Zirconium Containing Patents (Class 420/125)
-
Patent number: 9354283Abstract: According to embodiments of the present invention, a sensor is provided. The sensor includes a substrate, a beam suspended from the substrate, and a plurality of conductive lines arranged on the beam, wherein the beam is adapted to be displaced in response to a current flowing through the plurality of conductive lines, and a magnetic field interacting with the beam, and wherein the sensor is configured to determine a property of the magnetic field based on the displacement of the beam. According to further embodiments of the present invention, a method of controlling a sensor is also provided.Type: GrantFiled: November 5, 2013Date of Patent: May 31, 2016Assignee: Agency for Science, Technology and ResearchInventors: Ilker Ender Ocak, Julius Ming Lin Tsai
-
Patent number: 8961816Abstract: Getter devices based on powders of alloys particularly suitable for hydrogen and nitrogen sorption are described. Such alloys have a composition including zirconium, vanadium, titanium and, optionally, one or more elements selected from iron, chromium, manganese, cobalt, nickel and aluminum.Type: GrantFiled: May 13, 2013Date of Patent: February 24, 2015Assignee: Saes Getters S.p.A.Inventors: Alberto Coda, Alessandro Gallitognotta, Antonio Bonucci, Andrea Conte
-
Publication number: 20150044086Abstract: A steel wire rod or steel bar as hot-rolled, including: by mass %: C: 0.1 to 0.6%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.5%, Al: 0.015 to 0.3%, and N: 0.0040 to 0.0150%, and P: limited to 0.035% or less and S: limited to 0.025% or less, and the balance substantially consisting of iron and unavoidable impurities, wherein a depth of d (mm) from the surface of the surface layer region with 20 HV 0.2 or more higher, relative to HV 0.2 that is the average hardness in the region where the depth from the surface is from sectional radius R×0.5 (mm) to the center satisfies the formula (1); the steel structure of the surface layer region has a ferrite fraction of 10% or less by area ratio, with the balance being one or two or more of martensite, bainite and pearlite; the steel structure where the depth from the surface is from the sectional radius R×0.Type: ApplicationFiled: April 1, 2013Publication date: February 12, 2015Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kei Miyanishi, Atsushi Monden, Shingo Yamasaki, Shunta Homma
-
Patent number: 8709336Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.35%?C?0.8%, 0%?Si?2%, 0%?Al?2%, 0.35%?Si+Al?2%, 0%?Mn?2.5%, 0%?Ni?5%, 0%?Cr?5%, 0%?Mo?0.50%, 0%?W?1.00%, 0.1%?Mo+W/2?0.50%, 0%?B?0.02%, 0%?Ti?2%, 0%?Zr?4%, 0.05%?Ti+Zr/2?2%, 0%?S?0.15%, N<0.03%; optionally from 0% to 1.5% of Cu; optionally Nb, Ta or V with Nb/2+Ta/4+V?0.5%; optionally less than 0.1% of Se, Te, Ca, Bi or Pb; the rest being iron and impurities; the composition satisfying: 0.1%?C*=C?Ti/4?Zr/8+7×N/8?0.55% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=0.5 if B?0.0005% and K=0 if B<0.0005% and Ti+Zr/2?7×N/2?0.05%; hardening after austenitization while cooling at a speed>0.5° C./s between a temperature>AC3 and ranging between T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and T?50° C.; then at a core speed Vr<115×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature. The invention also concerns the resulting plate.Type: GrantFiled: June 17, 2008Date of Patent: April 29, 2014Assignee: Industeel CreusotInventors: Jean Beguinot, Jean-Georges Brisson
-
Publication number: 20140097277Abstract: The invention relates to biodegradable iron alloy-containing compositions for use in preparing medical devices. In addition, biodegradable crystalline and amorphous compositions of the invention exhibit properties that make them suitable for use as medical devices for implantation into a body of a patient. The compositions include elemental iron and one or more elements selected from manganese, magnesium, zirconium, zinc and calcium. The compositions can be prepared using a high energy milling technique. The resulting compositions and the devices formed therefrom are useful in various surgical procedures, such as but not limited to orthopedic, craniofacial and cardiovascular.Type: ApplicationFiled: October 3, 2013Publication date: April 10, 2014Applicant: UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATIONInventors: PRASHANT N. KUMTA, SUNG JAE CHUNG, PARTHA SAHA, OLEG VELIKOKHATNYI, MONI KANCHAN DATTA, DAE HO HONG, DA-TREN CHOU
-
Publication number: 20130323112Abstract: In a hot-rolled sheet, an average value of pole densities of an orientation group {100}<011> to {223}<110>, which is represented by an arithmetic mean of pole densities of orientations {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> in a thickness center portion of a thickness range of ? to ? from a surface of the steel sheet, is 1.0 to 6.5 and a pole density of a crystal orientation {332}<113> is 1.0 to 5.0; and a Lankford value rC in a direction perpendicular to a rolling direction is 0.70 to 1.10 and a Lankford value r30 in a direction that forms 30° with respect to the rolling direction is 0.70 to 1.10.Type: ApplicationFiled: March 5, 2012Publication date: December 5, 2013Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Riki Okamoto, Nobuhiro Fujita, Manabu Takahashi, Kunio Hayashi, Tetsuo Kishimoto, Kazuaki Nakano, Takeshi Yamamoto
