (including 0%), Al: 0.010% or more to less than 0.10%, V: 0.10-0.25%, optionally at least one element selected from Cu: ?0.30% and Ni: ?0.25% [0.61Mn+1.11Cr+0.35Mo+0.47?2.30], and the balance of Fe and impurities. P, N, Ti and O among the impurities are P: ?0.030%, N: ?0.008%, Ti: ?0.005%, and O: ?0.0030%. The steel is easily subjected to cutting before nitriding and suitable for use as an automobile ring gear. The nitrided component having a surface hardness of 650-900 HV, core hardness being ?150 HV, and effective case depth of ?0.15 mm has excellent bending fatigue strength and surface fatigue strength although the content of Mo is as low as ?0.05% and has a small amount of expansion caused by nitriding.
    Type: Application
    Filed: January 26, 2012
    Publication date: February 6, 2014
    Applicants: HONDA MOTOR CO., LTD., NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Imataka, Masato Yuya, Yuya Gyotoku, Atsushi Kobayashi, Susumu Maeda
  • Publication number: 20140023551
    Abstract: A tool steel, in particular a hot-work steel, has the following composition: 0.26 to 0.55% by weight C; less than 2% by weight Cr; 0 to 10% by weight Mo; 0 to 15% by weight W; wherein the W and Mo contents in total amount to 1.8 to 15% by weight; carbide-forming elements Ti, Zr, Hf, Nb, Ta forming a content of from 0 to 3% by weight individually or in total; 0 to 4% by weight V; 0 to 6% by weight Co; 0 to 1.6% by weight Si; 0 to 2% by weight Mn; 0 to 2.99% by weight Ni; 0 to 1% by weight S; remainder: iron and inevitable impurities. The hot-work steel has a significantly higher thermal conductivity than known tool steels.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 23, 2014
    Inventor: Isaac Valls Angles
  • Publication number: 20140000770
    Abstract: A tool steel family with outstanding thermal diffusivity, hardness and wear resistance has been developed, also exhibiting good hardenability. Also its mechanical strength, as well as its yield strength, at ambient and high temperature (superior to 600° C.) are high, due to a high alloying level in spite of the high thermal conductivity. Because of its high thermal conductivity and good toughness, steels of this invention have also good resistance to thermal fatigue and thermal shock. This steels are ideal for discontinuous processes where it is interesting to reduce cycle time and that require high hardness and/or wear resistance (plastic injection molding, other plastic forming processes and curing of thermosets, hot forming of sheet . . . ). These tool steels are also appropriate for processes requiring high wear resistance and good resistance to thermal fatigue (forging, hot stamping, light-alloy injection . . . ).
    Type: Application
    Filed: January 13, 2012
    Publication date: January 2, 2014
    Applicant: ROVALMA, S.A.
    Inventor: Isaac Valls Anglés
  • Patent number: 8551397
    Abstract: The invention relates to a manufacturing process for steel blanks. The invention relates in particular to a manufacturing process of a steel blank comprising electroslag remelting (ESR—ElectroSlag Remelting) or vacuum arc remelting (VAR—Vacuum Arc Remelting) to obtain very good mechanical properties. The blanks obtained can be used especially in the field of the manufacture of pressurized equipment elements and especially cannon tubes.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: October 8, 2013
    Assignee: Aubert & Duval
    Inventors: Gérald Gay, Bruno Gaillard-Allemand
  • Patent number: 8465600
    Abstract: According to the present invention, there is provided a high strength steel sheet, which has, for example, a tensile strength of 590 to 980 MPa or more, which has favorable workability, and which is useful for an automobile, etc. The high strength steel sheet of the present invention comprises 0.03 to 0.20% C (% by mass in chemical compositions; hereafter, the same holds true), 0.50 to 2.5% Si, 0.50 to 2.5% Mn, and further, preferably 0.02 to 0.2% Mo. Moreover, its metal structure includes ferrite and low temperature transformation phase. The mean grain size of the low temperature transformation phase is 3.0 ?m or less. Further, grains whose size is 3.0 ?m or less occupy 50% or more by area ratio of the low temperature transformation phase, and an average aspect ratio of the low temperature transformation phase is 0.35 or more.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: June 18, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Seiko Watanabe, Masaaki Miura
  • Patent number: 8409712
    Abstract: An alloy to be surface-coated, which can keep excellent hardness of 58HRC or above even when the amount of an alloying element added is reduced or even when the alloy is heated to a temperature of as high as 400 to 500° C.; and sliding members produced by forming a hard film on the surface of the alloy. An alloy to be surface-coated, the surface of which is to be covered with a hard film, which alloy contains by mass C: 0.5 to 1.2%, Si: 2.0% or below, Mn: 1.0% or below, Cr: 5.0 to 14.0%, Mo+1/2 W: 0.5 to 5.0%, and N: more than 0.015 to 0.1% with the balance being Fe and impurities, preferably such an alloy which contains by mass C: 0.6 to 0.85%, Si: 0.1 to 1.5%, Mn: 0.2 to 0.8%, Cr: 7.0 to 11.0%, Mo+1/2 W: 1.0 to 4.0%, and N: 0.04 to 0.08%.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: April 2, 2013
    Assignee: Hitachi Metals Ltd.
