Titanium Containing Patents (Class 420/451)
  • Patent number: 11898227
    Abstract: An environmentally resistant alloy is disclosed having a transition metal that upon being included in the Ni Cr Al alloy causes no liquid phases below 1310° C., creates over 45% of a gamma phase above 900° C. up to 1310° C., creates over 30% comprised of a gamma prime phase between 450° C. and 600° C., and wherein the gamma prime phase is characterized by a formula (Ni,Co)x(Cr,Al,Mo)y wherein x and y are integers.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: February 13, 2024
    Assignee: Schlumberger Technology Corporation
    Inventor: Manuel Marya
  • Patent number: 11465130
    Abstract: The present invention relates to a metal powder catalyst and its use in the selective catalytic hydrogenation of organic starting materials comprising a carbon-carbon triple bond. The powder catalyst comprises a metal alloy carrier, wherein the metal alloy comprises (i) 55 weight-% (wt-%)-80 wt-%, based on the total weight of the metal alloy, of Co, and (ii) 20 wt-%-40 wt-%, based on the total weight of the metal alloy, of Cr, and (iii) 2 wt-%-10 wt-%, based on the total weight of the metal alloy, of Mo, and wherein the said metal alloy is coated by a metal oxide layer and impregnated with Pd, and is characterized in that the metal oxide layer comprises CeO2.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: October 11, 2022
    Assignee: DSM IP ASSETS B.V.
    Inventors: Werner Bonrath, Roman Goy, Jonathan Alan Medlock
  • Patent number: 11441208
    Abstract: A nickel based superalloy, including: Chromium (Cr) 12.0%-14.0%, Molybdenum (Mo) 1.5%-3.0%, Tungsten (W) 2.5%-4.5%, Aluminum (Al) 4.0%-5.0%, Titanium (Ti) 1.8%-2.8%, Niobium (Nb) 1.5%-3.5%, Hafnium (Hf) 0.8%-1.8%, Carbon (C) 0.03%-0.13%, Boron (B) 0.005%-0.025%, Silicon (Si) 0.005%-0.05%, and optionally: Cobalt (Co) 0.0%-10.0%, Tantalum (Ta) 0.0%-3.0%, Zirconium (Zr) 0.0%-0.03%, especially remainder Nickel.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: September 13, 2022
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventor: Magnus Hasselqvist
  • Patent number: 11167270
    Abstract: The present invention is related to a new metal powder catalytic system (catalyst), its production and its use in hydrogenation processes.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: November 9, 2021
    Assignee: DSM IP ASSETS B.V.
    Inventors: Werner Bonrath, Roman Goy, Jonathan Alan Medlock
  • Patent number: 10352183
    Abstract: An embodiment of a turbine assembly includes, among other possible things, a first component including a first component surface, a second component including a second component surface spaced apart from the first component surface, and a brush seal disposed between the first component and the second component. The brush seal includes, among other things, a first bristled region extending in a first direction from a backing plate, and sealingly engaging one of the first component surface and the second component surface. At least one of the backing plate and the first bristled region includes a nickel-based superalloy material having at least 40% of a Ni3(Al,X) precipitate phase, X being a metallic or refractory element other than Al.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 16, 2019
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Katelyn Kwoka, Alan D. Cetel, Venkatarama K. Seetharaman, Michael G. McCaffrey
  • Publication number: 20150093284
    Abstract: Welding material for welding of superalloys comprising boron with the range of 0.3-0.8 wt. % B, 0.2-0.8 wt. % C, 17-23 wt. % Cr, 0.35-10 wt. % Mo, 0.1-4.15 wt. % Nb with nickel or iron and impurities to balance for weld repair of engine components manufactured of precipitation hardening superalloys with high content of gamma prime phase at an ambient temperature.
    Type: Application
    Filed: April 28, 2014
    Publication date: April 2, 2015
    Applicant: Liburdi Engineering Limited
    Inventors: Alexander B. Goncharov, Joseph Liburdi, Paul Lowden
  • Patent number: 8801875
    Abstract: A radiopaque alloy based on titanium nickelide and having shape memory and superelastic properties includes, according to one embodiment, at least one radiopaque alloying element selected from among gold, platinum, and palladium at a concentration of from about 10 at. % to about 20 at. %, and at least one additional alloying element selected from among aluminum, chromium, cobalt, iron, and zirconium, where the additional alloying element has a concentration of from about 0.5 at. % to about 4 at. %. The alloy includes titanium at a concentration of from about 48 at. % to about 52 at. %, and the balance of the alloy is nickel. The radiopaque alloy preferably exhibits superelastic behavior suitable for medical device applications in the human body.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 12, 2014
    Assignees: Cook Medical Technologies LLC, Lithotech Medical Ltd.