-
Publication number: 20130272914Abstract: The steel wire material of the present invention contains 0.05 to 1.2% of C (mass %; same for the chemical components hereafter), 0.01 to 0.5% of Si, 0.1 to 1.5% of Mn, 0.02% or less (but not 0%) of P, 0.02% or less (but not 0%) of S, and 0.005% or less (but not 0%) of N, with the balance being iron and inevitable impurities. The wire material has a scale layer that is no thicker than 7.0 ?m or less. The scale layer has an FeO percentage of 30 to 80 vol % and an Fe2SiO4 percentage of less than 0.1 vol %. The scale layer that is formed will not peel when cooled after hot rolling or during storage and transport, but will easily peel during mechanical descaling.Type: ApplicationFiled: January 6, 2012Publication date: October 17, 2013Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel. Ltd.)Inventors: Mikako Takeda, Shohei Nakakubo, Kazuhiko Kirihara, Masayuki Endo
-
Publication number: 20130272913Abstract: This steel wire material contains 0.05%-1.2% C (“%” means “% by mass,” same hereinafter for chemical components.), 0.01%-0.7% Si, 0.1%-1.5% Mn, 0.02% max. P (not including 0%), 0.02% max. S (not including 0%), and 0.005% max. N (not including 0%), with the remainder being iron and unavoidable impurities. The steel wire material has a scale 6.0-20 ?m thick and holes of an equivalent circle diameter of 1 ?m max. in said scale that occupy 10% by area max. Said scale does not detach in the cooling process after hot rolling or during storage or transportation but can readily detach during mechanical descaling.Type: ApplicationFiled: December 9, 2011Publication date: October 17, 2013Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Mikako Takeda, Shohei Nakakubo, Kazuhiko Kirihara, Masayuki Endo
-
Publication number: 20130177469Abstract: Methods comprising providing a composition comprising iron and a high melting point element; heating the composition to an elevated temperature up to about 3,500° F.; holding the composition at the elevated temperature for a time sufficient for the heat's temperature to stabilize; and allowing the composition to cool or solidify. Methods comprising providing a master alloy comprising iron and up to about 30% by weight of a high melting point element; and adding the master alloy to a heat of steel. Compositions comprising an alloy of iron and high melting point element in which the alloy is up to about 30% by weight of the high melting point element. Compositions comprising an alloy of iron and high melting point element having a substantially uniform microstructure.Type: ApplicationFiled: December 21, 2012Publication date: July 11, 2013Inventors: James D. Ruhlman, Charles Scherrer, Randall W. Schudalla
-
Publication number: 20130153091Abstract: A hot-rolled steel sheet has an average value of the X-ray random intensity ratio of a {100} <011> to {223} <110> orientation group at least in a sheet thickness central portion that is in a sheet thickness range of ? to ? from a steel sheet surface of 1.0 to 6.0, an X-ray random intensity ratio of a {332} <113> crystal orientation of 1.0 to 5.0, rC which is an r value in a direction perpendicular to a rolling direction of 0.70 to 1.10, and r30 which is an r value in a direction that forms an angle of 30° with respect to the rolling direction of 0.70 to 1.10.Type: ApplicationFiled: July 27, 2011Publication date: June 20, 2013Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Nobuhiro Fujita, Kunio Hayashi, Riki Okamoto, Manabu Takahashi, Tetsuo Kishimoto, Hiroshi Yoshida
-
Patent number: 8449845Abstract: In light of the recent analytical technology demanded of fast and accurate measurement of high purity materials, a zirconium crucible is provided for melting an analytical sample and is capable of inhibiting the inclusion of impurities from the crucible by using a high-purity crucible, improving the durability of high-purity zirconium as an expensive crucible material, and increasing the number of times that the zirconium crucible can be used. With this zirconium crucible used for melting an analytical sample in the pretreatment of the analytical sample, the purity excluding gas components is 3N or higher, and the content of carbon as a gas component is 100 mass ppm or less.Type: GrantFiled: August 8, 2008Date of Patent: May 28, 2013Assignee: JX Nippon Mining & Metals CorporationInventors: Yuichiro Shindo, Masahiro Sakaguchi, Mitsuru Yamaguchi
-
Patent number: 8293379Abstract: The quenchable steel sheet has an alloy composition including carbon (C) in an amount of 0.15˜0.30 wt %, silicon (Si) in an amount of 0.05˜0.5 wt %, manganese (Mn) in an amount of 1.0˜2.0 wt %, boron (B) in an amount of 0.0005˜0.0040 wt %, sulfur (S) in an amount of 0.003 wt % or less, phosphorus (P) in an amount of 0.012 wt % or less, one or more selected from among calcium (Ca) in an amount of 0.0010˜0.0040 wt % and copper (Cu) in an amount of 0.05˜1.0 wt %, two or more selected from among cobalt (Co), zirconium (Zr) and antimony (Sb), and iron (Fe). Alloy elements are controlled to increasing hot ductility and enabling pressing at 600˜900° C. so that a tensile strength of 1400 MPa or more and an elongation of 8% or more are obtained after pressing.Type: GrantFiled: February 17, 2011Date of Patent: October 23, 2012Assignee: Hyundai Steel CompanyInventors: Taekjoon Kim, Seungha Lee, Seongju Kim