    Inventors: Kenji Yokoyama, Kunichika Kubota, Toshihiro Uehara, Takehiro Ohno, Katsuhiko Ohishi
  • Publication number: 20130068449
    Abstract: A hardfacing composition composed of an Fe—Cr alloy. The alloy is comprised of 80 wt % iron, about 2 wt % to about 20 wt % Cr, less than 1 wt % Si and less than 1 wt % C. The alloy's microstructure is at least 80 vol % martensite; and less than 20 vol % austenite.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: NATIONAL OILWELL VARCO,LP.
    Inventors: Raju PILLAI, Jiinjen A. SUE, Parul W. DHALL
  • Patent number: 8394319
    Abstract: Nickel, Ni, of 5 to 10 mass %, silicon, Si, of 0.5 to 5 mass %, manganese, Mn, of 0.01 to 1 mass %, carbon, C, of 0.2 to 2 mass % and a remaining part consisting of iron, Fe, and incidental impurities are employed, and further chromium, Cr, of 1 to 10 mass % is added to obtain a martensitic cast steel material for which a martensitic transformation finish temperature (Mf point) is below freezing. Further, a cast steel material that contains vanadium V of 0.1 to 5 mass % in addition to the above elements of the material is also obtained. For these cast steel materials, since martensitic transformation occurs merely by performing a sub-zero treatment, the tempering process can be comparatively easily performed, and machining in a desired shape is easily performed.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: March 12, 2013
    Assignees: Yamagataken, Yugen Kaisha Watanabe Chuzo-Sho
    Inventors: Toshitaka Watanabe, Toru Yamada, Noboru Sato, Satoshi Nakano, Toshiro Matsuki
  • Patent number: 8388771
    Abstract: A high strength steel sheet contains, in percent by mass, 0.03 to 0.2% of C, 0.5 to 2.5% of Si, 1 to 3.0% of Mn, 0.01 to 0.5% of Cr, 0.01 to 0.5% of Mo, 0.02 to 0.15% of Al, 0.15% or less of Ti, 0.15% or less of No, and 0.15% or less of V; wherein the remainder includes Fe and inevitable impurities, and the content of Si satisfies the following formula (1), ??4.1?[Si]??2.4??(1), provided, ?=6.9×([C]+[Mn]/6+[Cr]/5+[Mo]/4+[Ti]/15+[Nb]/17+[V]/14)1/2 is given, wherein [ ] shows the quantity (mass percent) of each element contained in the steel sheet. The high strength steel sheet is improved in formability (particularly, elongation), and excellent in balance between strength and elongation.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 5, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yuichi Futamura, Katsuhiro Yamamoto, Masaaki Miura
  • Publication number: 20130039803
    Abstract: Disclosed is a high-strength steel plate having a predetermined chemical composition, in which a microstructure of the steel plate at a depth of one-fourth to one half the thickness from a surface has an area fraction of bainite of 90% or more, an average lath width of bainite of 3.5 ?m or less, and a maximum equivalent circle diameter of martensite-austenite constituents in bainite of 3.0 ?m or less. The steel plate exhibits high strengths and good drop weight properties and is useful as structural materials for offshore structure, ships, and bridges, as well as materials for pressure vessels in nuclear power plants.
