Zinc, Or Cadmium Containing Patents (Class 420/506)
  • Patent number: 11715770
    Abstract: The current disclosure describes semiconductor devices, e.g., transistors including a thin semimetal layer as a channel region over a substrate, which includes bandgap opening and exhibits semiconductor properties. Described semiconductor devices include source/drain regions that include a thicker semimetal layer over the thin semimetal layer serving as the channel region, this thicker semimetal layer exhibiting metal properties. The semimetal used for the source/drain regions include a same or similar semimetal material as the semimetal of the channel region.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: August 1, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Wei Yang, Hao-Hsiung Lin
  • Publication number: 20140342104
    Abstract: An Ag alloy film for use in reflective electrodes is provided, which has a low electrical resistivity and a high reflectance that are almost at the same levels as those of an Ag film, and has excellent oxidation resistance. An Ag alloy film for reflective electrodes, which can be used in a reflective electrode and is characterized in that at least one element selected from the group consisting of In and Zn is contained in an amount of 0.1 to 2.0 atomic %.
    Type: Application
    Filed: December 19, 2012
    Publication date: November 20, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Yuki Tauchi, Yoko Shida
  • Publication number: 20140326849
    Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that exhibits a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature undergoes the martensitic transformation without intergranular fracture of the geometric feature.
    Type: Application
    Filed: September 13, 2012
    Publication date: November 6, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
  • Publication number: 20140003992
    Abstract: Titanium sterling silver alloy compositions that exhibit enhanced tarnish resistance while maintaining an acceptable hardness. Applications and manufacturing methods thereof are disclosed.
    Type: Application
    Filed: March 11, 2012
    Publication date: January 2, 2014
    Inventor: Kenneth Fogel
  • Publication number: 20130126934
    Abstract: A bonding wire for semiconductor devices and a method of manufacturing the wire are provided. The bonding wire contains at least one element selected from zinc, tin, and nickel in an amount of 5 ppm to 10 wt %, the remainder containing silver and inevitable impurities. The method involves pouring a silver alloy according to the invention into a mold and melting the silver alloy, continuously casting the melted silver alloy, and drawing the continuously casted silver alloy.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 23, 2013
    Applicant: Heraeus Materials Technology GmbH & Co. KG
    Inventor: Heraeus Materials Technology GmbH & Co. KG
  • Publication number: 20120070332
    Abstract: This invention provides sputtering target materials having high reflectance and excellent heat resistance, which are formed of Ag base alloys formed by adding a specific, minor amount of P to Ag and alloying them.
    Type: Application
    Filed: November 29, 2011
    Publication date: March 22, 2012
    Inventors: Koichi HASEGAWA, Nobuo ISHII
  • Publication number: 20110211988
    Abstract: This invention provides sputtering target materials having high reflectance and excellent heat resistance, which are formed of Ag base alloys formed by adding a specific, minor amount of P to Ag and alloying them.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 1, 2011
    Inventors: Koichi HASEGAWA, Nobuo Ishii
  • Publication number: 20110139318
    Abstract: In an Ag, Cu, Ge alloy containing boron as grain refiner, investment castings of a clean bright silvery appearance and/or free from cracking defects are obtained by incorporation of silicon, in some embodiments in the absence of added zinc.
    Type: Application
    Filed: February 28, 2011
    Publication date: June 16, 2011
    Applicant: ARGENTIUM INTERNATIONAL LIMITED
    Inventor: Peter Gamon Johns
  • Patent number: 7959855
    Abstract: The present disclosure relates to white precious metal alloy compositions comprising at least one of platinum and palladium alloyed with gold, silver, and optionally one or more additional alloying elements. More specifically, and in one embodiment, the present disclosure relates to white precious metal alloy compositions that are suitable for the manufacture of jewelry and other finished articles. In addition, the present invention also relates to a method of manufacturing finished articles from such white precious metal alloy compositions.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: June 14, 2011
    Inventor: Heru Budihartono
  • Patent number: 7740798
    Abstract: Alloy compositions, including devices and instruments that include the compositions, are disclosed. The compositions have high hardness, strength, corrosion resistance, and biocompatibility. The compositions can be used to manufacture, for example, medical devices and products.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: June 22, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jonathan S. Stinson
  • Publication number: 20100140439
    Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that is characterized by a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature is configured to accept a mechanical stress input.
