Group Iv Or V Transition Metal Containing Patents (Class 420/53)
  • Patent number: 11692232
    Abstract: High strength precipitation hardening stainless steel alloy is disclosed. The steel alloy has a composition by weight %, about: 30.0% max nickel (Ni), 0.0 to 15.0% cobalt (Co), 25.0% max chromium (Cr), 5.0% max molybdenum (Mo), 5.0% max titanium (Ti), 5.0% max vanadium (V), about 0.5% max lanthanum (La) and/or cerium (Ce), and in balance iron (Fe) and inevitable impurities. The steel alloy provides a unique combination of corrosion resistance, strength and toughness and is a material for aircraft landing gears and structures.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: July 4, 2023
    Inventor: Gregory Vartanov
  • Patent number: 9368807
    Abstract: The present invention relates to a fuel cell element having an active core interposed between a first and second conducting plate, wherein at least the first conducting plate is made from an alloy having, in percentages by weight, 24.0 to 27.0% nickel; 13.5 to 16.0% chromium; 1.90 to 2.35% titanium; 1.0 to 1.5% molybdenum; 0.10 to 0.50% vanadium; at most 0.08% carbon; at most 2.0% manganese; at most 1.0% silicon; at most 0.35% aluminum; at most 0.03% sulphur; and at most 0.01% boron, the balance consisting of iron and impurities.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: June 14, 2016
    Assignees: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE, APERAM ALLOYS IMPHY
    Inventors: Eric Claude, Richard Bosquet, Gilles Platen, Claude Roussel
  • Publication number: 20150093284
    Abstract: Welding material for welding of superalloys comprising boron with the range of 0.3-0.8 wt. % B, 0.2-0.8 wt. % C, 17-23 wt. % Cr, 0.35-10 wt. % Mo, 0.1-4.15 wt. % Nb with nickel or iron and impurities to balance for weld repair of engine components manufactured of precipitation hardening superalloys with high content of gamma prime phase at an ambient temperature.
    Type: Application
    Filed: April 28, 2014
    Publication date: April 2, 2015
    Applicant: Liburdi Engineering Limited
    Inventors: Alexander B. Goncharov, Joseph Liburdi, Paul Lowden
  • Publication number: 20150000468
    Abstract: There is provided a metal powder for powder metallurgy including Zr and Si in a manner such that following conditions of (A) and (B) are satisfied, wherein a remainder thereof includes at least one element selected from the group consisting of Fe, Co and Ni, (A) the mass ratio of a content of Zr to a content of Si is 0.03 to 0.3, and (B) the content of Si is 0.35 to 1.5% by mass.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventor: Hidefumi NAKAMURA
  • Patent number: 8865060
    Abstract: An austenitic stainless steel, which consists of by mass percent, C: not more than 0.02%, Si: not more than 1.5%, Mn: not more than 2%, Cr: 17 to 25%, Ni: 9 to 13%, Cu: more than 0.26% not more than 4%, N: 0.06 to 0.35%, sol. Al: 0.008 to 0.03%. One or more elements selected from Nb, Ti, V, TA, Hf, and Zr in controlled amounts can be included with the balance being Fe and impurities. P, S, Sn, As, Zn, Pb and Sb among the impurities are controlled as P: 0.006 to 0.04%, S: 0.0004 to 0.03%, Sn: 0.001 to 0.1%, As: not more than 0.01%, Zn: not more than 0.01%, Pb: not more than 0.01% and Sb: not more than 0.01%. The amounts of S, P, Sn, As, Zn, Pb and Sb and the amounts of Nb, Ta, Zr, Hf, and Ti are further controlled using formulas.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: October 21, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hiroyuki Hirata, Yoshitaka Nishiyama
  • Patent number: 8741215
    Abstract: To provide an inexpensive heat-resisting steel for engine valves by causing Fe-based heat-resisting steel to exhibit high temperature strength not inferior to that of Ni-based heat-resisting steel. A heat-resisting steel for engine valves excellent in high temperature strength containing, in % by mass, C: 0.20 to 0.50%, Si: 1.0% or less, Mn: 5.0% or less, P: 0.1 to 0.5%, Ni: 8.0 to 15.0%, Cr: 16.0 to 25.0%, Mo: 2.0 to 5.0%, Cu: 0.5% or less, Nb: 1.0% or less (including 0%), W: 8.0% or less (including 0%), N: 0.02 to 0.2%, B: 0.01% or less, and remnants of Fe and impurities, wherein the heat-resisting steel for engine valves satisfies formulae below: 442P(%)+12Mo(%)+5W(%)+7Nb(%)+328N(%)+171?300??Formula (1) ?38.13P(%)+1.06Mo(%)+0.13W(%)+9.64Nb(%)+13.52N(%)+4.83?0.12??Formula (2).