    Type: Application
    Filed: March 15, 2011
    Publication date: February 14, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroyuki Takaoka, Eiichi Tamura
  • Patent number: 8372219
    Abstract: Gun barrel for firearms made from a deformed material and method for producing the gun barrel material. The material has a chemical composition in % by weight of: Content C Si Mn P S Cr Mo Min 0.28 0.08 0.15 3.6 1.2 Max 0.36 0.26 0.35 0.005 0.002 4.4 1.8 Content Ni V W Ti As + Sn + Sb Fe Min 0.42 Rest Max <0.5 0.5? 0.15 0.08 0.007 and impurities due to smelting. The material has a hardness of at least 46 to 48 HRC.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: February 12, 2013
    Assignee: Boehler Edelstahl GmbH & Co. KG
    Inventors: Devrim Caliskanoglu, Herbert Schweiger, Ingo Siller
  • Patent number: 8187530
    Abstract: An object of this invention is to provide a steel for high-cleanliness spring which is useful for the production of a spring excellent in fatigue characteristics in high Si steels. The steel for high-cleanliness spring with excellent fatigue characteristics according to the invention contains: in terms of mass %, C: 1.2% or less (excluding 0%); Si: 1.8% to 4%; Mn: 0.1% to 2.0%; and total Al: 0.01% or less (excluding 0%), with the remainder being iron and inevitable impurities, in which the Si amount and a solute (SIMS) Ca amount in the steel satisfy a relationship of the following expression (1): Si×10?7?solute (SIMS) Ca?Si×5×10?7??(1) (in which each of the solute (SIMS) Ca and Si represents the amount thereof (mass %) in the steel).
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 29, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomoko Sugimura, Koichi Sakamoto, Yoshio Fukuzaki, Atsuhiko Yoshida, Takeshi Inoue
  • Patent number: 8168009
    Abstract: “HARD ALLOYS WITH DRY COMPOSITION”, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 2.0; Chrome between 1.0 and 10.0; Tungsten-equivalent, as given by ratio 2Mo+W, between 7.0 and 14.0; Niobium between 0.5 and 3.5. Niobium can be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.5 and 3.5. Vanadium can be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium; Cobalt lower than 8, the remaining substantially Iron and impurities inevitable to the preparation process. As an option to refine carbides, the steel of the present invention can have content of Nitrogen controlled, below 0.030 and addition of Cerium or other earth elements at content between 0.005 and 0.020. For the same purpose, Silicon and Aluminum can be optionally added, at content between 0.5 and 3.0% for both of them.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: May 1, 2012
    Inventors: Rafael Agnelli Mesquita, Celso Antonio Barbosa
  • Patent number: 8101029
    Abstract: A weld metal of a high-strength Cr—Mo steel formed by shielded metal arc welding contains: 0.04 to 0.10% by mass C, 0.15 to 0.5% by mass Si, 0.5 to 1.0% by mass Mn, 2.00 to 3.25% by mass Cr, 0.9 to 1.2% by mass Mo, 0.01 to 0.03% by mass Nb, 0.2 to 0.7% by mass V, 0.003% by mass or below and above 0% by mass B, 0.02 to 0.05% by mass O, and the balance of Fe and inevitable impurities. A residual extracted by electrolytic extraction from only an unaffected zone of the weld metal contains precipitated Cr in a Cr content below 0.3% by mass, and precipitated Nb in a Nb content of 0.005% by mass or above.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 24, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshitomi Okazaki, Ken Yamashita, Hirohisa Watanabe, Koichi Hosoi
  • Publication number: 20110315277
    Abstract: The invention relates to a steel alloy for a low alloy steel for producing high-tensile, weldable, hot-rolled seamless steel tubing, in particular construction tubing. The chemical composition (in % by mass) is: 0.15-0.18% C; 0.20-0.40% Si; 1.40-1.60% Mn; max. 0.05% P; max. 0.01% S; >0.50-0.90% Cr; >0.50-0.80% Mo; >0.10-0.15% V; 0.60-1.00% W; 0.0130-0.0220% N; the remainder is made up of iron with production-related impurities; with the optional addition of one or more elements selected from Al, Ni, Nb, Ti, with the proviso that the relationship VIN has a value of between 4 and 12 and the Ni content of the steel is not more than 0.40%.
