Copper Containing Patents (Class 420/457)
  • Patent number: 11919080
    Abstract: The successful fabrication of alloy foam (or porous alloy) is very rare, despite their potentially better properties and wider applicability than pure metallic foams. The processing of three-dimensional copper-nickel alloy foams is achieved through a strategic solid-solution alloying method based on oxide powder reduction or sintering processes, or both. Solid-solution alloy foams with five different compositions are successfully created, resulting in open-pore structures with varied porosity. The corrosion resistance of the synthesized copper-nickel alloy foams is superior to those of the pure copper and nickel foams.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 5, 2024
    Assignee: CellMo Materials Innovation, Inc.
    Inventors: Kicheol Hong, Hyeji Park, Sukyung Lee, Youngseok Song, Gigap Han, Kyungju Nam, Heeman Choe
  • Patent number: 10781351
    Abstract: A porous hexagonal boron nitride (h-BN) material with thermally conductive properties, includes a network of interconnected struts and nodes. The porous h-BN material is formed by depositing h-BN onto a catalyst foam using chemical vapor deposition at atmospheric pressure. The catalyst foam with the h-BN layer deposited thereon is then encapsulated with an insulating material. After the insulating material layer is cured, the h-BN structure is cut on an edge and then wet-etched to at least partially remove the catalyst foam.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: September 22, 2020
    Assignee: Louisiana Tech Research Corporation
    Inventor: Arden L. Moore
  • Patent number: 10399147
    Abstract: The present disclosure provides methods to improve the properties of a porous structure formed by a rapid manufacturing technique. Embodiments of the present disclosure increase the bonding between the micro-particles 5 on the surface of the porous structure and the porous structure itself without substantially reduce the surface area of the micro-particles. In one aspect, embodiments of the present disclosure improves the bonding while preserving or increasing the friction of the structure against adjacent materials.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: September 3, 2019
    Assignee: Smith & Nephew, Inc.
    Inventors: Marcus L Scott, Lu Gan, Vivek D Pawar, Stanley Tsai
  • Patent number: 8858875
    Abstract: A Ni based alloy material consists of by mass percent, C?0.03%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, P?0.03%, S?0.01%, Cr: not less than 20% to less than 30%, Ni: more than 40% to not more than 50%, Cu: more than 2.0% to not more than 5.0%, Mo: 4.0 to 10%, Al: 0.005 to 0.5%, W: 0.1 to 10%, N: more than 0.10% to not more than 0.35%, optionally one or more elements selected from Ca?0.01% and Mg?0.01%, with the balance being Fe and impurities, and the formula of “0.5Cu+Mo?6.5” is satisfied. The material has a surface hardness of a Vickers hardness of not less than 350 at 500° C., a corrosion resistance equivalent to that of Ni based alloys having high Mo contents, and excellent erosion resistance in a severe environment.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masaki Ueyama, Masaaki Terunuma
  • Publication number: 20140125214
    Abstract: A spark plug electrode material containing nickel, silicon, and copper, the electrode material, in the case of proper use, forming a nickel oxide layer made of nickel oxide grains on at least a part of its surface, the grain boundary phase of the nickel oxide grains including silicon and/or silicon oxide.
    Type: Application
    Filed: February 15, 2012
    Publication date: May 8, 2014
    Inventor: Simone Baus
  • Publication number: 20140106063
    Abstract: A spark plug electrode material containing a) 0.7 to 1.3% silicon by weight, b) 0.5 to 1.0% copper by weight, and c) nickel as the balance.