    Inventors: Valery Diamant, Dan Koren, Alexander I. Lotkov, Vladimir P. Sivokha, Liydmila L. Meysner, Viktor N. Grishkov, Vladimir P. Voronin
  • Patent number: 8784730
    Abstract: Nickel-based alloy consisting of (in % by mass) Si 0.8-2.0%, Al 0.001-0.1%, Fe 0.01-0.2%, C 0.001-0.10%, N 0.0005-0.10%, Mg 0.0001-0.08%, O 0.0001-0.010%, Mn max. 0.10%, Cr max. 0.10%, Cu max. 0.50%, S max. 0.008%, balance Ni and the usual production-related impurities.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 22, 2014
    Assignee: Outokumpu VDM GmbH
    Inventor: Heike Hattendorf
  • Publication number: 20140106063
    Abstract: A spark plug electrode material containing a) 0.7 to 1.3% silicon by weight, b) 0.5 to 1.0% copper by weight, and c) nickel as the balance.
    Type: Application
    Filed: February 15, 2012
    Publication date: April 17, 2014
    Inventors: Lars Menken, Juergen Oberle, Simone Baus, Jochen Boehm
  • Publication number: 20140007988
    Abstract: A ternary near eutectic alloy of Ni, Ti, Cr is described having a relatively low melting temperature of approximately 1230 deg. C. or less, suitable for fusing cracks in turbine blades and vanes without substantial risk of cracking during the repair process. Such an alloy is suitable for low temperature joining or repair of turbine blades since it contains the same components as typical turbine blades and vanes without foreign elements to lower the melting point of the repaired material or adversely affect the mechanical properties of the repaired component. Exclusion of boron eliminates the formation of brittle boron compounds, detrimental to the properties of the repair or seam.
    Type: Application
    Filed: June 13, 2012
    Publication date: January 9, 2014
    Inventor: Kazim OZBAYSAL
  • Patent number: 8603389
    Abstract: A Ni—Cr—Fe alloy in the form of a weld deposit, a welding electrode and flux and a method of welding utilizing the Ni—Cr—Fe alloy. The alloy comprises in % by weight: 27-31 Cr, 6-11 Fe, 0.01-0.04 C, 1.5-4 Mn, 1-3 Nb, up to 3 Ta, 1-3 (Nb+Ta), 0.01-0.50 Ti, 0.0003-0.02 Zr, 0.0005-0.004 B, <0.50 Si, 0.50 max Al, <0.50 Cu, <1.0 W, <1.0 Mo, <0.12 Co, <0.015 S, <0.015 P, 0.01 max Mg, balance Ni plus incidental additions and impurities. The welding method includes welding using a short arc wherein the distance from the electrode tip to the weld deposit is maintained at less than 0.125 inch.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: December 10, 2013
    Assignee: Huntington Alloys Corporation
    Inventor: Samuel D. Kiser
  • Publication number: 20130315659
    Abstract: A braze alloy composition is disclosed, containing nickel, about 5% to about 40% of at least one refractory metal selected from niobium, tantalum, or molybdenum; about 2% to about 32% chromium; and about 0.5% to about 10% of at least one active metal element. An electrochemical cell that includes two components joined to each other by such a braze composition is also described. A method for joining components such as those within an electrochemical cell is also described. The method includes the step of introducing a braze alloy composition between a first component and a second component to be joined, to form a brazing structure. In many instances, one component is formed of a ceramic, while the other is formed of a metal or metal alloy.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 28, 2013
    Applicant: General Electric Company
    Inventors: Sundeep Kumar, Raghavendra Rao Adharapurapu, Mohamed Rahmane
  • Publication number: 20130306602
    Abstract: A weld metal contains Cr: 28.0% to 31.5% by mass, Fe: 7.0% to 11.0% by mass, Nb and Ta: 1.5% to 2.5% by mass in total, C: 0.015% to 0.040% by mass, Mn: 0.5% to 4.0% by mass, N: 0.005% to 0.080% by mass, Si: 0.70% by mass or less (and more than 0%), Al: 0.50% by mass or less, Ti: 0.50% by mass or less, Mo: 0.50% by mass or less, Cu: 0.50% by mass or less, B: 0.0010% by mass or less, Zr: 0.0010% by mass or less, Co: 0.10% by mass or less, P: 0.015% by mass or less, and S: 0.015% by mass or less, the remainder being Ni and incidental impurities.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 21, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