    Type: Application
    Filed: January 23, 2009
    Publication date: December 29, 2011
    Applicant: V & M Deutschland GmbH
    Inventors: Christoph Kaucke, Guido Kubla, Heinz Sanders, Charles Stallybrass, André Schneider, Markus Schütz
  • Publication number: 20110315276
    Abstract: A steel contains, by weight: C: 0.3% to 0.5%, Si: 0.1% to 0.5%, Mn: 0.1% to 1%, P: 0.03% or less, S: 0.005% or less, Cr: 0.3% to 1.5%, Mo: 1.0% to 1.5%, Al: 0.01% to 0.1%, V: 0.03% to 0.06%, Nb: 0.04% to 0.15%, Ti: 0 to 0.015%, N: 0.01% or less, the remainder of the chemical composition of the steel being constituted by Fe and impurities or residuals resulting from or necessary to steel production and casting processes. The steel enables to produce seamless tubes with a yield strength after heat treatment of 862 MPa or more which are particularly SSC-resistant.
    Type: Application
    Filed: February 12, 2010
    Publication date: December 29, 2011
    Applicant: VALLOUREC MANNESMANN OIL & GAS FRANCE
    Inventors: Christoph Bosch, Axel Kulgemeyer, Jean Leyer, Michel Piette
  • Patent number: 8057737
    Abstract: A forging steel has a dissolved Mg concentration within the range of 0.04-5 ppm by mass and a dissolved Al concentration within the range of 50-500 ppm.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: November 15, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Tetsushi Deura, Motohiro Nagao, Atsushi Tomioka, Shogo Fukaya
  • Publication number: 20110268600
    Abstract: The invention provides a steel material with satisfactory hydrogen embrittlement resistance, and particularly it relates to high-strength steel with satisfactory hydrogen embrittlement resistance and a strength of 1200 MPa or greater, as well as a process for production thereof. At least one simple or compound deposit of oxides, carbides or nitrides as hydrogen trap sites which trap hydrogen with a specific trap energy is added to steel, where the mean sizes, number densities, and length-to-thickness ratios (aspect ratio) are in specific ranges. By applying the specific steel components and production process it is possible to obtain high-strength steel with excellent hydrogen embrittlement resistance.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 3, 2011
    Applicant: Nippon Steel Corporation
    Inventors: Shingo YAMASAKI, Daisuke Hirakami, Toshimi Tarui, Seiki Nishida
  • Publication number: 20110186182
    Abstract: The present invention relates to a steel material giving more effective case hardening for improving the fatigue strength and is characterized by containing, by mass %, C: 0.01 to 0.3%, Si: less than 0.1%, Mn: 0.4 to 3%, Cr: 0.5 to 3%, and Al: 0.01 to 0.3%, further containing one or both of Mo: 0.2 to 1.5%, and V: 0.05 to 1.0%, having a balance of Fe and unavoidable impurities, and comprising a structure having 50% or more of bainite.