    Type: Application
    Filed: February 15, 2012
    Publication date: April 17, 2014
    Inventors: Lars Menken, Juergen Oberle, Simone Baus, Jochen Boehm
  • Publication number: 20130224561
    Abstract: A braze alloy composition for sealing a ceramic component to a metal component in an electrochemical cell is presented. The braze alloy composition includes nickel, germanium, and an active metal element. The braze alloy includes germanium in an amount greater than about 5 weight percent, and the active metal element in an amount less than about 10 weight percent. A method for sealing a ceramic component to a metal component in an electrochemical cell and, an electrochemical cell sealed thereby, are also provided.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raghavendra Rao Adharapurapu, Sundeep Kumar, Mohamed Rahmane
  • Patent number: 8293419
    Abstract: In a method for preparing a hydrogen absorbing electrode, a hydrogen absorbing alloy which contains a rare earth element as an alloy constituent and a transition metal element is immersed in an aqueous alkaline solution so that the saturation mass susceptibility is 1.0 to 6.5 emu/g of the hydrogen absorbing alloy. The hydrogen absorbing alloy is mixed through the immersing step with an oxide or hydroxide of a rare earth element wherein the oxide or hydroxide has as a main component at least one element selected from the group consisting of Dy, Ho, Er, Tm, Yb, and Lu. Then, a mixture of the hydrogen absorbing alloy and the oxide or hydroxide of the rare earth element is applied to form a desired shape.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 23, 2012
    Assignee: GS Yuasa International Ltd.
    Inventors: Toshinori Bandou, Kouichi Sakamoto, Hiroaki Mori, Kazuya Okabe, Shuichi Izuchi
  • Patent number: 7951246
    Abstract: The invention relates to open-pored metallic foam bodies as well as a method for manufacturing thereof. These metallic foam bodies are allowed to be advantageously used with ambient environmental conditions causing a high corrosion to many conventional materials, and accordingly reducing the lifetime thereof frequently. According to the set object, the metallic foam bodies should have a low mass simultaneously with a high specific surface, and increased corrosion resistance under chemically aggressive ambient environmental conditions. An open-pored metallic foam body according to the invention is then developed such that it is formed from a nickel-copper alloy having at least 40 percent by weight of nickel and yet a porosity of at least 90%.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: May 31, 2011
    Assignees: Alantum Corporation, Fraunhofer Gesellschaft zur Förderung der angewandten FORSCHUNG E.V.
    Inventors: Dirk Naumann, Lloyd Timberg, Alexander Böhm, Gunnar Walther
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Patent number: 7740719
    Abstract: A cutter is composed of a Ni—Cr alloy containing from 32 to 44 mass percent of Cr, from 2.3 to 6.0 mass percent of Al, the balance being Ni, impurities, and additional trace elements and having a Rockwell C hardness of 52 or more. This Ni—Cr alloy provides a cutter produced with a superior workability and by a significantly simplified process, having a low deterioration in the hardness even when heated in use, having excellent corrosion resistance and low-temperature embrittlement resistance, and satisfactorily maintaining the cutting performance for a long time.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: June 22, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohisa Arai, Takashi Rokutanda, Tadaharu Kido
  • Patent number: 7696453
    Abstract: A chromium-free welding consumable and a method of welding stainless steel to reduce the presence of chromium emissions. The consumable is made from an alloy that reduces the emission of chromium during a welding process, and include predominantly nickel, with between approximately five and ten weight percent copper, up to approximately two percent by weight of ruthenium and up to five percent non-copper alloying ingredients. Welding consumables made from the alloy are particularly well-suited for welding austenitic stainless steels, such as type 304 stainless steel. The method involves using chromium-free weld filler material with a stainless steel base material.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: April 13, 2010
    Assignee: The Ohio State University Research Foundation
    Inventors: Gerald S. Frankel, John C. Lippold
  • Patent number: 7662740
    Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: February 16, 2010
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
  • Patent number: 7582173