-
Publication number: 20120121454Abstract: A low-carbon resulfurized free-machining steel is excellent in machinability and contains 0.02% to 0.15% by mass of C; 0.004% by mass or less (exclusive of 0%) of Si; 0.6% to 3% by mass of Mn; 0.02% to 0.2% by mass of P; 0.35% to 1% by mass of S; 0.005% by mass or less (exclusive of 0% by mass) of Al; 0.008% to 0.03% by mass of 0; and 0.007% to 0.03% by mass of N, with the remainder being iron and inevitable impurities, in which the ratio [Mn]/[S] of the manganese content [Mn] to the sulfur content [S] is within the range of 3 to 4, and the carbon content [C], the manganese content [Mn] and the nitrogen content [N] satisfy the following Expression (1): 10[C]×[Mn]?0.94+1226 [N]2?1.2, wherein [C], [Mn] and [N] represent the contents on the percent by mass basis of carbon, manganese, and nitrogen, respectively.Type: ApplicationFiled: November 10, 2011Publication date: May 17, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Koichi SAKAMOTO, Atsuhiko Yoshida
-
Publication number: 20120114519Abstract: The invention relates to a cold-rolled carbon steel comprising (in % by weight) C 0.63-0.85%, max. 0.40% Si, 0.20-0.90% Mn, max. 0.035% P, max. 0.035% S, max. 0.060% Al, max. 0.40% Cr, 0.003-0.010% N, preferably 0.005-0.008%, and a maximum of 0.12% of at least one micro-alloying element, the remainder being iron and steel production-related pollutants. Possible micro-alloying elements are Ti, Nb, V and optionally Zr. A carbon steel of the type is cold-rolled into texture-rolled strip steel with a high cold reduction degree and can be used in particular as a material for coiling springs or other components having spring properties.Type: ApplicationFiled: February 25, 2010Publication date: May 10, 2012Applicant: C.D. Waelzholz GmbHInventors: Hans-Toni Junius, Heino Buddenberg, Michael Hellmann, Dirk Wilmes
-
Patent number: 8097207Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45%; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245(Mo+3V+1.5Nb+0.75Ta)0.30+125Cr0.20+15.8Mn+7.4Ni+18Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.Type: GrantFiled: May 10, 2010Date of Patent: January 17, 2012Assignee: Industeel CreusotInventors: Jean Beguinot, Dominique Viale
-
Patent number: 8057650Abstract: A soft-magnetic FeCo based target material is provided which has a high saturation magnetic flux density and superior atmospheric corrosion resistance. The target material is a soft-magnetic FeCo based target material made of an FeCo based alloy. The FeCo based alloy comprises 0 to 30 at. % of one or more metal elements selected from the group consisting of B, Nb, Zr, Ta, Hf, Ti and V; and the balance being Fe and Co with unavoidable impurities. The Fe:Co atomic ratio ranges from 10:90 to 70:30. The FeCo based alloy may further comprise 0.2 at. % to 5.0 at. % of Al and/or Cr.Type: GrantFiled: November 7, 2007Date of Patent: November 15, 2011Assignee: Sanyo Special Steel Co., Ltd.Inventors: Ryoji Hayashi, Akihiko Yanagitani, Yoshikazu Aikawa, Toshiyuki Sawada
-
Patent number: 8002911Abstract: Metallic dental prostheses made of bulk-solidifying amorphous alloys wherein the dental prosthesis has an elastic strain limit of around 1.2% or more and methods of making such metallic dental prostheses are provided.Type: GrantFiled: August 5, 2003Date of Patent: August 23, 2011Assignee: Crucible Intellectual Property, LLCInventors: Atakan Peker, Choongnyun Paul Kim, Tranquoc ThebaoNguyen
-
Patent number: 7910512Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.Type: GrantFiled: September 26, 2008Date of Patent: March 22, 2011Assignee: Cataler CorporationInventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
-
Publication number: 20110002807Abstract: This steel for induction hardening includes: in terms of mass %, C: 0.40% or more to 0.75% or less; Si: 0.002% or more to 3.0% or less; Mn: 0.20% or more to 2.0% or less; S: 0.002% or more to 0.1% or less; Al: more than 0.10% to 3.0% or less; P: 0.030% or less; and N: 0.035% or less, with the remainder being Fe and inevitable impurities.Type: ApplicationFiled: January 5, 2010Publication date: January 6, 2011Applicant: NIPPON STEEL CORPORATIONInventors: Hajime Saitoh, Toshiharu Aiso, Masayuki Hashimura, Atsushi Mizuno, Manabu Kubota
-
Patent number: 7794651Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.Type: GrantFiled: May 12, 2005Date of Patent: September 14, 2010Assignee: Industeel CreusotInventors: Jean Beguinot, Dominique Viale
-
Publication number: 20100209284Abstract: A soft magnetic alloy for perpendicular magnetic recording medium excellent n saturation magnetic flux density, amorphousness and atmospheric corrosion resistance. The alloy is an Fe-Co based alloy and comprises Fe in an amount satisfying 0.25 to 0.65 of Fe/(Fe+Co) ratio, which is an atomic ratio of Fe and Fe+Co; Zr+Hf in an amount of 6 to 100 at %; Na+Ta in an amount of 0 to 2 at %; Al and/or Cr in an amount of 0 to 5 at %; and the balance Co and unavoidable impurities. A part of Zr and/or Hf can be replaced by B, provided that the amount of B to replace Zr and/or Hf is double in at % of the total amount of Zr and Hf to be replaced and that the total amount of Zr and Hf after replacement is 4 at % or more.Type: ApplicationFiled: May 1, 2008Publication date: August 19, 2010Applicant: SANYO SPECIAL STEEL CO., LTD.Inventors: Toshiyuki Sawada, Akihiko Yanagitani