    Type: Application
    Filed: October 19, 2009
    Publication date: August 4, 2011
    Inventors: Tetsushi Chida, Manabu Kubota, Toshimi Tarui, Daisuke Hirakami
  • Patent number: 7981360
    Abstract: A chromium-molybdenum-vanadium (Cr—Mo—V) cast steel including 0.04 to 0.08% by weight of niobium is disclosed. The cast steel may include 0.08 to 0.12% by weight carbon. The cast steel may also have a sulphur content of 0.015% by weight or less, and a phosphorus content of 0.02% by weight or less. The silicon content may be 0.30 to 0.60% by weight, the manganese content may be 0.50 to 0.80% by weight, the chromium content may be 1.20 to 1.50% by weight, the molybdenum content may be 0.90 to 1.10% by weight, and the vanadium content may be 0.20 to 0.30% by weight.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: July 19, 2011
    Assignee: Bharat Heavy Electricals Limited
    Inventors: Kulvir Singh, Jaipal Reddy Gurram, Sudhakar Reddy Katam, Pashupati Nath, Mallesh Pudtha, Vishnu Kumar Agrawal
  • Publication number: 20110097235
    Abstract: Embodiments of the present application are directed towards steel compositions that provide improved properties under corrosive environments. Embodiments also relate to protection on the surface of the steel, reducing the permeation of hydrogen. Good process control, in terms of heat treatment working window and resistance to surface oxidation at rolling temperature, are further provided.
    Type: Application
    Filed: December 27, 2010
    Publication date: April 28, 2011
    Inventors: Gustavo Lopez Turconi, Alfonso Izquierdo Garcia, Toshihiko Fukui
  • Publication number: 20100247368
    Abstract: A bainitic steel alloy and a method for making such an alloy are disclosed, in which the bainite plates are particularly small, less than 50 nanometres in width. In preferred embodiments of the invention, each bainite plate is surrounded by a film of retained austenite; the level of retained austenite in the alloy is greater than 10%; and the alloy is substantially free of blocky unstable austenite and cementite.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 30, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Martin J. RAWSON, Mathew J. PEET, Harshad K.D.H BHADESHIA, Scott D. WOOD, Paul O. HILL, Emma E. BOOTH
  • Patent number: 7785531
    Abstract: An alloy for aircraft roller bearings containing: 0.45 to 1.0 wt. % carbon, max 2.0 wt. % manganese, max 1.0 wt. % silicon, 8.5 to 11.5 wt. % chromium, 1.0 to 4.5 wt. % molybdenum, 1.0 to 2.5 wt. % vanadium, max 2.0 wt. % tungsten, max 0.5 wt. % niobium, max 0.5 wt. % tantalum, max 3.0 wt. % nickel, max 0.5 wt. % cobalt, max 0.1 wt. % aluminum, max 0.01 wt. % nitrogen, and the balance being iron and impurities due to production.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: August 31, 2010
    Assignee: Boehler Edelstahl GmbH
    Inventors: Roland Rabitsch, Sven Peissl, Reinhold Ebner, Sabine Eglsaeer
  • Publication number: 20100193089
    Abstract: Disclosed is a hot-working tool steel having improved toughness and high-temperature strength. Also disclosed is a method for producing the hot-working tool steel. The hot-working tool steel comprises the following components (by mass): C: 0.34-0.40%, Si: 0.3-0.5%, Mn: 0.45-0.75%, Ni: 0-0.5% (exclusive), Cr: 4.9-5.5%, (Mo+1/2W): 2.5-2.9% (provided that Mo and W are contained singly or in combination), and V: 0.5-0.7%, with the remainder being Fe and unavoidable impurities. Preferably, the cross-sectional structure of the hot-working tool steel upon quenching contains a granular structure and an acicular structure, wherein the granular structure (A %) accounts for 45 area % or less, the acicular structure (B %) accounts for 40 area % or less, and the remaining austenite (C %) accounts for 5 to 20 volume %.
    Type: Application
    Filed: September 14, 2007
    Publication date: August 5, 2010
    Applicant: Hitachi Metals, Ltd.
    Inventors: Kouta Kataoka, Hideshi Nakatsu, Yasushi Tamura, Masayuki Nagasawa
  • Publication number: 20100186855
    Abstract: The invention relates to a steel and a processing method for high-strength fracture-splittable machine components that are composed of at least two fracture-splittable parts. The steel and method are characterized in that the chemical composition of the steel (expressed in percent by weight) is as follows: 0.40%?C?0.60%; 0.20%?Si?1.00%; 0.50%?Mn?1.50%; 0%?Cr?1.00%; 0%?Ni?0.50%; 0%?Mo?0.20%; 0%?Nb?0.050%; 0%?V?0.30%; 0%?Al?0.05%; 0.005%?N?0.020%, the rest being composed of iron and smelting-related impurities and residual matter.