    Abstract: Disclosed is a single-phase amorphous alloy having an enhanced ductility. The single-phase amorphous alloy has a composition range of A100-a-bBaCb where a and b are respectively 0<a<15, 0?b?30 in atomic percent. Here, A includes at least one element selected from the group consisting of Be, Mg, Ca, Ti, Zr, Hf, Pt, Pd, Fe, Ni, and Cu. B includes at least one element selected from the group consisting of Y, La, Gd, Nb, Ta, Ag, Au, Co, and Zn. C includes at least one element selected from the group consisting of Al, In, Sn, B, C, Si, and P.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 1, 2009
    Assignee: Yonsei University
    Inventors: Eun Soo Park, Jong Hyun Na, Hye Jung Chang, Ju Yeon Lee, Byung Joo Park, Won Tae Kim, Do Hyang Kim
  • Patent number: 7461772
    Abstract: A brazing material including about 20 to about 60 percent by weight silver, about 1 to about 4 percent by weight aluminum, about 20 to about 65 percent by weight copper, about 3 to about 18 percent by weight titanium and about 1 to about 4 percent by weight nickel.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: December 9, 2008
    Assignee: General Electric Company
    Inventor: Kazim Ozbaysal
  • Publication number: 20080267810
    Abstract: An improved method of reducing a mixed metal oxide composition comprising oxides of nickel, cobalt, copper and iron in a hydrogen atmosphere to produce a mixture of the respective metals, the improvement wherein the atmosphere further comprises water vapour at a concentration, temperature and time to effect selective reduction of the oxides of nickel cobalt and copper relative to the iron oxide to produce the metallic mixture having a reduced ratio of metallic iron relative to metallic nickel, cobalt and copper.
    Type: Application
    Filed: April 24, 2007
    Publication date: October 30, 2008
    Inventors: Walter Curlook, Dmitri Terekhov, Sergiy Kovtun, Olujide Babatunde Olurin, Nanthakumar Victor Emmanuel
  • Patent number: 7425229
    Abstract: A chromium-free welding consumable and a method of welding stainless steel to reduce the presence of chromium emissions. The consumable is made from an alloy that reduces the emission of chromium during a welding process, and include predominantly nickel, with between approximately five and twenty five percent by weight copper, up to approximately five percent by weight of palladium, up to approximately ten percent by weight of molybdenum and up to five percent non-copper alloying ingredients. Welding consumables made from the alloy are particularly well-suited for welding austenitic stainless steels, such as type 304 stainless steel. The method involves using chromium-free weld filler material with a stainless steel base material.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: September 16, 2008
    Assignee: The Ohio State University
    Inventors: Gerald S. Frankel, John C. Lippold
  • Publication number: 20080091267
    Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The endoprostheses comprise a tubular member capable of maintaining patency of a bodily vessel. The tubular member includes a mixture of at least two compositions, where the presence of the second composition gives the mixture a greater hardness than that of the first composition alone. The first composition includes less than about 25 weight percent chromium, less than about 7 weight percent molybdenum, from about 10 to about 35 weight percent nickel, and iron. The second composition is different from the first and is present from about 0.1 weight percent to about 5 weight percent of the mixture.
    Type: Application
    Filed: March 29, 2007
    Publication date: April 17, 2008
    Inventors: Jonathan S. Stinson, Matthew Cambronne, Richard B. Frank, Richard A. Gleixner, James E. Heilmann
  • Patent number: 7328832
    Abstract: A brazing material including about 40 to about 60 percent by weight gold, about 5 to about 16 percent by weight nickel and about 35 to about 55 percent by weight copper.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: February 12, 2008
    Assignee: General Electric Company
    Inventors: Kazim Ozbaysal, David Edwin Budinger
  • Patent number: 7214644
    Abstract: A method for producing a copper/palladium colloid catalyst useful for Suzuki couplings.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: May 8, 2007
    Assignee: Xerox Corporation
    Inventors: Jennifer A. Coggan, Nan-Xing Hu, H. Bruce Goodbrand, Timothy P. Bender
  • Patent number: 6764646
    Abstract: A nickel-chromium-molybdenum-copper alloy that is resistant to sulfuric acid and wet process phosphoric acid contains in weight percent 30.0 to 35.0% chromium, 5.0 to 7.6% molybdenum, 1.6 to 2.9% copper, up to 1.0% manganese, up to 0.4% aluminum, up to 0.6% silicon, up to 0.06% carbon, up to 0.13% nitrogen, up to 5.1% iron, up to 5.0% cobalt, with the balance nickel plus impurities.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: July 20, 2004
    Assignee: Haynes International, Inc.