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 3, 2014
    Assignees: Hitachi Metals, Ltd., Honda Motor Co., Ltd.
    Inventors: Katsuhiko Ohishi, Takehiro Ohno, Toshihiro Uehara
  • Publication number: 20140134039
    Abstract: Austenitic stainless steel is disclosed herein. In the described embodiments, the austenitic stainless steel comprises 16.00 wt % of Chromium to 30.00 wt % of Chromium; 8.00 wt % of Nickel to 27.00 wt % of Nickel; no more than 7.00 wt % of Molybdenum; 0.40 wt % of Nitrogen to 0.70 wt % of Nitrogen, 1.0 wt % of Manganese to 4.00 wt % of Manganese, and less than 0.10 wt % of Carbon, wherein the ratio of the Manganese to the Nitrogen is controlled to less than or equal to 10.0. Austenitic stainless steel based on specified minimum PREN (Pitting Resistance Equivalent Number) values is also disclosed. (1) PRE=wt % Cr+3.3×wt % (Mo)+16 wt % N>=25 for N in range of 0.40-0.70. (2) PRE=wt % Cr+3.3×wt % (Mo+W)+16 wt % N>=27 for N in range of 0.40-0.70 with W present.
    Type: Application
    Filed: May 24, 2012
    Publication date: May 15, 2014
    Applicant: UNITED PIPELINES ASIA PACIFIC PTE LIMITED
    Inventor: Cecil Vernon Roscoe
  • Patent number: 8696835
    Abstract: An austenitic stainless steel for use in a hydrogen gas atmosphere comprises, in mass %, C: 0.10% or less, Si: 1.0% or less, Mn: 0.01 to 30%, P: 0.040% or less, S: 0.01% or less, Cr: 15 to 30%, Ni: 5.0 to 30%, Al: 0.10% or less, N: 0.001 to 0.30% with the balance Fe and inevitable impurities. An X-ray (111) integration intensity of a cross section along the direction rectangular to the working direction is five times that in a random direction or less, and the X-ray integration intensity ratio of a cross section along the working direction satisfies I(220)/I(111)?10. The high strength steel can also contain one or more of the groups of Mo and W; V, Nb, Ta, Ti, Zr and Hf; B; Cu and Co; Mg, Ca, La, Ce, Y, Sm, Pr and Nd.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: April 15, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Semba, Masaaki Igarashi, Tomohiko Omura, Mitsuo Miyahara, Kazuhiko Ogawa
  • Patent number: 8663549
    Abstract: To provide an inexpensive heat-resisting steel for engine valves by causing Fe-based heat-resisting steel to exhibit high temperature strength not inferior to that of Ni-based heat-resisting steel. A heat-resisting steel for engine valves excellent in high temperature strength containing, in % by mass, C: 0.20 to 0.50%, Si: 1.0% or less, Mn: 5.0% or less, P: 0.1 to 0.5%, Ni: 8.0 to 15.0%, Cr: 16.0 to 25.0%, Mo: 2.0% or less (including 0%), Cu: 0.5% or less, Nb: 1.0% or less (including 0%), W: 2.0% or less (including 0%), N: 0.02 to 0.30%, B: 0.01% or less, and remnants of Fe and impurities, wherein the heat-resisting steel for engine valves satisfies formulae below: 156.42P(%)+0.91Mo(%)+0.73W(%)?12.27Nb(%)+220.96N(%)+120.59?170??Formula (1) 13.70P(%)?6.97Mo(%)?4.32W(%)?3.29Nb(%)+119.10N(%)+27.75?25??Formula (2).
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 4, 2014
    Assignees: Hitachi Metals, Ltd., Honda Motor Co., Ltd.
    Inventors: Katsuhiko Ohishi, Akihiro Toji
  • Publication number: 20140030134
    Abstract: A purpose of the present invention is to provide a martensitic stainless steel applicable in environments involving both wet carbon dioxide gas and wet hydrogen sulfide and excellent in weldability, manufacturability, and resistance to strain age hardening. Provided is a martensitic stainless steel having excellent corrosion resistance and resistance to strain age hardening comprising, in percent by mass, 0.02% or less of C, 0.02% or less of N, 0.1 to 0.5% of Si, 0.1 to 0.5% of Mn, 10 to 13% Cr, Ni exceeding 5.0% but 8% or less, 1.5 to 3% of Mo, 0.01 to 0.05% of V, 0.16 to 0.30% of Zr, 0.01 to 0.05% of Ta, and the balance of Fe and unavoidable impurities, wherein the martensitic stainless steel satisfies the condition that the sum of the carbon and the nitrogen exceeds 0.02% but 0.04% or less.