    Type: Application
    Filed: July 8, 2009
    Publication date: June 10, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
  • Publication number: 20090075109
    Abstract: A silver alloy reflective film is used in an optical information recording medium and contains silver as a main component, a total of 0.01 to 3 atomic percent of at least one of Bi and Sb, and a total of 3 to 42 atomic percent of at least one of Cu, Ge, Mg, and Zn. The silver alloy reflective film preferably further contains 0.1 to 3 atomic percent of yttrium. An optical information recording medium includes the silver alloy reflective film. A sputtering target for depositing the silver alloy reflective film contains silver as a main component, 0.01 to 3 atomic percent of Sb (or 0.03 to 10 atomic percent of Bi), and a total of 3 to 42 atomic percent of at least one of Cu, Ge, Mg, and Zn.
    Type: Application
    Filed: November 6, 2008
    Publication date: March 19, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yuki TAUCHI, Junichi NAKAI
  • Publication number: 20080166260
    Abstract: Silver alloy compositions having reduced susceptibility to sulphidation and reduced susceptibility to fire stain relative to 92.5% silver 7.5% copper alloy, and having mechanical properties for casting and forming comparable to or better than 92.5% silver 7.5% copper alloy, and having an appearance similar to 92.5% silver 7.5% copper alloy. The silver alloy compositions include at least 92.5% silver 2.0%-4.0% tin; 1.7%-2.6% zinc and 0.50%-1.5% indium.
    Type: Application
    Filed: February 3, 2006
    Publication date: July 10, 2008
    Applicants: CARRS OF SHEFFIELD (MANUFACTURING) LIMITED, SHEFFIELD HALLAM UNIVERSITY, CENTRE STEPHANOIS DE RECHERCHES MECANIQUES
    Inventors: Frederic Faverjon, Alan G. Hopkinson, James Storey
  • Patent number: 7160632
    Abstract: The invention provides a material for sliding contacts that is suitable for a small-sized DC motor used in recent downsized CD players and is excellent in durability. A material for sliding contacts used in a commutator of a small-sized DC motor that consists essentially of 0.01 to 3.0% Ni by weight, 0.01 to 6.0% ZnO by weight and/or 0.01 to 3.0% MgO by weight, furthermore, in some cases, 0.01 to 5.0% Cu by weight, and the balance Ag, in which Ni metal particles, ZnO particles or MgO particles are dispersed in the matrix of Ag.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: January 9, 2007
    Assignees: Mabuchi Motor Co., Ltd., Tanaka Kikinzoku kogyo K.K.
    Inventors: Keiji Nakamura, Yasuhiro Hashimoto, Masahiro Takahashi, Shuichi Kubota, Takao Asada, Toshiya Yamamoto
  • Patent number: 6913657
    Abstract: A hard precious metal alloy member is constituted of a gold alloy, which has a gold Au content of from 37.50 to 98.45 wt %, and contains a hardening additive in a range of not less than 50 ppm but less than 15,000 ppm, wherein the hardening additive is constituted of gadolinium Gd only, or gadolinium Gd and at least one element selected from the group consisting of rare-earth elements other than Gd, alkaline-earth elements, silicon Si, aluminum Al, and boron B.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: July 5, 2005
    Inventor: Kazuo Ogasa
  • Patent number: 6841012
    Abstract: An anti-tarnish silver alloy is provided including at least about 85% silver, with the balance including zinc, copper, indium, and tin. Also provided are articles made from the alloy and methods of making the articles.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: January 11, 2005
    Assignee: Steridyne Laboratories, Inc.
    Inventor: Scott M. Croce
  • Publication number: 20020122741
    Abstract: The dental alloys herein are formulated from a combination of palladium, silver and platinum and a small amount of one or more of indium, gallium, tin, germanium, zinc and manganese. The alloys may also contain one or more of gold, iridium, ruthenium, rhodium, rhenium, titanium, aluminum, silicon, hafnium, boron, and/or calcium. The alloys are particularly useful as substrate components for dental restorative materials including, but not limited to, orthodontic appliances, bridges, space maintainers, tooth replacement appliances, splints, crowns, partial crowns, dentures, posts, teeth, jackets, inlays, onlays, facing, veneers, facets, implants, abutments, cylinders, and connectors. The substrate may be defined as a main component of the dental restoration having one or more layers of material thereon, or as the complete restoration with no other material thereon.