    Inventors: Paul Crook, Martin L. Caruso
  • Patent number: 6605371
    Abstract: A brazing alloy according to the present invention has a melting point equivalent to that of a copper brazing filler and is excellent in corrosion- and oxidation-resistance. The brazing alloy consists essentially of Mn, Ni and Cu, and has a composition in terms of weight percentage which, when plotted on a diagram as shown in FIG. 1, falls within a range defined by: the point A (37% Mn, 63% Ni, 0% Cu), the point B (18% Mn, 27% Ni, 55% Cu); the point C (42% Mn, 3% Ni, 55% Cu); the point D (50% Mn, 3% Ni, 47% Cu); and the point E (50% Mn, 50% Ni, 0% Cu), wherein Mn=50% is exclusive.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: August 12, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Masami Ueda, Masaaki Ishio, Hidetoshi Noda, Tsuyoshi Hasegawa
  • Publication number: 20020012607
    Abstract: Variable melting point solders and brazes having compositions comprising a metal or metal alloy powder having a low melting point with a metal powder having a higher melting point. Upon heating, in-situ alloying occurs between the low and high melting point powders such that solidification occurs at the solder or braze temperature thus creating a new, higher solidus (or melting) temperature with little or no intermetallic formation. A solder comprising Sn powder mixed with a Sn—Bi eutectic powder having a composition of 63 wt % Sn, 57 wt % Bi such that the bulk composition of the mixture is 3 wt % BS has an initial melting point of 140° C. and a re-melt temperature of 220° C. after heating due to in-situ alloying. A composition of Pb powder mixed with a Pb—Sn eutectic powder having a composition of 62 wt % Sn:58 wt % Pb such that the bulk composition of the mixture is 15 wt % Sn has an initial melting point of 183° C. and a re-melt temperature of 250° C.
    Type: Application
    Filed: May 24, 2001
    Publication date: January 31, 2002
    Inventors: Stephen F. Corbin, Douglas J. McIsaac, Xin Qiao
  • Patent number: 6207105
    Abstract: A wear-resistant Ni\Cu alloy and methods of preparing same are disclosed. The alloy comprises a ductile, continuous phase of Ni\Cu with a discontinuous phase of hardened Ti containing particles distributed throughout the continuous phase. The particles are Ti\Al intermetallic or complex TixAlyNiz complex or particle. The alloying components are poured and mixed in the melt under an inert atmosphere, then slowly cooled to provide the desired cast article. The alloy should be protected during melting and cooling in a protective atmosphere, such as a vacuum, or an inert atmosphere so as to inhibit oxide and nitride formation that would otherwise adversely affect desirable alloy properties.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: March 27, 2001
    Assignee: Global Manufacturing Solutions, Inc.
    Inventor: Charles M. Woods
  • Patent number: 6074604
    Abstract: Provided is a brazing filler metal for brazing stainless steel at low temperatures so as not to adversely affect the properties of the stainless steel, and without producing any brittleness in the brazed joint. The brazing filler metal essentially consists of 5 to 30 weight % of Mn or Sn, 20 to 70 weight % of Cu, inevitable impurities, and a balance of Ni. The brazing filler metal may further include no more than 3 weight % of Cr and/or Si.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: June 13, 2000
    Assignee: NHK Spring Co., Ltd.