    Type: Application
    Filed: July 27, 2007
    Publication date: July 29, 2010
    Inventors: Roman Diederichs, Axel Stueber, Robert Lange
  • Publication number: 20100189592
    Abstract: A tool steel, in particular a hot-work steel, has the following composition: 0.26 to 0.55% by weight C; less than 2% by weight Cr; 0 to 10% by weight Mo; 0 to 15% by weight W; wherein the W and Mo contents in total amount to 1.8 to 15% by weight; carbide-forming elements Ti, Zr, Hf, Nb, Ta forming a content of from 0 to 3% by weight individually or in total; 0 to 4% by weight V; 0 to 6% by weight Co; 0 to 1.6% by weight Si; 0 to 2% by weight Mn; 0 to 2.99% by weight Ni; 0 to 1% by weight S; remainder: iron and inevitable impurities. The hot-work steel has a significantly higher thermal conductivity than known tool steels.
    Type: Application
    Filed: June 8, 2007
    Publication date: July 29, 2010
    Applicant: ROVALMA S.A.
    Inventor: Isaac Valls Angles
  • Publication number: 20100150772
    Abstract: A hot-forming steel alloy comprising, in addition to iron and impurity elements, carbon, silicon, manganese, chromium, molybdenum, vanadium and nitrogen within the concentration ranges set forth in the claims. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: November 19, 2009
    Publication date: June 17, 2010
    Applicant: BOEHLER EDELSTAHL GMBH & CO. KG
    Inventors: Ingo SILLER, Herbert SCHWEIGER, Devrim CALISKANOGLU, Silvia ZINNER
  • Publication number: 20100108199
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Application
    Filed: December 30, 2009
    Publication date: May 6, 2010
    Inventor: Takemori Takayama
  • Patent number: 7695576
    Abstract: Disclosed is an improved low alloy high speed tool steel, which exhibits constant toughness with small dispersion of the properties after heat treatment and regardless of the size of the products. The steel consists essentially of, by weight %, C: 0.50-0.75%, Si: 0.02-2.00%, Mn: 0.1-3.0%, P: up to 0.050%, S: up to 0.010%, Cr: 5.0-6.0%, W: 0.5-2.0%, V: 0.70-1.25%, Al: up to 0.1%, O: up to 0.01% and N: up to 0.04% and the balance of Fe. In the steel [Mo+0.5W](Mo-eq.) is 2.5-5.0%, [Mo-eq.]/V is 2-4. In the annealed state the steel contains carbides of the types of MC+M6C and/or M23C6(M7C3), and after quenching from a temperature of 1100-1200° C. it contains substantially no remaining carbide or, even contains, almost all the carbides are of MC.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: April 13, 2010
    Assignee: Daido Steel Co., Ltd.
    Inventor: Kozo Ozaki
  • Publication number: 20100047106
    Abstract: This invention provides a forging steel excellent in forgeability, which forging steel comprises, in mass %, C: 0.001 to less than 0.07%, Si: 3.0% or less, Mn: 0.01 to 4.0%, Cr: 5.0% or less, P: 0.2% or less, S: 0.35% or less, Al: 0.0001 to 2.0%, N: 0.03% or less, one or both of Mo: 1.5% or less (including 0%) and Ni: 4.5% or less (including 0%), and a balance of iron and unavoidable impurities; wherein Di given by the following Equation (1) is 60 or greater: Di=5.