    Type: Application
    Filed: December 17, 2001
    Publication date: September 5, 2002
    Inventors: Arun Prasad, Grant P. Day
  • Patent number: 6245166
    Abstract: An object of the present invention is to provide a material for a sliding contact whose alloy composition does not contain an environmentally detrimental substance such as Cd, which exhibits excellent contact resistance, whose electrical functions are good and free of time-course variation, and which further exhibits excellent wear resistance. The material for a sliding contact assumes the form of an Ag—Zn—Pd, Ag—Zn—Pd—Cu, Ag—Zn—Pd—Ni, or Ag—Zn—Pd—Cu—Ni alloy. In the compositions of these alloys, the Zn content is 0.1-3.0% by weight, the Pd content is 0.1-1.5% by weight, and the balance is Ag. When Cu is contained, the Cu content is 0.1-3.0% by weight. When Ni is contained, the Ni content is 0.01-0.5% by weight. Zn, Pd, and Cu are present in the Ag &agr; phase in the form of solid solution. Ni particles are finely dispersed in the alloys. A composite clad material is formed through use of the material for a sliding contact.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: June 12, 2001
    Assignees: Mabuchi Motor Co., Ltd, Tanaka Kikinozoku Kogyo K.K.
    Inventors: Isao Shibuya, Keiji Nakamura, Kenji Shiraki, Toshiya Yamamoto, Takao Asada
  • Patent number: 6139652
    Abstract: A fine silver alloy composition having at least about 99.5 weight percent silver, with the balance containing an element, or an oxide of an element, selected from the group consisting of: aluminum, antimony, cadmium, gallium, germanium, indium, lithium, manganese, magnesium, silicon, tin, titanium and zinc, the alloy composition having been formed by combining silver having a purity of at least about 99.90 weight percent with an element, or an oxide of an element, selected from the group, in a substantially non-oxidizing atmosphere. The alloy composition may be annealed in a substantially non-oxidizing atmosphere. The silver alloy composition may be hardened by internal oxidation. The composition is capable of being aged hardened to at least 136 percent of its annealed hardness, and this hardening may be irreversible. The composition may be resistant to tarnishing, and may have an aged hardness of at least about 48 VHN.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: October 31, 2000
    Assignees: Stern-Leach, Ronald Mondillo
    Inventors: Richard V. Carrano, Ronald A Mondillo
  • Patent number: 5882441
    Abstract: A silver colored alloy, highly tarnish resistant, corrosion resistant and brittleness free is provided. The alloy includes 90% to 94% by weight silver, 3.50% to 7.35% by weight zinc, 1% to 3% by weight copper, and 0.1% to 2.5% by weight silicon. The alloy is suitable for rings, earrings, bangles and other jewelry.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: March 16, 1999
    Inventor: Daniel Davitz
  • Patent number: 5171643
    Abstract: An electric contact material comprising 0.01 to 2.0 weight % of Li, 0.01 weight % or more to less than 0.2 weight % of at least one rare earth metal and the remainder being Ag. The electric contact material may further comprise 0.1 to 1.0 weight % of at least one element selected from a group consisting of In, Sn, Zn, Mn, Pd, Sb, Cu, Mg, Pb, Cd, Cr and Bi, however, for Zn and Mn, the amount is less than 0.5 % by weight; and/or 0.03 to 0.6 weight % of at least one element selected from a group consisting of Fe, Ni and Co. The electric contact material is excellent in arc resistance, wear resistance and lubricity in a small current region and is suitable as a material for a slide contact and a rotary slide contact.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: December 15, 1992
    Assignees: The Furukawa Electric Co., Ltd., Mabuchi Motor Kabushiki Kaisha
    Inventors: Satoshi Suzuki, Nobuyuki Shibata, Ryotomo Shirakawa, Akira Matsuda
  • Patent number: 5102480
    Abstract: Novel Ag-SnO-CdO electrical contact materials are disclosed, which are made of ternary Ag alloys consisting of more than 5-12 weight % of Sn, 0.5-5 weight % of Cd, and a balance of Ag, the alloys having been prepared by melting and having been internal oxidized. Novel manufacturing methods are also disclosed, in which internal-oxidation is conducted in an oxygen atmosphere of more than 10 atm to 200 atm, at a temperature of 750.degree. C. to 500.degree. C., and at a condition that the alloys are kept at a solid phase not involving any liquid phase.
    Type: Grant
    Filed: January 14, 1991
    Date of Patent: April 7, 1992
    Assignee: Chugai Denki Kogyo K.K.