  • Publication number: 20130302647
    Abstract: A multi component braze filler alloy is described having a melting temperature less than about 1235 deg. C. and greater than about 1150 deg. C. This alloy can be processed by hot isostatic pressing (HIP) at a temperature above about 1065 deg. C. and is particularly suited for the repair of gas turbine blades and vanes, especially those made from alloy 247. The relatively low Ti content in the present braze alloy tends to form less MC carbides at the joint interface, particularly in comparison with other braze alloys high in Zr and/or Hf.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Inventors: Kazim Ozbaysal, Sebastian Piegert
  • Patent number: 8552470
    Abstract: A photovoltaic cell is provided as a composite unit together with elements of an integrated circuit on a common substrate. In a described embodiment, connections are established between a multiple photovoltaic cell portion and a circuitry portion of an integrated structure to enable self-powering of the circuitry portion by the multiple photovoltaic cell portion.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: October 8, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Yuanning Chen, Thomas Patrick Conroy, Jeffrey DeBord, Nagarajan Sridhar
  • Publication number: 20130224069
    Abstract: Provided is a hydrochloric acid corrosion resistant alloy For brazing that is provided with corrosion resistance against hydrochloric acid, and when brazing various types of stainless steel, can be used for brazing at practical temperatures (1150° C. or less), and has good joint strength and brazeability to the substrate. The hydrochloric acid corrosion resistant alloy of the present invention contains, in mass percent, 6.0-18.0% Mo, 10.0-25.0% Cr, 0.5-5.0% Si, and 4.5-8.0% P, with the remainder being 40.0-73.0% Ni and unavoidable impurities, and the total of Si and P being 6.5-10.5%. In this case, the alloy may contain 12.0% or less of Cu, 20.0% or less of Co, 15.0% or less of Fe, 8.0% or less of W, 5.0% or less of Mn, and 0.5% or less of the total of C, B, Al, Ti, and Nb.
    Type: Application
    Filed: May 26, 2011
    Publication date: August 29, 2013
    Applicant: FUKUDA METAL FOIL & POWDER CO., LTD
    Inventors: Katsunori Otobe, Shinichi Nishimura
  • Patent number: 8449262
    Abstract: Nickel-based superalloys, turbine blades, and methods of improving or repairing turbine engine components are included. A nickel-based superalloy includes, by weight, about 5% to about 12% cobalt, about 3% to about 10% chromium, about 5.5% to about 6.3% aluminum, about 5% to about 10% tantalum, about 3% to about 10% rhenium, about 2% to about 5% of one or more of elements selected from a group consisting of platinum, ruthenium, palladium, and iridium, about 0.1% to about 1.0% hafnium, about 0.01% to about 0.4% yttrium, about 0.01% to about 0.15% silicon, and a balance of nickel.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: May 28, 2013
    Assignee: Honeywell International Inc.
    Inventor: Tom Strangman
  • Patent number: 8426033
    Abstract: Provided are precipitation hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a precipitation hardened nickel based alloy weld metal composition including greater than or equal to 1.4 wt % of combined aluminum and titanium based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions, wherein the precipitation hardening occurs in the as-welded condition. The nickel based welds do not require a separate heat treatment step after welding to produce advantageous strength properties.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Publication number: 20130078136
    Abstract: Nickel-based alloy consisting of (in % by mass) Si 0.8-2.0%, Al 0.001-0.1%, Fe 0.01-0.2%, C 0.001-0.10%, N 0.0005-0.10%, Mg 0.0001-0.08%, O 0.0001-0.010%, Mn max. 0.10%, Cr max. 0.10%, Cu max. 0.50%, S max. 0.008%, balance Ni and the usual production-related impurities.