    Type: Application
    Filed: April 10, 2008
    Publication date: February 25, 2010
    Inventors: Hajime Saitoh, Tatsuro Ochi, Masayuki Hashimura
  • Patent number: 7655101
    Abstract: A steel alloy for cutting tools, wherein the alloy comprises C, Si, Mn, Cr, Mo, W, V, Al, P, S and N within the concentration ranges recited in the claims. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 2, 2010
    Assignee: Boehler Edelstahl GmbH
    Inventors: Ernst Putzgruber, Devrim Caliskanoglu
  • Patent number: 7635406
    Abstract: A low alloy steel, which has a chemical composition by mass %, of C: 0.1 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, S: 0.0001 to 0.005%, Al: 0.005 to 0.08%, Ti: 0.005 to 0.05%, Cr: 0.1 to 1.5%, Mo: 0.1 to 1%, O: 0.0004 to 0.005%, Ca: 0.0005 to 0.0045%, Nb: 0 to 0.1%, V: 0 to 0.5%, B: 0 to 0.005%, Zr: 0 to 0.10%, P?0.03%, and N?0.006%, with the balance being Fe and impurities, is manufactured by adjusting the value of ([Ti]/47.9)([N]/14)/([Ca])/40.1) satisfies not less than 0.0008 and not more than 0.0066, at the time of melting the said low alloy steel, wherein [Ti], [N] and [Ca] are the contents in the molten steel by mass % of Ti, N and Ca respectively. The thus-manufactured low steel alloy has a high SSC resistance with a yield stress of not less than 758 MPa.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: December 22, 2009
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Mitsuhiro Numata, Tomohiko Omura, Yoshihiko Higuchi
  • Publication number: 20090285713
    Abstract: Provided is a low alloy steel for high-pressure hydrogen gas environments, which contains, by mass percent, C: 0.15 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.05 to 3.0%, P: not more than 0.025%, S: not more than 0.010%, Al: 0.005 to 0.10%, Mo: 0.5 to 3.0%, V: 0.05 to 0.30%, O (oxygen): not more than 0.01%, N: not more than 0.03%, and the balance Fe and impurities, and has tensile strength of not less than 900 MPa. This low alloy steel desirably contains B of 0.0003 to 0.003%, but in this case, N is limited to not more than 0.010%. It is desirable to contain at least one among Cr, Nb, Ti, Zr, and Ca. The contents of Mo and V desirably satisfy the following formula (1): [Mo(%)]·[V(%)]0.2?0.32??(1).
    Type: Application
    Filed: June 12, 2009
    Publication date: November 19, 2009
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Tomohiko Omura, Mitsuo Miyahara, Hiroyuki Semba, Masaaki Igarashi
  • Publication number: 20090191086
    Abstract: The present invention relates to a hot-working steel having a chemical composition, in % by weight, of 0.30-0.50% C, 0-1.5% Si, 1-1.8% Mn, 1.5-3.5% Cr, 0.3-0.9% (Mo+W/2), 0.4-0.8% (V+N/2), <3.5% (Mo+Cr), with a remainder of iron and unavoidable impurities.
    Type: Application
    Filed: March 30, 2007
    Publication date: July 30, 2009
    Applicant: UDDEHOLM TOOLING AKTIEBOLAG
    Inventors: Odd Sandberg, Bengtt Klarenfjord
  • Publication number: 20090010795
    Abstract: The invention relates to a cold-working steel having a chemical composition, in % by weight, of 1.3-2.4 (C+N), whereof at least 0.5 C, 0.1-1.5 Si, 0.1-1.5 Mn, 4.0-5.5 Cr, 1.5-3.6 (Mo+W/2), but max 0.5 W, 4.8-6.3 (V+Nb/2), but max 2 Nb, and max 0.3 S, in which the content of (C+N) and of (V+Nb/2) are balanced in relation to each other such that the contents of these elements are within an area that is defined by the coordinates A, B, C, D, A in the system of coordinates in FIG. 11, where the coordinates of [(C+N), (V+Nb/2)] for these points are A: [1.38, 4.8], B: [1.78, 4.8], C: [2.32, 6.3], D: [1.92, 6.3], and a balance essentially only iron and impurities at normal contents.
    Type: Application
    Filed: April 12, 2007
    Publication date: January 8, 2009
    Applicant: Uddeholm Tooling Aktiebolag
    Inventors: Magnus Tidesten, Lennart Jonson, Odd Sandberg