    Inventors: Shinji Saito, Takashi Kayamoto
  • Patent number: 5911948
    Abstract: The present invention relates to a higher order beryllium-nickel alloy containing copper represented by the formula (0.4-1.50% Be)+(0<Cu.ltoreq.15%)+(0<Ti.ltoreq.0.6%)+(0<C.ltoreq.1.0%)+(0<Mg.ltoreq.0. 25%), the balance Ni, and an article constructed, at least in part, of the same. Such alloys are characterized by improved machinability with optimum combination of heat treatment response, hardness, magnetic behavior, ductility, strength and cost.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: June 15, 1999
    Assignee: Brush Wellman Inc.
    Inventor: John O. Ratka
  • Patent number: 5523006
    Abstract: An ultrafine particle copper, tin, nickel, zinc lubricant with a surface area of from 5 to 70 m.sup.2 /g and a particle size of from about 0.01 to about 0.5 .mu.m. The powder dispersed in a carrier to form a dispersion stabilized by Brownian movement.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: June 4, 1996
    Assignee: Synmatix Corporation
    Inventor: Emil E. Strumban
  • Patent number: 5183636
    Abstract: A novel corrosion inhibiting iron-free filler metal braze composition which has a nominal composition of: from about 5.0% to about 9.0% chromium; from about 3.5% to about 5.5% silicon; from about 2.0% to about 4.0% boron; from about 1.0% to about 6.0% copper; from about 1.0% to about 6.0% molybdenum; from about 1.0% to about 6.0% niobium, tantalum or mixtures thereof and the balance nickel.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: February 2, 1993
    Assignee: Wall Colmonoy Corporation
    Inventor: Samuel C. DuBois
  • Patent number: 4874577
    Abstract: Disclosed is a wear-resistant intermetallic compound alloy having superior machineability which consists essentially of: 45-60% of either Ni or Co or both with cobalt content of at least 5%, at least one of 0.1-2% of Hf and 0.05-2% of Re, 0-2% of at least one element selected from the group consisting of Si, P, Cu, Zn, Ga, Ge, Cd, In, Sn, Sb, Pb and Bi, 0-2% of C, and 0-5% of at least one element selected from the group consisting of Zr, Fe, V, Nb, Ta, Cr, Mo, W and Mn, the balance being Ti and incidental impurities, the percent being atomic percent.
    Type: Grant
    Filed: November 9, 1987
    Date of Patent: October 17, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Saburo Wakita, Junji Hoshi
  • Patent number: 4861550
    Abstract: The invention relates to a Ni-base alloy which contains Mo, Al and Fe, and further, as required, one or more of the following: a group consisting of one or more of V, W, Cr and Cu; one or both of B and Ca; and Co. The alloy of the invention has excellent resistance to stress corrosion cracking even after being subjected to thermal processing such as welding without need for solution treatment thereafter.
    Type: Grant
    Filed: March 14, 1988
    Date of Patent: August 29, 1989
    Assignee: Mitsubishi Metal Corporation of Tokyo
    Inventors: Takeshi Yoshida, Yoshio Takizawa, Ichiro Sekine
  • Patent number: 4822567
    Abstract: Antibiotic alloys adapted for making sanitary articles, such as orthodontic fittings and component parts of water purifying apparatus, the alloy containing cobalt to impart an antibiotic ability hereto, and iron and nickel to enhance the workability thereof so that the alloy can be easily worked into intricate shapes.
    Type: Grant
    Filed: October 29, 1987
    Date of Patent: April 18, 1989
    Assignee: Sankin Kogyo Kabushiki Kaisha
    Inventors: Isamu Kato, Sadayuki Yuhda, Naoki Oda, Masahiro Suganuma
  • Patent number: 4808372
    Abstract: An in situ process is provided for producing a composite comprising a refractory material dispersed in a solid matrix. A molten composition comprising a matrix liquid, and at least one refractory carbide-forming component are provided, and a gas is introduced into the molten composition. A reactive component is also provided for reaction with the refractory material-forming component. The refractory material-forming component and reactive component react to form a refractory material dispersed in the matrix liquid, and the liquid composite is cooled to form a solid composite material. In one embodiment, the reactive component is a carbonaceous component in the form of a component of the gas, a solid in the gas or the molten composition, or both. The carbonaceous component is provided for reaction with a refractory carbide-forming component to yield a refractory carbide. In a preferred embodiment, the matrix liquid is molten aluminum and the refractory carbide-forming component is tantalum.