-
Publication number: 20100196189Abstract: A high-strength steel sheet has high stretch flangeability after working and corrosion resistance after painting. The steel sheet contains, on the basis of mass percent, C: 0.02% to 0.20%, Si: 0.3% or less, Mn: 0.5% to 2.5%, P: 0.06% or less, S: 0.01% or less, Al: 0.1% or less, Ti: 0.05% to 0.25%, and V: 0.05% to 0.25%, the remainder being Fe and incidental impurities. The steel sheet has a substantially ferritic single phase, the ferritic single phase containing precipitates having a size of less than 20 nm, the precipitates containing 200 to 1750 mass ppm Ti and 150 to 1750 mass ppm V, V dissolved in solid solution being 200 or more but less than 1750 mass ppm.Type: ApplicationFiled: July 31, 2008Publication date: August 5, 2010Applicant: JFE STEEL CORPORATIONInventors: Koichi Nakagawa, Takeshi Yokota, Nobuyuki Nakamura, Kazuhiro Seto, Satoshi Kinoshiro, Katsumi Yamada
-
Publication number: 20090311125Abstract: Provided is a hot-working steel excellent in machinability and impact value comprising, in mass %, C: 0.06 to 0.85%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.0%, P: 0.005 to 0.2%, S: 0.001 to 0.35%, and Al: 0.06 to 1.0% and N: 0.016% or less, in contents satisfying Al×N×105?96, and a balance of Fe and unavoidable impurities, total volume of AlN precipitates of a circle-equivalent diameter exceeding 200 nm accounting for 20% or less of total volume of all AlN precipitates.Type: ApplicationFiled: April 17, 2008Publication date: December 17, 2009Inventors: Kei Miyanishi, Masayuki Hashimura, Atsushi Mizuno
-
Publication number: 20090252955Abstract: Disclosed is a steel sheet, containing: Si: 0.20-2% (the term “%” herein means “mass %”, the same is true hereinbelow), Mn: 1-2.5%, a total mass of Si and Mn being 1.5% or more, and O: 0.002% or less (exclusive of 0%), C: 0.02-0.25%, P: 0.1% or less (exclusive of 0%), S: 0.05% or less (exclusive of 0%), Al—0.02-0.2%, and N: 0.0015-0.015%. The steel sheet of the invention can be advantageously used for forming wide beads even in high-speed arc welding of 100 cm/min or higher.Type: ApplicationFiled: June 19, 2009Publication date: October 8, 2009Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Tetsuo Soshiroda, Reiichi Suzuki, Kei Yamazaki
-
Patent number: 7462250Abstract: The present invention provides a high strength, high toughness steel wire rod useful for a PC steel wire, galvanized steel strands, spring use steel wire, cables for suspension bridges, etc. By hot rolling, then directly patenting or reaustenitizing, then patenting a high carbon steel wire rod of a specific chemical composition of the steel and chemical composition, size, and numerical density of inclusions, piano wire rod or high carbon steel wire rod having a structure of mainly pearlite, having an average value of the proeutectoid cementite area ratio of 5% or less in a center region of less than 20% of the wire rod diameter from the center of the wire rod, having a micromartensite size of the C section of 100 ?m or less, having a tensile strength of the 170 kgf/mm2 class or more, and having a drawing ratio at break of 30% or more is obtained.Type: GrantFiled: January 27, 2004Date of Patent: December 9, 2008Assignee: Nippon Steel CorporationInventors: Shingo Yamasaki, Seiki Nishida, Toshiyuki Kajitani, Wataru Yamada, Yoshitaka Nishikawa, Nariyasu Muroga, Nobuyuki Komiya
-
Publication number: 20080156403Abstract: Disclosed herein is a steel for high-speed cold working which exhibits good cold workability during working and also exhibits high hardness after working. The steel for high-speed cold working contains C: 0.03 to 0.6% (by mass), Si: 0.005 to 0.6%, Mn: 0.05 to 2%, P: no more than 0.05% (excluding 0%), S: no more than 0.05% (excluding 0%), and N: no more than 0.04% (excluding 0%), with the remainder being iron and inevitable impurities and the amount of dissolved nitrogen in the steel being no less than 0.006%.Type: ApplicationFiled: December 5, 2007Publication date: July 3, 2008Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)Inventors: Tomokazu MASUDA, Takuya Kochi, Shogo Murakami, Hiroshi Yaguchi
-
Publication number: 20080145674Abstract: A gas turbine engine component and coating system including a superalloy substrate having a coating system disposed thereon. A bond coating may be applied to the substrate. An adherent layer of ceramic material forming a thermal barrier coating is present on the bond coat layer. A topcoat layer overlies the thermal barrier coating. The topcoat layer includes greater than about 20 wt % yttria.Type: ApplicationFiled: December 15, 2006Publication date: June 19, 2008Applicant: GENERAL ELECTRIC COMPANYInventors: Ramgopal Darolia, Ming Fu
-