    Type: Application
    Filed: April 11, 2011
    Publication date: January 30, 2014
    Applicant: NKK TUBES
    Inventors: Shuji Hashizume, Yusuke Minami, Yu Yamamoto
  • Patent number: 8506729
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9 (Cr+0.3Si+Mo+0.5W)?2.6 (Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc?100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 13, 2013
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Patent number: 8430075
    Abstract: A superaustenitic stainless steel comprises in weight %, 0.15 to 0.9% C, 0.2 to 1.3% Si, 0 to 0.45% Mn, 32.5 to 37.5% Cr, 13.5 to 17.5% Ni, 3.2 to 5.5% Mo, 0 to 2% Nb, 0 to 0.5% B, 0 to 2% Zr and 30 to 51% Fe. In a preferred embodiment, the superaustenitic stainless steel consists essentially of, in weight %, 0.5 to 0.9% C, 0.2 to 0.5% Si, 0.2 to 0.4% Mn, 33.0 to 35.0% Cr, 15.5 to 17.5% Ni, 4.0 to 4.5% Mo, 0.7 to 0.9% Nb, 0.07 to 0.13% B, 0 to 0.05% Zr and 40 to 46% Fe. The superaustenitic stainless steel is useful for valve seat inserts for internal combustion engines such as diesel or natural gas engines.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 30, 2013
    Assignee: L.E. Jones Company
    Inventors: Cong Yue Qiao, Todd Trudeau
  • Publication number: 20120321478
    Abstract: This invention provides a precipitate hardening stainless steel having excellent structure stability, strength, toughness, and corrosion resistance, which requires no sub-zero treating and thus is excellent in terms of productivity, and a long blade for a steam turbine using the same. The following are provided: a precipitate hardening stainless steel, which comprises C at 0.05 mass % or less, N at 0.05 mass % or less, Cr at 10.0 mass % to 14.0 mass %, Ni at 8.5 mass % to 11.5 mass %, Mo at 0.5 mass % to 3.0 mass %, Ti at 1.5 mass % to 2.0 mass %, Al at 0.25 mass % to 1.00 mass %, Si at 0.5 mass % or less, and Mn at 1.0 mass % or less, and the balance is composed of Fe and inevitable impurities; and a long blade for a steam turbine composed of the precipitate hardening stainless steel.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Inventors: Shinji OIKAWA, Hideo YODA, Masahiko ARAI, Hiroyuki DOI
  • Patent number: 8318083
    Abstract: The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M23C6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 27, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Roman I Pankiw, Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz
  • Publication number: 20120237389
    Abstract: An austenitic steel not susceptible to relaxation cracking, with composition comprising, in percentages by weight: 0.019% ?C ?0.030%, 0.5% ?Mn ?2%, 0.1% ?Si ?0.75%, Al >0.25%, 18% ?Cr ?25%, 12% ?Ni ?20%, 1.5% ?Mo ?3%, 0.001 % <B ?0.008%, 0.25% ?V ?0.35%, 0.23% ?N ?0.27%, the balance being iron and unavoidable impurities wherein: Ni(eq.) ?1.11 Cr(eq.) ?8.24, wherein: Cr(eq)=Cr+Mo+1.5 Si+5V+3AI+0.02, Ni(eq)=Ni+30C+x(N?0.045)+0.87 wherein: x=30 for N?0.2, x=22 for 0.2<N?0.25, x=20 for 0.25<N?0.35.
    Type: Application
    Filed: July 20, 2010
    Publication date: September 20, 2012
    Applicants: ArcelorMittal Investigacion y Desarrollo SL, Netherlands Org. for Applied Sci. Research (TNO), Centro Sviluppo Materiali S.P.A.