    Type: Application
    Filed: June 8, 2011
    Publication date: March 28, 2013
    Applicant: THYSSENKRUPP VDM GMBH
    Inventor: Heike Hattendorf
  • Patent number: 8377373
    Abstract: Disclosing herein is a method for manufacturing nickel-titanium compositions. The method includes disposing a powdered composition in a mold; the powdered composition comprising nickel and titanium; the titanium being present in an amount of about 38 to about 42 wt % and the nickel being present in an amount of about 58 to about 62 wt %; sintering the powdered composition to produce a sintered preform; compacting the preform; machining the preform to form an article; heat treating the article; the annealing being conducted at a temperature of about 1650° F. to about 1900° F. at a pressure of about 3 Torr to about 5 Kg-f/cm2 for a time period of about 10 minutes to about 5 hours; and quenching the article.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 19, 2013
    Assignees: The United States of America, Abbott Ball Company
    Inventors: Glenn N. Glennon, Christopher DellaCorte
  • Patent number: 8343419
    Abstract: An object of the present invention is to provide a Ni base alloy solid wire for welding, which has excellent cracking resistance to ductility dip cracking in weld metal, can increase the tensile strength of the weld metal to not less than the tensile strength of the base material, and has excellent weldability. The present invention provides a solid wire which has a composition containing Cr: 27.0 to 31.5 mass %, Ti: 0.50 to 0.90 mass %, Nb: 0.40 to 0.70 mass %, Ta: 0.10 to 0.30 mass %, C: 0.010 to 0.030 mass %, and Fe: 5.0 to 11.0 mass %, and is regulated to Al: 0.10 mass % or less, N: 0.020 mass % or less, Zr 0.005 mass % or less, P:0.010 mass % or less, S: 0.0050 mass % or less, Si: 0.50 mass % or less, and Mn: 1.00 mass % or less, with the balance including Ni and inevitable impurities.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: January 1, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Tetsunao Ikeda, Masaki Shimamoto, Shun Izutani, Hiroaki Kawamoto, Yushi Sawada, Hirohisa Watanabe
  • Publication number: 20120288400
    Abstract: An austenitic heat resistant alloy consisting of, by mass percent, C: 0.15% or less, Si: 2% or less, Mn: 3% or less, Ni: 40 to 60%, Co: 0.03 to 25%, Cr: 15% or more and less than 28%, either one or both of Mo: 12% or less and W: less than 4%, the total content thereof being 0.1 to 12%, Nd: 0.001 to 0.1%, B: 0.0005 to 0.006%, N: 0.03% or less, O: 0.03% or less, at least one selected from Al: 3% or less, Ti: 3% or less, and Nb: 3% or less, the balance being Fe and impurities. The contents of P and S in the impurities being P: 0.03% or less and S: 0.01% or less. The alloy satisfies 1?4×Al+2×Ti+Nb?12 and P+0.2×Cr×B?0.035, is excellent in weld crack resistance and toughness of HAZ, and is further excellent in creep strength at high temperatures.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 15, 2012
    Applicant: SUMITOMO METAL INDUSTRIES., LTD.
    Inventors: Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba, Kazuhiro Ogawa, Atsuro Iseda, Mitsuru Yoshizawa
  • Publication number: 20120277689
    Abstract: A quaternary nickel-titanium alloy includes: Ni at a concentration of between about 48 at. % and about 52 at. %; Cr at a concentration of from about 0.3 at. % to about 1 at. %; Co at a concentration of from about 0.5 at. % to about 2 at. %; and Ti at a concentration wherein a ratio of Ni:Ti is about 1.03. According to one exemplary embodiment of the alloy, the concentration of Cr may be about 0.5 at. % and the concentration of Co may be about 0.75 at. %. According to another exemplary embodiment of the alloy, the concentration of Cr may be about 0.25 at. % and the concentration of Co may be about 0.5 at. %.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 1, 2012
    Applicant: Cook Medical Technologies LLC
    Inventors: James M. Carlson, Mark A. Magnuson
  • Publication number: 20120189486
    Abstract: Semi-finished products for the production of devices containing thermoelastic materials with improved reliability and reproducibility are described. The semi-finished products are based on an alloy of Ni—Ti plus elements X and/or Y. The nickel amount is comprised between 40 and 52 atom %, X is comprised between 0.1 and 1 atom %, Y is comprised between 1 and 10 atom % and the balance is titanium. The one or more additional elements X are chosen from Al, Ta, Hf, Si, Ca, Ce, La, Re, Nb, V, W, Y, Zr, Mo, and B. The one or more additional elements Y are chosen from Al, Ag, Au, Co, Cr, Fe, Mn, Mo, Nb, Pd, Pt, Ta and W.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: SAES SMART MATERIALS
    Inventors: Francis E. SCZERZENIE, Graeme William PAUL
  • Publication number: 20120134615
    Abstract: The present invention provides an axle bearing having excellent life under high temperature. The present invention provides a high-temperature axle bearing made of an Ni3(Si, Ti)-based intermetallic compound alloy, wherein the Ni3(Si, Ti)-based intermetallic compound alloy contains from 25 to 500 ppm by weight of B with respect to a total weight of a composition of 100 at. % containing Ni as a major component, from 7.5 to 12.5 at. % of Si, from 4.5 to 10.5 at. % of Ti, from 0 to 3 at. % of Nb, and from 0 to 3 at. % of Cr, and has a Vickers hardness from 210 to 280 at 800° C.