    Type: Grant
    Filed: January 23, 1986
    Date of Patent: February 28, 1989
    Assignee: Drexel University
    Inventors: Michael J. Koczak, K. Sharvan Kumar
  • Patent number: 4806725
    Abstract: A circuit substrate, such as a thermal printing head, having electrodes made of a material suitable for soldering. The electrode to be soldered, at least in part, is composed of an alloy of Ni and Cu, whose composition ranges from 65 mol % Ni - 35 mol % Cu to 75 mol % Ni - 25 mol % Cu.
    Type: Grant
    Filed: July 9, 1987
    Date of Patent: February 21, 1989
    Assignee: Hitachi, Ltd.
    Inventors: Yasunori Narizuka, Keiji Mori, Akira Yabushita, Tsuneaki Kamei, Mamoru Morita
  • Patent number: 4806305
    Abstract: Disclosed is a series of silicon rich nickel-base alloys that have a high degree of ductility and hot working properties. The alloys have the corrosion resistant characteristics comparable to cast HASTELLOY.RTM. alloy D (Ni - 9 Si - 3 Cu). The alloys have good tensile strength at temperatures up to 600.degree. C. comparing favorably with Alloy IN 718. In addition, the alloys may be produced by super plastic forming (isothermal forging). The nickel-base alloy typically contains 7 to 14% silicon, 0.5 to 6% vanadium, plus a number of optional modifying elements.
    Type: Grant
    Filed: May 1, 1987
    Date of Patent: February 21, 1989
    Assignee: Haynes International, Inc.
    Inventor: Warren C. Oliver
  • Patent number: 4785137
    Abstract: This invention relates to electrical devices in which the electrical contact areas are plated with a nickel/indium/other metal alloy.
    Type: Grant
    Filed: December 30, 1985
    Date of Patent: November 15, 1988
    Assignee: Allied Corporation
    Inventor: George J. Samuels
  • Patent number: 4728494
    Abstract: Zinc-free nickel alloys for spectacle frames and spectacle parts are described which in addition to very good corrosion properties also show good shaping properties. In addition to nickel, they contain 5 to 20% copper, 2 to 6% aluminum, 0 to 1% beryllium, and up to 0.5% carbon.
    Type: Grant
    Filed: December 27, 1985
    Date of Patent: March 1, 1988
    Assignee: Degussa Aktiengesellschaft
    Inventors: Lorenz Berchtold, Gernot Jackel
  • Patent number: 4724188
    Abstract: A magnetic medium in which the non-magnetic layer comprises nickel-copper-phosphorus film containing 20 to 65 wt % of copper, in which layer is formed by electroless plating. The non-magnetic layer does not become magnetic even after heat treatment at 200.degree. C. or above.
    Type: Grant
    Filed: June 6, 1985
    Date of Patent: February 9, 1988
    Assignee: C. Uyemura and Co.
    Inventors: Masahiro Saito, Akira Nakabayashi
  • Patent number: 4717539
    Abstract: A group of alloys exhibiting good corrosion resistance and with properties suitable for fabricating dental prostheses consist essentially of copper, nickel and tantalum. Copper and nickel comprise the major components, while tantalum is present in lesser quantities. Lithium and/or Ce, Si metal may be added in small amounts as a deoxidant. Minor amounts of elements such as aluminum, gallium, indium, silicon, titanium and cerium can be added to modify the physical properties of the alloys.