Publication number: 20080138235Abstract: A (CoFe)ZrNb/Ta/Hf based target material is provided which is capable of achieving a high sputtering efficiency and a high sputtering effect by increasing the leakage magnetic flux in the magnetron sputtering, and a method for producing the target material. This target material is made of an Fe—Co based alloy comprising not less than 80 atomic % in total of Fe and Co having an Fe:Co atomic ratio of 80:20 to 0:100, and less than 20 atomic % of one or more selected from the group consisting of Zr, Hf, Nb and Ta. The Fe—Co based alloy comprises a Co—Fe phase being a ferromagnetic phase, and the one or more selected from the group consisting of Zr, Hf, Nb and Ta are solid-solved into the Co—Fe phase in a total amount of 0.5 to 2 atomic %.Type: ApplicationFiled: November 16, 2007Publication date: June 12, 2008Applicant: SANYO SPECIAL STEEL CO., LTD.Inventors: Toshiyuki Sawada, Akihiko Yanagitani, Ryoji Hayashi, Yoshikazu Aikawa
-
Patent number: 6942741Abstract: An iron alloy strip having a gage of 0.1 to 5 mm and a magnetic field strength variation within the strip of 0 to 10 Hz, made of an iron alloy consisting essentially of, in % by weight, 0.0001-0.02% of C, 0.0001-5% of Si, 0.001-0.2% of Mn, 0.0001-0.05% of P, 0.0001-0.05% of S, 0.0001-5% of Al, 0.001-0.1% of O, 0.0001-0.03% of N, 0-10% of Co, 0-10% of Cr, 0.01-5% in total of Ti, Zr, Nb, Mo, V, Ni, W, Ta and/or B, and the balance of Fe, and having a saturation magnetic flux density of 1.7-2.3 Tesla, a maximum relative permeability of 1,200-22,000 and a coercive force of 20-380 A/m is suited for use as yokes in voice coil motor magnetic circuits. The iron alloy strip is highly resistant to corrosion and eliminates a need for a corrosion resistant coating.Type: GrantFiled: August 7, 2002Date of Patent: September 13, 2005Assignee: Shin-Etsu Chemical Co., Ltd.Inventors: Masanobu Shimao, Masaaki Nishino, Takehisa Minowa
-
Patent number: 6764645Abstract: Disclosed is a steel for machine structural use having good machinability and chip-breakability as well as a method of producing the steel. The steel consists essentially of, by wt. %, C: 0.05-0.8%, Si: 0.01-2.0%, Mn: 0.1-3.5%, S: 0.01-0.2%, Al: 0.001-0.020%, Ca: 0.0005-0.02%, O: 0.0005-0.01% and N: 0.001-0.04%, and further, one or both of Ti: 0.002-0.010% and Zr: 0.002-0.025%, the balance being Fe and inevitable impurities. At production of the steel controlled deoxidization is conducted by operation meeting certain conditions so that at least a certain amount of “duplex inclusion” having a specific chemical composition may be formed, and Ti and/or Zr is added to precipitate finely dispersed MnS inclusion particles with nuclei of Ti-oxide and/or Zr-oxide. The finely dispersed MnS inclusions must share a determined part of the total sulfide inclusions.Type: GrantFiled: November 27, 2002Date of Patent: July 20, 2004Assignee: Diado Steel Co., Ltd.Inventors: Masakazu Hayaishi, Takashi Kano, Kazuhisa Ishida, Yutaka Kurebayashi, Makoto Hobo
-
Publication number: 20040037731Abstract: By limiting steel compositions with respect to special components and controlling contents of Ti, Zr and S in a steel to a suitable range, fine Ti and Zr sulfides are generated so that a cast steel having excellent internal quality and machinability after casting can be ensured. Then, by casting this cast steel a mold having excellent machinability, whose internal quality as cast is comparable to that of a forged steel product, can be produced. Therefore, the mold of the present invention can be widely applied to use, which severely requires excellent surface properties in products for deep-engraving in which a worked surface reaches the internal portion of the section material or for finishing.Type: ApplicationFiled: September 2, 2003Publication date: February 26, 2004Inventors: Yasutaka Okada, Koji Watari
-
Patent number: 6690759Abstract: Disclosed herein are zirconium-base alloys excellent in both corrosion resistance and hydrogen absorption property, useful as materials for nuclear reactors. Such a zirconium-base alloy for nuclear reactors comprises 0.5-2 wt. % Sn, 0.07-0.6 wt. % Fe, 0.03-0.2 wt. % Ni, 0.05-0.2 wt. % Cr, and the balance being zirconium and unavoidable impurities, wherein the Fe content (X wt. %) of the zirconium-base alloy and the mean size (Y nm) of precipitates in the zirconium-base alloy are present in a region on the x (Fe content X) and y (mean precipitate size) rectangular coordinates, surrounded by the following five lines: i) Y=−444×X+154, ii) Y=910×X−46, iii) Y=0, iv) Y=300, and v) X=0.6.Type: GrantFiled: October 4, 2002Date of Patent: February 10, 2004Assignee: Global Nuclear Fuel - Japan Co., Ltd.Inventors: Shuichi Nanikawa, Shinji Ishimoto, Toshio Kubo
-
Publication number: 20030178105Abstract: Disclosed is a steel for machine structural use having good machinability and chip-breakability as well as a method of producing the steel. The steel consists essentially of, by wt. %, C: 0.05-0.8%, Si: 0.01-2.0%, Mn: 0.1-3.5%, S: 0.01-0.2%, Al: 0.001-0.020%, Ca: 0.0005-0.02%, O: 0.0005-0.01% and N: 0.001-0.04%, and further, one or both of Ti: 0.002-0.010% and Zr: 0.002-0.025%, the balance being Fe and inevitable impurities. At production of the steel controlled deoxidization is conducted by operation meeting certain conditions so that at least a certain amount of “duplex inclusion” having a specific chemical composition may be formed, and Ti and/or Zr is added to precipitate finely dispersed MnS inclusion particles with nuclei of Ti-oxide and/or Zr-oxide. The finely dispersed MnS inclusions must share a determined part of the total sulfide inclusions.Type: ApplicationFiled: November 27, 2002Publication date: September 25, 2003Inventors: Masakazu Hayashi, Takashi Kano, Kazuhisa Ishida, Yutaka Kurebayashi, Makoto Hobo