    Type: Application
    Filed: July 27, 2010
    Publication date: May 31, 2012
    Applicant: OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Takayuki Takasugi, Yasuyuki Kaneno, Hidekazu Fujii
  • Publication number: 20110277568
    Abstract: Semi-finished products for the production of devices containing thermoelastic materials with improved reliability and reproducibility are described. The semi-finished products are based on an alloy of Ni—Ti plus elements X and/or Y. The nickel amount is comprised between 40 and 52 atom %, X is comprised between 0.1 and 1 atom %, Y is comprised between 1 and 10 atom % and the balance is titanium. The one or more additional elements X are chosen from Al, Ta, Hf, Si, Ca, Ce, La, Re, Nb, V, W, Y, Zr, Mo, and B. The one or more additional elements Y are chosen from Al, Ag, Au, Co, Cr, Fe, Mn, Mo, Nb, Pd, Pt, Ta and W.
    Type: Application
    Filed: October 28, 2010
    Publication date: November 17, 2011
    Applicant: SAES SMART MATERIALS
    Inventors: Francis E. Sczerzenie, Graeme William Paul
  • Publication number: 20110165432
    Abstract: A powder metallurgical article and process are disclosed. The article is a repaired or enlarged powder metallurgical article. The repaired or enlarged powder metallurgical article includes a formed article including a first alloy and a material including a second alloy. The material is welded to the formed article to form the repaired or enlarged powder metallurgical article. The repaired or enlarged powder metallurgical article includes a substantially uniform grain structure.
    Type: Application
    Filed: January 4, 2010
    Publication date: July 7, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel Anthony NOWAK, Raymond Joseph STONITSCH, Attila SZABO
  • Patent number: 7959854
    Abstract: A heat resistant alloy comprising, in % by weight, over 0.6% to not more than 0.9% of C, up to 2.5% of Si, up to 3.0% of Mn, 20 to 28% of Cr, 8 to 55% of Ni, 0.01 to 0.8% of Ti and 0.05 to 1.5% of Nb, the balance being Fe and inevitable impurities, the value of (Ti+Nb)/C being 0.12 to 0.29 in atomic % ratio. When the alloy further contains up to 0.5% of Zr, the value of (Ti+Nb+Zr)/C is 0.12 to 0.29 in atomic % ratio. When the alloy is heated at a temperature of at least about 800 degrees C., a fine Ti—Nb—Cr carbide or Ti—Nb—Zr—Cr carbide precipitates within grains to thereby retard creep deformation and give an improved creep rupture strength. The alloy is therefore suitable as a material for hydrogen production reforming tubes.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 14, 2011
    Assignee: Kubota Corporation
    Inventors: Makoto Takahashi, Kunihide Hashimoto, Makoto Hineno
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20110058977
    Abstract: A Ni based cast alloy consisting essentially of C: 0.01 to 0.2% by weight, Si: 0.5 to 4.0% by weight, Cr: 14 to 22% by weight, Mo+W: 4.0 to 10% by weight, B: 0.001 to 0.02% by weight, Co: up to 10% by weight, Al: up to 0.5% by weight, Ti: up to 0.5% by weight, Nb: up to 5.0% by weight, Fe: up to 10% by weight, the balance being Ni and incidental impurities, wherein a ?? phase precipitates in a matrix phase thereof.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 10, 2011
    Inventors: Jun Sato, Shinya Imano, Hiroyuki Doi
  • Publication number: 20100172789
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Patent number: 7662740
    Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: February 16, 2010
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
  • Patent number: 7645348
    Abstract: In accordance with the present invention, a process for repairing metal workpieces, such as turbine engine components, is provided. The process comprises the steps of forming a braze paste containing a first nickel base alloy material containing boron and chromium and a second nickel base alloy material containing chromium and cobalt, applying the brazing paste to an area of the metal workpiece containing at least one crack, and subjecting the workpiece and the brazing paste to a brazing cycle by heating the brazing paste and the workpiece, preferably to a temperature in the range of from 2000 to 2200 degrees Fahrenheit. During the brazing cycle, the brazing paste flows into and fills the at least one crack and thus repairs the metal workpiece.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: January 12, 2010
    Assignee: United Technologies Corporation
    Inventor: Monika D. Kinstler
  • Patent number: 7597843