    Type: Grant
    Filed: April 22, 1986
    Date of Patent: January 5, 1988
    Assignees: Alma Phillips, Hugh Finley
    Inventor: David P. Morisey
  • Patent number: 4678636
    Abstract: Reactive metal-precious metal ductile alloys containing controlled amounts of Cu and Ni and mixtures thereof are suitable for brazing ceramics, other non-metallic and metallic materials.
    Type: Grant
    Filed: January 31, 1986
    Date of Patent: July 7, 1987
    Assignee: GTE Products Corporation
    Inventor: Howard Mizuhara
  • Patent number: 4642495
    Abstract: An electric rotary machine (for example, a dynamoelectric machine) having a superconducting rotor is disclosed in which an outer shielding member for protecting a superconducting field winding from the influence of the magnetic flux from the stator side and for interrupting heat radiated from the normal temperature side is made of a nickel alloy containing not more than 0.3% carbon, not more than 1% silicon, not more than 2% manganese, not more than 1.5% titanium, from 2 to 8% aluminum, from 8 to 40% copper, and not less than 55% nickel for the balance by weight. The nickel alloy has a structure that a .gamma.'-phase precipitation is formed by aging in an austenitic matrix, and is non-magnetic at 20.degree. C.
    Type: Grant
    Filed: April 23, 1985
    Date of Patent: February 10, 1987
    Assignee: Hitachi, Ltd.
    Inventors: Takanobu Mori, Yutaka Fukui, Tetsuo Kashimura, Yoshimi Yanai
  • Patent number: 4624832
    Abstract: New nickel alloys are described which are useful for eyeglass frames, which alloys in addition to good resistance to corrosion also have good workability properties. They contain 5 to 20 percent copper and 5 to 30 percent zinc. Optionally, they can also be alloyed in small amounts other metals such as manganese, silicon, beryllium, cobalt, aluminum, niobium, tantalum, or titanium.
    Type: Grant
    Filed: November 2, 1984
    Date of Patent: November 25, 1986
    Assignee: Degussa Aktiengesellschaft
    Inventors: Horst Heidsiek, Gernot Jackel, Horst Becker
  • Patent number: 4565589
    Abstract: Nickel/titanium alloys containing less than a stoichiometric quantity of titanium, which have a high austenitic yield strength and are capable of developing the property of shape memory at a temperature above 0.degree. C., may be stabilized by the addition of from 7.5 to 14 atomic percent copper. These stabilized alloys also possess improved workability and machinability.
    Type: Grant
    Filed: September 28, 1983
    Date of Patent: January 21, 1986
    Assignee: Raychem Corporation
    Inventor: John D. Harrison
  • Patent number: 4561892
    Abstract: Disclosed is a coated substrate article coated with an alloy powder containing, in weight percent, 7 to 19 silicon, up to 5 copper balance nickel, cobalt and/or iron plus impurities. The articles may be coated by a variety of spray coating processes; however, plasma spray coating is preferred. The coated article is especially suited for use in severe conditions of wet corrosion.
    Type: Grant
    Filed: June 5, 1984
    Date of Patent: December 31, 1985
    Assignee: Cabot Corporation
    Inventors: Prabhat Kumar, Vidhu Anand
  • Patent number: 4497772
    Abstract: Reactive metal-palladium-copper-nickel alloys are suitable for brazing ceramics, other non-metallic and metallic materials.
    Type: Grant
    Filed: March 14, 1983
    Date of Patent: February 5, 1985
    Assignee: GTE Products Corporation
    Inventor: Howard Mizuhara
  • Patent number: 4489136
    Abstract: A copper based low melting point metal alloy composition consists essentially of about 5 to 52 atom percent nickel, about 2 to 10 atom percent tin, about 10 to 15 atom percent phosphorus and the balance essentially copper and incidental impurities. The composition is such that the total of copper, nickel and tin ranges from about 85 to 90 atom percent.