-
Publication number: 20030072672Abstract: Disclosed is a free-cutting steel containing Ti- and/or Zr-carbosulfide as inclusion and having good machinability both in turning and drilling. The free-cutting steel consists essentially of, in mass %, C: 0.05-0.80%, Si: 0.01-2.5%, Mn: 0.1-3.5%, Ti+0.52Zr: 0.03-1.2%, S:0.015-0.6% and the balance of Fe and inevitable impurities, and is characterized in that the contents of Ti, Zr and S meet the condition of (Ti+0.52Zr)/S<2. The free-cutting steel may contain, in addition to the above basic alloy composition, Ca: 0.0005-0.02% and/or Mg: 0.0003-0.02%. The latter steel exhibits much more improved machinability.Type: ApplicationFiled: May 31, 2002Publication date: April 17, 2003Inventors: Masakazu Hayaishi, Yutaka Kurebayashi
-
Publication number: 20030072673Abstract: Disclosed is a free-cutting steel which exhibits good machinability in turning and small roughness of the turned surfaces, and in which substantially no macro-streak-flaw occurs. The free-cutting steel contains, by weight %, C: 0.03-0.20%, Mn: 0.5-3.0%, P: 0.02-0.40%, S: more than 0.2% up to 1.0%, one or both of Ti and Zr (in case of both, the total amount): 0.01-3.0%, O: 0.0005-0.0050% and Pb: less than 0.01%, the balance being Fe and inevitable impurities. The steel is characterized in that it contains, as the inclusion therein, Ti-based and/or Zr-based carbosulfide compound or compounds. The steel may further contain at least one from the group of Bi: up to 0.4%, Se: up to 0.5% and Te: up to 0.1%.Type: ApplicationFiled: May 31, 2002Publication date: April 17, 2003Inventors: Masakazu Hayaishi, Yutaka Kurebayashi
-
Patent number: 6159592Abstract: A magnetic recording medium comprising: a base film; a non-magnetic undercoat layer formed on said base film, comprising a binder resin and non-magnetic acicular particles containing iron as a main component, which particles comprise iron and zirconium of 0.05 to 30% by weight, calculated as Zr, based on the total weight of the particles, which is present within the particle; and a magnetic recording layer formed on said non-magnetic undercoat layer and comprising magnetic particles and a binder resin. Such a magnetic recording medium has a low light transmittance, an excellent smooth surface, a high mechanical strength and an excellent durability.Type: GrantFiled: November 24, 1998Date of Patent: December 12, 2000Assignee: Toda Kogyo CorporationInventors: Kazuyuki Hayashi, Keisuke Iwasaki, Hiroko Morii
-
Patent number: 6149862Abstract: An alloy and alloy product has about 1.3% to 1.7% by weight concentration of silicon, along with iron, alloying elements, and inevitable impurities and exhibits improved resistance to hydrogen embrittlement and sulfide stress cracking in an intensive hydrogen-charged medium wherein H from the medium acts as an alloying element. The alloy is characterized by an Fe--Si--H system wherein Fe is a donor element with respect to Si and Si is an acceptor element with respect to Fe. Further, the alloying elements are Fe--Si noninteractive elements with respect to Fe and Si, such that the presence of the alloying elements are not donor or acceptor elements with respect to Fe or Si. In several alloy compositions, the alloy has between about 1.38% to 1.63% weight Si. The alloy may further include between about 0.10% to 0.25% weight of C. In one particular alloy, the alloy composition includes about 0.18% of C; although, in one alloy product, an alloy is used having about 0.16% to 0.24% weight of C.Type: GrantFiled: May 18, 1999Date of Patent: November 21, 2000Assignee: The Atri Group Ltd.Inventors: Naum I. Gliklad, Avgust B. Kuslitskiy, Leonid A. Kuslitskiy
-
Patent number: 5976715Abstract: The invention is embodied in a soft magnetic thin film article comprising an iron--chromium-nitrogen (Fe--Cr--N) based alloy and methods for making such article. The soft magnetic thin film article is formed using an iron--chromium--nitrogen based alloy with tantalum in one embodiment and with at least one of the elements titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), molybdenum (Mo), niobium (Nb) or tungsten (W) in another embodiment. The article is formed such that the alloy has a relatively high saturation magnetization (e.g., greater than approximately 15 kG) and a relatively low coercivity (e.g., less than approximately 2.0 oersteds) in an as-deposited condition or, alternatively, with a very low temperature treatment (e.g., below approximately 150.degree. C.). The inventive films are suitable for use in electromagnetic devices, for example, in microtransformer cores, inductor cores and in magnetic read-write heads.Type: GrantFiled: November 6, 1997Date of Patent: November 2, 1999Assignee: Lucent Techologies Inc.Inventors: Li-Han Chen, Sungho Jin, Wei Zhu, Robert Bruce van Dover
-