    Abstract: Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance, which consist essentially of chromium in an amount of 3 to 7% by weight, cobalt in an amount of 3 to 15% by weight, tungsten in an amount of 4.5 to 8% by weight, rhenium in an amount of 3.3 to 6% by weight, tantalum in an amount of 4 to 8% by weight, titanium in an amount of 0.8 to 2% by weight, aluminum in an amount of 4.5 to 6.5% by weight, ruthenium in an amount of 0.1 to 6%, hafnium in an amount of 0.01 to 0.2% by weight, molybdenum in an amount of less than 0.5% by weight, carbon in an amount 0.06% by weight or less, boron in an amount of 0.01% by weight or less, zirconium in an amount of 0.01% by weight or less, oxygen in an amount of 0.005% by weight or less, nitrogen in an amount of 0.005% by weight or less and inevitable impurities and the balance being nickel.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: October 6, 2009
    Assignees: Hitachi, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Publication number: 20090159645
    Abstract: Various braze alloy compositions are described, along with methods for using them. In one instance, a boron-free, high-temperature braze alloy includes selected amounts of chromium, hafnium, and nickel. The braze alloy can be used, for example, as a component in a wide gap braze mixture where a higher or lower melting point superalloy and/or brazing powder is used. The braze alloys may permit joining or repairing of superalloy articles with complex shapes, and may be used in high temperature applications. In some other braze alloy embodiments, a nickel- or cobalt-based braze composition can contain selected amounts of boron, but includes restricted amounts of chromium.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 25, 2009
    Inventors: Laurent Cretegny, Ann Melinda Ritter, Shyh-Chin Huang, Liang Jiang, Warren Martin Andre Miglietti
  • Patent number: 7547188
    Abstract: A Ni-based alloy member has resistance against grain boundary fracture, fatigue strength, and oxidation resistance at temperatures near 1000° C. or higher. The Ni-based alloy member includes a non-repaired region made of a Ni-based alloy base and a region repaired by welding, which is formed on the non-repaired region and which is made of a buildup-welded layer, the buildup-welded layer being made of a Ni-based alloy containing, by weight, 15% or less of Co, 18-22% of Cr, 0.8-2.0% of Al, 5.0% or less of Ta, 0.5% or less of Mo, 0.5% or less of Ti, 13-18% of W, 0.05-0.13% of C, 0.06% or less of Zr, 0.015% or less of B, 0.4-1.2% of Mn, and 0.1-0.3% of Si, the balance of the alloy being preferably essentially made of Ni.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: June 16, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Katsumi Tanaka
  • Publication number: 20090104041
    Abstract: A method for surface treating a titanium gas turbine engine component. The method includes providing a gas turbine engine component having a titanium-containing surface. The component is heated to a temperature sufficient to diffuse carbon into the titanium and below 1000° F. The surface is contacted with a carbon-containing gas to diffuse carbon into the surface to form carbides. Thereafter, the carbide-containing surface is coated with a lubricant comprising a binder and a friction modifier. The binder preferably including titanium oxide and the friction modifier preferably including tungsten disulfide. The coefficient of friction between the surface and another titanium-containing surface is less than about 0.6 in high altitude atmospheres.
    Type: Application
    Filed: December 22, 2008
    Publication date: April 23, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Robert William BRUCE
  • Publication number: 20080308057
    Abstract: An electrode for an ignition device is made from a dilute nickel alloy which has improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture and includes at least 90% by weight of nickel; zirconium; boron and at least one element from the group consisting of aluminum, magnesium, silicon, chromium, titanium and manganese. The weight ratio of Zr/B may range from about 0.5 to 150, and may include amounts of, by weight of the alloy, 0.05-0.5% zirconium and 0.001-0.01% boron. The oxidation resistance of the alloy may also be improved by the addition of hafnium to the alloy in an amount that is comparable to the amount of zirconium, which may include an amount of, by weight of the alloy, 0.005-0.2% hafnium. Electrodes of dilute nickel alloys which include aluminum and silicon, as well as those which include chromium, silicon, manganese and titanium, are particularly useful as spark plug electrodes.