    Type: Grant
    Filed: April 26, 1983
    Date of Patent: December 18, 1984
    Assignee: Allied Corporation
    Inventors: Debasis Bose, Amitava Datta, Nicholas J. DeCristofaro
  • Patent number: 4460658
    Abstract: A copper based low melting point metal alloy composition consists essentially of about 10 to 52 atom percent nickel, about 2 to 10 atom percent tin, about 10 to 15 atom percent phosphorus and the balance essentially copper and incidental impurities. The composition is such that the total of copper, nickel and tin ranges from about 85 to 90 atom percent.
    Type: Grant
    Filed: September 20, 1982
    Date of Patent: July 17, 1984
    Assignee: Allied Corporation
    Inventors: Debasis Bose, Amitava Datta, Nicholas J. DeCristofaro
  • Patent number: 4453976
    Abstract: An improved thermal spray nickel base alloy powder which forms an extremely tenacious, dense corrosion resistant coating on metal parts subject to a corrosive environment. The disclosed thermal spray powder is a nickel base alloy having 20 to 40% by weight molybdenum, and 12 to 20% by weight chromium, and preferably includes 0 to 10% by weight iron and 0.03 to 2% by weight copper plus vanadium. The metal alloy powder is preferably formed by atomizing the molten alloy, and the coating is preferably formed by thermal or plasma spray.
    Type: Grant
    Filed: August 25, 1982
    Date of Patent: June 12, 1984
    Assignee: Alloy Metals, Inc.
    Inventor: John W. Smythe
  • Patent number: 4446121
    Abstract: An economical metallic material for absorption and desorption of hydrogen comprising an alloy having the general formula represented by AB.sub.x, wherein A is Ca or a metallic material which is an alloy including Ca, B is Ni or a metallic material which is an alloy including Ni, and x is in the range of 3.8-6.3, and exhibiting a hydrogen dissociation equilibrium pressure (or plateau pressure, pressure of the plateau region of hydrogen dissociation pressure-hydride composition isotherm) below 1 atm at normal temperatures.The material of the invention very easily absorbs large amounts of hydrogen and efficiently releases it at other predetermined temperatures, pressure and electrochemical conditions, whereby it is able to store hydrogen safely, usefully and economically.
    Type: Grant
    Filed: April 22, 1982
    Date of Patent: May 1, 1984
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takaharu Gamo, Yoshio Moriwaki, Toshio Yamashita
  • Patent number: RE33186
    Abstract: An electric rotary machine (for example, a dynamoelectric machine) having a superconducting rotor is disclosed in which an outer shielding member for protecting a superconducting field winding from the influence of the magnetic flux from the stator side and for interrupting heat radiated from the normal temperature side is made of a nickel alloy containing not more than 0.3% carbon, not more than 1% silicon, not more than 2% manganese, not more than 1.5% titanium, from 2 to 8% aluminum, from 8 to 40% copper, and not less than 55% nickel for the balance by weight. The nickel alloy has a structure that a .gamma.'-phase precipitation is formed by aging in an austenitic matrix, and is non-magnetic at 20.degree. C.
    Type: Grant
    Filed: February 9, 1989
    Date of Patent: March 27, 1990
    Assignee: Hitachi, Ltd.
    Inventors: Takanobu Mori, Yutaka Fukui, Tetsuo Kashimura, Yoshimi Yanai
  • Patent number: RE44018
    Abstract: An information recording medium comprising a substrate having a recording surface provided with emboss pits or guiding grooves, a reflective film formed on the recording surface of the substrate, and a first protective film formed on the reflective film. This information recording medium is featured in that both sides of the information recording medium are constituted by a first surface provided with the protective film and by a second surface formed opposite to the first surface, and that an irradiated light beam is irradiated through the first surface, a recorded information being reproduced based on changes in light intensity of the reflected light beam.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadashi Kobayashi, Hisashi Yamada