Patent number: 5870021Abstract: A control element for a magnetomechanical EAS marker is formed of an amorphous metalloid that has been annealed so as to be at least partially crystallized while remaining substantially flat. The annealing is preferably a two-stage process applied to induce semi-hard magnetic characteristics in an amorphous metallic material that is magnetically soft as cast. The two stages include a first stage in which the material is annealed for at least one hour at a temperature that is below a crystallization temperature of the material. The first stage results in a reduction in the volume of the material. The second stage is carried out at a temperature that is above the crystallization temperature and for a time sufficient to crystallize the bulk of the material and give it semi-hard magnetic properties. The two-stage annealing process prevents deformation of the material which has resulted from conventional crystallization processes.Type: GrantFiled: July 1, 1996Date of Patent: February 9, 1999Assignee: Sensormatic Electronics CorporationInventor: Dennis Michael Gadonniex
-
Patent number: 5767770Abstract: A semi-hard magnetic element is formed by at least partially crystallizing an amorphous soft iron-metalloid material. The heating process used to achieve crystallization includes a controlled oxidation stage to increase the level of remanent flux that is provided when the processed magnetic element is placed in a fully magnetized state.Type: GrantFiled: July 1, 1996Date of Patent: June 16, 1998Assignee: Sensormatic Electronics CorporationInventor: Dennis Michael Gadonniex
-
Patent number: 5741373Abstract: An Fe-based soft magnetic alloy having a high saturated magnetic flux density and having a composition represented by formula (I) below:(Fe.sub.1-a Q.sub.a).sub.b B.sub.x T.sub.y T'.sub.z (I)wherein Q represents at least one element selected from the group consisting of Co and Ni; T represents at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo and W, with Zr and/or Hf being always included; T' represents at least one element selected from the group consisting of Cu, Ag, Au, Ni, Pd and Pt; a, b, x, y and z are real numbers satisfying relationships below:0.ltoreq.a.ltoreq.0.05,0.ltoreq.b.ltoreq.93 atomic %,0.5.ltoreq.x.ltoreq.16 atomic %,4.ltoreq.y.ltoreq.10 atomic %,0.ltoreq.z.ltoreq.4.5 atomic %provided that when 0<z.ltoreq.4.5 atomic %, Q represents Co and 0<b.ltoreq.92 atomic %; and when z=0, 0.5.ltoreq.x.ltoreq.8 atomic % and 4.ltoreq.y.ltoreq.9 atomic %.Type: GrantFiled: April 14, 1995Date of Patent: April 21, 1998Assignees: Alps Electric Co., Ltd., Tsuyoshi MasumotoInventors: Kiyonori Suzuki, Akihiro Makino, Tsuyoshi Masumoto, Akihisa Inoue, Noriyuki Kataoka
-
Patent number: 5549766Abstract: A permanent magnet is composed of a magnetic material which is represented by a general formula R1.sub.x R2.sub.y A.sub.z Co.sub.u Fe.sub.100-x-y-z-u (where R1 is at least one element selected from rare earth elements, R2 is at least one element selected from the group consisting of Sc, Zr and Hf, A is at least one element selected from the group of C, N and P, and x,y,z and u are atomic percent defined as 2.ltoreq.x, 4.ltoreq.x+y.ltoreq.20, 0.ltoreq.z.ltoreq.20, 0.ltoreq.u.ltoreq.70), wherein the material includes a principal phase of TbCu.sub.7 structure and .alpha.-Fe, a peak width at half height of the main peak of X-ray diffraction of the principal phase obtained by using Cu-K.alpha. X-rays with the resolution of 0.02.degree. or less is about 0.8.degree. or less, and a ratio of peak intensity between the principal phase and .alpha.-Fe satisfies a relation that the value of I.sub.Fe /(I.sub.p +I.sub.Fe) is about 0.4 or less where I.sub.Type: GrantFiled: August 12, 1994Date of Patent: August 27, 1996Assignee: Kabushiki Kaisha ToshibaInventors: Akihiko Tsutai, Takahiro Hirai, Shinya Sakurada
-
Patent number: 5482573Abstract: A magnetic material with an improved maximum energy product useful for high performance permanent magnet, bond magnet and other applications is disclosed. The magnetic material is expressed in a general formula R1.sub.x R2.sub.y M.sub.100-x-y where R1 is at least one element selected from the rare earth elements, R2 is at least one element selected from elements having an atomic radius in a range of 0.156 to 0.174 nm, M is at least one element selected from Fe and Co and x and y are atomic percent individually defined as x.gtoreq.2, y.gtoreq.0.01 and 4.ltoreq.x+y.ltoreq.20, and M occupying 90 atomic percent or more in the principal phase of the compound.Type: GrantFiled: October 16, 1992Date of Patent: January 9, 1996Assignee: Kabushiki Kaisha ToshibaInventors: Shinya Sakurada, Takahiro Hirai, Akihiko Tsutai, Masashi Sahashi, Hideo Nagai, Tsutomu Yamashita
-
Patent number: 5449419Abstract: An Fe-based soft magnetic alloy having a high saturated magnetic flux density and having a composition represented by formula (I) below:(Fe.sub.1-a Q.sub.a).sub.b B.sub.x T.sub.y T'.sub.z (I)wherein Q represents at least one element selected from the group consisting of Co and Ni; T represents at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo and W, with Zr and/or Hf being always included; T' represents at least one element selected from the group consisting of Cu, Ag, Au, Ni, Pd and Pt; a, b, x, y and z are real numbers satisfying relationships below:0.ltoreq.a.ltoreq.0.05 atomic %,0<b.ltoreq.93 atomic %,0.5.ltoreq.x.ltoreq.16 atomic %,4.ltoreq.y.ltoreq.10 atomic %,0.ltoreq.z.ltoreq.4.5 atomic %provided that when 0<z.ltoreq.4.5 atomic %, Q represents Co and 0<b.ltoreq.92 atomic %; and when z=0, 0.5.ltoreq.x.ltoreq.8 atomic % and 4.ltoreq.y.ltoreq.9 atomic %.Type: GrantFiled: February 24, 1994Date of Patent: September 12, 1995Assignees: Alps Electric Co., Ltd., Tsuyoshi MasumotoInventors: Kiyonori Suzuki, Akihiro Makino, Tsuyoshi Masumoto, Akihisa Inoue, Noriyuki Kataoka