    Type: Application
    Filed: June 18, 2007
    Publication date: December 18, 2008
    Inventors: James D. Lykowski, Iryna Levina
  • Patent number: 7381369
    Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti,Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti,Zr)4C2(S,Se,Te)2 as the (Ti,Zr) based compound is formed at least in a dispersed state in the alloy structure.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: June 3, 2008
    Assignees: Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha, Japan Industrial Technology Association, Tohoku Technoarch Co., Ltd.
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Tetsuya Shimizu, Michio Okabe
  • Patent number: 7165325
    Abstract: A welding material composition, which is a nickel based super alloy having ?? phase and chromium carbides precipitated. The composition comprising 18 to 25% by weight of Co, 15 to 20% by weight of Cr, 1.5 to 5.5% by weight of Al, 5 to 14% by weight of W, 0.05 to 0.15% by weight of C, 0 to 0.02% by weight of B, 0 to 1% by weight of at least one of Ta, Nb, Ti, Mo, Re and Fe, 0 to 0.5% by weight of at least one of V, Zr, rare earth elements and Y, 0 to 1% by weight of Mn, 0 to 0.5% by weight of Si, and the balance being Ni.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: January 23, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Hideaki Ishii
  • Patent number: 6964826
    Abstract: An industrial catalyst having: a support; a plurality of metallic particulates distributed throughout the support; and a metal at least partially covering the surface of the support. A method for making a catalyst including the steps of: forming a support with non-noble metal particulates distributed throughout the support; and at least partially covering the surface of the support with a metal.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: November 15, 2005
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Benjamin Reichman, Michael A. Fetcenko, Kwo Young, William Mays, James Strebe
  • Patent number: 6902633
    Abstract: A nickel-base alloy consists of, by weight, about 15.0 to about 17.0% chromium, about 7.0 to about 10.0% cobalt, about 1.0 to about 2.5% molybdenum, about 2.0 to about 3.2% tungsten, about 0.6 to about 2.5% columbium, less than 1.5% tantalum, about 3.0 to about 3.9% aluminum, about 3.0 to about 3.9% titanium, about 0.005 to about 0.060% zirconium, about 0.005 to about 0.030% boron, about 0.07 to about 0.15% carbon, the balance nickel and impurities. Preferably, columbium is present in an amount greater than tantalum. Tantalum can be essentially absent from the alloy, i.e., only at impurity levels.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: June 7, 2005
    Assignee: General Electric Company
    Inventors: Warren Tan King, John Herbert Wood, Gangjigang Feng
  • Patent number: 6818077
    Abstract: A nickel-based superalloy containing 12.0 to 16.0% by weight of Cr, 4.0 to 9.0% by weight of Co, 3.4 to 4.6% by weight of Al, 0.5 to 1.6% by weight of Nb, 0.05 to 0.16% by weight of C, 0.005 to 0.025% by weight of B, and at least one of Ti, Ta and Mo. Amounts of Ti, Ta and Mo are ones calculated by the equations (1) and (2), wherein TiEq is 4.0 to 6.0 and MoEq is 5.0 to 8.0. TiEq=Ti % by weight+0.5153×Nb % by weight+0.2647×Ta % by weight  (1) MoEq−Mo % by weight+0.5217×W % by weight+0.5303×Ta % by weight+1.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: November 16, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Akira Yoshinari, Hideki Tamaki, Hiroyuki Doi
  • Patent number: 6752883
    Abstract: A free-cutting Ni-base heat-resistant alloy excellent in the high-temperature strength and corrosion resistance was proposed. The alloy contains Ni as a major component, 0.01 to 0.3 wt % of C and 14 to 35 wt % of Cr, and further contains at least one element selected from Ti, Zr and Hf in a total amount of 0.1 to 6 wt %, and S in an amount of 0.015 to 0.5 wt %. The alloy has dispersed in the matrix thereof a machinability improving compound phase, where such phase contains any one of Ti, Zr and Hf as a major constituent of the metal elements, essentially contains C and either S or Se as a binding component for such metal elements. The alloy also satisfies the relations of WTi+0.53WZr+0.27WHf>2WC+0.75WS and WC>0.37WS, where WTi represents Ti content (wt %), WZr represents Zr content (wt %), WHf represents Hf content (wt %), WC represents C content (wt %) and WS represents S content (wt %).