    Inventors: Seiichi Tanaka, Teruo Hirata, Masaharu Yida
  • Patent number: 5021214
    Abstract: Ag allow generally used for decorative purposes such as silverware and accessories, including In and Al as a substitute for conventionally used Pd provides the products with high discoloration resistance and elegant tint inherent to Ag. Additional content of Cu further improves mechanical properties of the products.
    Type: Grant
    Filed: December 26, 1989
    Date of Patent: June 4, 1991
    Assignee: Kabushiki Kaisha Zero One
    Inventors: Hiroshi Sasaki, Makoto Nishiya
  • Patent number: 4726858
    Abstract: A recording material made of an alloy capable of exhibiting different spectral reflectances at an equal temperature, depending on a heating-cooling cycle to which the alloy is subjected. The alloy can possess in solid state different crystal structures at a first temperature higher than the room temperature and at a second temperature lower than the first temperature but not lower than the room temperature. A part of the surface of the alloy exhibits, as a result of being quenched from the first temperature, a crystal structure which is different from the crystal structure at the second temperature, while the other part possesses the crystal structure at the second temperature, so that these two parts exhibit different spectral reflectances. Using this recording medium, it is possible to record, reproduce and erase information by means of, for example, laser beams.
    Type: Grant
    Filed: August 22, 1984
    Date of Patent: February 23, 1988
    Assignee: Hitachi, Ltd.
    Inventors: Tetsuro Minemura, Hisashi Ando, Isao Ikuta, Yoshiaki Kita
  • Patent number: 4647322
    Abstract: Internal oxidized Ag-SnO system alloy electrical contact materials having a moderate initial contact resistance and having no depletion layer is disclosed. The alloy is internal oxidized by having it sandwiched between pure silver thin layers, and is cut horizontally right in two, simultaneously removing the depletion layer from the internally oxidized alloy.
    Type: Grant
    Filed: August 30, 1985
    Date of Patent: March 3, 1987
    Assignee: Chugai Denki Kogyo K.K.
    Inventor: Akira Shibata
  • Patent number: 4636270
    Abstract: Electrical contact materials made from an internally oxidized Ag alloy containing 0.5 to 12 weight % of Sn. Internal oxidized structures which have been produced in the alloy at the forwardmost area along a progressive direction of internal oxidation and which are fine and free from the segregation of tin oxides, are employed as contact surfaces. Another surface opposite to said contact surfaces may be brazeable by having it subjected to a reduction or decomposition treatment of metal oxides about said another surface.
    Type: Grant
    Filed: September 23, 1985
    Date of Patent: January 13, 1987
    Assignee: Chugai Denki Kogyo K.K.
    Inventor: Akira Shibata
  • Patent number: 4544611
    Abstract: A conductive element having a metallization paste screen printed on its surface is made using a paste containing 65 to 95% by weight silver and 5 to 35% by weight cadmium/antimony alloy dispersed in a liquid vehicle.
    Type: Grant
    Filed: April 27, 1984
    Date of Patent: October 1, 1985
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Joseph R. Rellick
  • Patent number: 4514238
    Abstract: Internally oxidized Ag-Sn-Bi alloy electrical contact materials. The alloy contains a larger amount of Bi, viz., more than 2 weight percent of bismuth, whereby the Bi which can not be a solid solution with Ag and Sn and hence precipitates as a numerous number of defects in an Ag matrix, does not allow said Ag matrix to form crystalline grains, but accelerates oxidation velocity and has solute metals oxidized extremely in minute and uniform up to inner cores of alloy mass.
    Type: Grant
    Filed: October 29, 1984
    Date of Patent: April 30, 1985
    Assignee: Chugai Denki Kogyo K.K.
    Inventor: Akira Shibata
  • Patent number: 4385892
    Abstract: A novel setting composition for dental purposes comprises a dental silver amalgam alloy composed mainly of silver and tin, and including one or more of copper, zinc, indium, palladium and gold; mercury in an amount sufficient to amalgamate said alloy: and selenium. The selenium may or may not be coated with a metal showing an affinity for mercury, such as silver. The amount of selenium contained is in a range of 0.005 to 5% by weight.
    Type: Grant
    Filed: March 9, 1982
    Date of Patent: May 31, 1983
    Assignees: Atsushige Sato, Ishi Miura, G-C Dental Industrial Corp.
    Inventors: Atsushige Sato, Ishi Miura, Yasuhiro Kumei, Osamu Okuno, Bunsaku Yoshida