-
Patent number: 5432645Abstract: The thin film of the invention for use in a magnetic head has an atomic ratio composition of the formula:(Fe.sub.100-z Ni.sub.z).sub.100-x-y M.sub.x N.sub.ywherein M is at least one member selected from the group consisting of Mg, Ca, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, and B, 6.ltoreq.x.ltoreq.14, 6.2.ltoreq.y.ltoreq.15, 0.6.ltoreq.y/x.ltoreq.2.0, and 0.ltoreq.z.ltoreq.10, and has a relative intensity ratio of Fe (200) peak to Fe (110) peak in an X-ray diffraction spectrum of at least 1 and high Fe (100) orientation, with a film surface oriented in (200) plane. Heat treatment improves the (100) orientation. The thin film has very high heat resistance of remaining stable at 700.degree. C. or higher and excellent soft magnetic properties in that it has a high saturation magnetic flux density Bs, a low coercive force, a high magnetic permeability, and minimized magnetostriction. It is hard enough.Type: GrantFiled: March 21, 1994Date of Patent: July 11, 1995Assignee: TDK CorporationInventors: Kouichi Terunuma, Masahiro Miyazaki
-
Patent number: 5382305Abstract: The soft magnetic thin film of the invention has an atomic ratio composition of the formula:[(Fe.sub.1-y Ni.sub.y).sub.1-x M.sub.x ].sub.1-z N.sub.zwherein M is at least one member selected from the group consisting of Mg, Ca, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, and B, 0.001.ltoreq.x.ltoreq.0.15, 0.ltoreq.y.ltoreq.0.1, and 0.001.ltoreq.z.ltoreq.0.15, and has a relative intensity ratio of Fe (200) peak to Fe (110) peak in an X-ray diffraction spectrum of at least 1/3 and high Fe (100) orientation. It has excellent soft magnetic properties in that it has a high saturation magnetic flux density Bs, heat resistance, a low coercive force Hc, and a high magnetic permeability .mu.. A magnetic head using such a thin film has improved otherwise properties, recording/reproducing sensitivity, and electromagnetic properties, and is highly reliable.Type: GrantFiled: August 16, 1993Date of Patent: January 17, 1995Assignee: TDK CorporationInventors: Kouichi Terunuma, Masahiro Miyazaki
-
Patent number: 5244627Abstract: A ferromagnetic thin film comprising Fe as a main component, at least one element of B, C, Al and Si and at least one transition metal element except noble metals Au, Ag, Ru, Pd, Os, Ir and Pt. This can accomplish a ferromagnetic thin film having a high saturation flux density, a high initial permeability and a low coercive force, and also having an excellent corrosion resistance and thermal resistance. The ferromagnetic thin film having the above high performances can be manufactured in a high yield by forming the above materials into a film in an atmosphere of a mixed gas of Ar and N.sub.2, and thereafter heating the film at a given temperature. It is possible to give a magnetic head suitable for high-density recording, that enables good recording and reproducing on and from a magnetic recording medium having a high coercive force.Type: GrantFiled: December 11, 1991Date of Patent: September 14, 1993Assignee: Matsushita Electric Industrial Co., Ltd.Inventor: Toshiyuki Katsuki
-
Patent number: 5104464Abstract: A soft magnetic alloy film has a composition formula expressed by Fex Mz Cw. M is at least one metallic element selected from a group consisting of Ti, Zr, Hf, Nb, Ta, Mo or W, or a mixture of these metallic elements. The composition ratio of x, z and w satisfies the relation expressed by 50 atomic %.ltoreq.x.ltoreq.96 atomic %, 2 atomic %.ltoreq.z.ltoreq.30 atomic %, 0.5 atomic %.ltoreq.w.ltoreq.25 atomic %, and x+z+w=100. The metallic structure of the soft magnetic alloy film basically consists of crystal grains having an average grain size of 0.08 .mu.m or below. The metallic structure contains the crystal phase of carbide of the element M.Type: GrantFiled: February 1, 1990Date of Patent: April 14, 1992Assignee: Alps Electric Co., Ltd.Inventor: Naoya Hasegawa
-
Patent number: 4885128Abstract: Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a lThe U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.Type: GrantFiled: July 30, 1985Date of Patent: December 5, 1989Assignee: Janez MegusarInventors: Janez Megusar, Otto K. Harling, Nicholas J. Grant
-
Patent number: RE33022Abstract: A ferromagnetic amorphous alloy having a composition represented by (Co.sub.x Ni.sub.y Fe.sub.z).sub.a M.sub.b G.sub.c, wherein M is Cr, Mo and/or W, G is Zr, Hf and/or Ti and x,y,z and a, b, c are selected to meet the conditions of x=1-y-z, 0.ltoreq.y.ltoreq.0.2, 0.ltoreq.z.ltoreq.0.7, a=1-b-c, 0.ltoreq.b.ltoreq.0.05 and 0.05.ltoreq.c.ltoreq.0.2 This amorphous alloy has a superior magnetic characteristic and a high thermal stability.Type: GrantFiled: November 5, 1987Date of Patent: August 15, 1989Assignees: Hitachi, Ltd., Hitachi Metals, Ltd., Research Development Corp. of JapanInventors: Shinji Takayama, Yasuo Tsukuda, Kazuo Shiiki, Shigekazu Otomo, Mitsuhiro Kudo, Yasunobu Ogata, Yoshizo Sawada