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: June 22, 2004
    Assignees: Dokuritsu Gyousei Houjin Sangyo Gijutsu Sougo Kenkyusho, Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Shigeki Ueta, Toshiharu Noda, Takashi Ebata
  • Patent number: 6740292
    Abstract: The invention relates to a nickel-base superalloy. The alloy according to the invention is characterized by the following chemical composition (details in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750, preferably 200-300 ppm of C, 50-400, preferably 50-100 ppm of B, remainder Ni and production-related impurities. It is distinguished by very good castability and a high resistance to oxidation.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 25, 2004
    Assignee: Alstom Technology Ltd
    Inventors: Douglas Arrell, Mohamed Nazmy
  • Patent number: 6696176
    Abstract: A fusion weldable superalloy containing 0.005-0.5 wt. % scandium. In one embodiment, the superalloy may have a composition similar to IN-939 alloy, but having added scandium and having only 0.005-0.040 wt. % zirconium. A gas turbine component may be formed by an investment casting of such a scandium-containing superalloy, and may include a fusion weld repaired area. A scandium-containing nickel-based superalloy coated with an MCrAlY bond coat will have improved cyclic oxidation resistance due to the sulfur-gettering effect of the scandium.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: February 24, 2004
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: David B. Allen, Gregg P. Wagner, Brij B. Seth
  • Publication number: 20030074054
    Abstract: A stent having marker tabs formed from a micro-alloyed combination of materials provides for more precise placement and post-procedural visualization in a vessel, by increasing the radiopacity of the stent under X-ray fluoroscopy. A unique micro-alloying process is utilized to form the tabs, comprising a first alloy and a second alloy, wherein one of these alloys is radiopaque. This substantially eliminates the possibility of galvanic action between the tab and the stent. This process is also applicable to other medical devices.
    Type: Application
    Filed: November 8, 2002
    Publication date: April 17, 2003
    Inventors: Thomas Duerig, Mark L. Mathis, Alan Roy Pelton, Dieter Stoeckel
  • Patent number: 6544668
    Abstract: Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: April 8, 2003
    Assignee: U. T. Battelle, LLC
    Inventors: Michael L. Santella, Jeffrey D. McNabb, Vinod K. Sikka
  • Publication number: 20020195175
    Abstract: A free-cutting Ni-base heat-resistant alloy excellent in the high-temperature strength and corrosion resistance was proposed. The alloy contains Ni as a major component, 0.01 to 0.3 wt % of C and 14 to 35 wt % of Cr, and further contains at least one element selected from Ti, Zr and Hf in a total amount of 0.1 to 6 wt %, and S in an amount of 0.015 to 0.5 wt %. The alloy has dispersed in the matrix thereof a machinability improving compound phase, where such phase contains any one of Ti, Zr and Hf as a major constituent of the metal elements, essentially contains C and either S or Se as a binding component for such metal elements. The alloy also satisfies the relations of WTi+0.53WZr+0.27WHf>2WC+0.75WS and WC>0.37WS, where WTi represents Ti content (wt %), WZr represents Zr content (wt %), WHf represents Hf content (wt %), WC represents C content (wt %) and WS represents S content (wt %).
    Type: Application
    Filed: May 31, 2002
    Publication date: December 26, 2002
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Shigeki Ueta, Toshiharu Noda, Takashi Ebata
  • Publication number: 20020159911
    Abstract: The sputter target deposits nickel from a binary alloy. The binary alloy contains, by weight percent, 9 to 15 titanium and the balance nickel and incidental impurities. The binary alloy has, by weight percent, 35 to 50 TiNi3 needle-like intermetallic phase and balance &agr;-nickel phase. The TiNi3 needle-like intermetallic phase and &agr;-nickel phase are formed from a eutectic decomposition. The &agr;-nickel phase having a grain size between 50 and 180 &mgr;m. The binary alloy has a Curie temperature of less than or equal to a temperature of 25° C. and exhibits paramagnetic properties at temperatures of 25° C. or lower.
    Type: Application
    Filed: April 25, 2001
    Publication date: October 31, 2002
    Inventors: Holger J. Koenigsmann, Paul S. Gilman, Thomas J. Hunt