    Inventors: Bernard Bonnefois, Amelie Fanica, Lionel Coudreuse, Tassa Oriana, Johannes Cornelis Van Wortel
  • Publication number: 20120171070
    Abstract: A alloy and a process of forming a alloy are disclosed. The alloy has a predetermined grain boundary morphology. The alloy includes by weight greater than about 0.06 percent carbon, up to about 0.0015 percent sulfur, less than about 16 percent chromium, between about 39 percent and about 44 percent nickel, between about 2.5 percent and about 3.3 percent niobium, between about 1.4 percent and about 2 percent titanium, up to about 0.5 percent aluminum, up to about 0.006 percent boron, up to about 0.3 percent copper, up to about 0.006 percent nitrogen, and greater than about 0.5 percent molybdenum.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 5, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang FENG, George A. GOLLER, Raymond Joseph STONITSCH, Jason R. PAROLINI, Shan LIU
  • Patent number: 8105447
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9(Cr+0.3Si+Mo+0.5W)?2.6(Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc?100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 31, 2012
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Patent number: 8097098
    Abstract: The invention concerns martensitic stainless steel, characterized in that its composition in weight percentages is as follows: 9%=Cr=13%; 1.5%=Mo=3%; 8%=Ni=14%; 1%=Al=2%; 0.5%=Ti=1.5% with AI+Ti=2.25%; traces=Co=2%; traces=W=1% with Mo+(W/2)=3%; traces=P=0.02%; traces=S=0.0050%; traces=N=0.0060%; traces=C=0.025%; traces=Cu=0.5%; traces=Mn=3%; traces=Si=0.25%; traces=O=0.0050%; and is such that: Ms (° C.)=1302 42 Cr 63 Ni 30 Mo+20AI-15W-33Mn-28Si-30Cu-13Co+10 Ti=50Cr eq/Ni eq=1.05 with Cr eq (%)=Cr+2Si+Mo+1.5 Ti+5.5 AI+0.6W Ni eq (%)=2Ni+0.5 Mn+3O C+25 N+Co+0.3 Cu. The invention also concerns a method for making a mechanical part using said steel, and the resulting part.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: January 17, 2012
    Assignee: Aubert & Duval
    Inventor: Jacques Montagnon
  • Publication number: 20120003116
    Abstract: An austenitic stainless steel, which consists of by mass %, C?0.02%, Si: 0.01 to 0.50%, Mn: 0.01 to 2.0%, Cr: 24 to 26%, Ni: 19 to 22%, Mo: more than 0.10% to less than 0.50%, N: more than 0.04% to not more than 0.15%, and one or two elements selected from Nb?0.30% and V?0.40%, with the balance being Fe and impurities, and among the impurities P?0.030%, S?0.002% and Sn?0.015%, and satisfies [2.5?36Nb+53V+15N?25.0] and [S+{(P+Sn)/2??5.76×10?4×(36Nb+53V+15N)+0.0267] has excellent corrosion resistance, in particular, excellent intergranular corrosion resistance, and further has excellent crack insusceptibility in a weld heat affected zone. This austenitic stainless steel is a particularly excellent material as structural members for a nuclear power plant.
    Type: Application
    Filed: September 15, 2011
    Publication date: January 5, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Takahiro OSUKI, Kiyoko Takeda, Tetsuo Yokoyama
  • Publication number: 20110314965
    Abstract: There is provided a metal powder for powder metallurgy including Zr and Si in a manner such that following conditions of (A) and (B) are satisfied, wherein a remainder thereof includes at least one element selected from the group consisting of Fe, Co and Ni, (A) the mass ratio of a content of Zr to a content of Si is 0.03 to 0.3, and (B) the content of Si is 0.35 to 1.5% by mass.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 29, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Hidefumi NAKAMURA
  • Patent number: 8071020
    Abstract: A high strength Cr—Ni alloy material excellent in hot workability and stress corrosion cracking resistance, and seamless pipe for oil well application which consists of, by mass percent, C: 0.05% or less, Si: 0.05 to 1.0%, Mn: 0.01% or more and less than 3.0%, P: 0.05% or less, S: 0.005% or less, Cu: 0.01 to 4%, Ni: 25% or more and less than 35%, Cr: 20 to 30%, Mo: 0.01% or more and less than 4.0%, N: 0.10 to 0.30%, Al: 0.03 to 0.30%, O (oxygen): 0.01% or less, and REM (rare earth metal): 0.01 to 0.20% with the balance being Fe and impurities, and also satisfies the conditions in the following formula (1). N×P/REM?0.40??formula (1) where P, N, and REM in the formula (1) respectively denote the contents (mass %) of P, N, and REM. The high strength Cr—Ni alloy material may further contain one or more types of W, Ti, Nb, Zr, V, Ca, and Mg, instead of part of Fe.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: December 6, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yohei Otome, Masaaki Igarashi, Hisashi Amaya, Hirokazu Okada
  • Patent number: 8003045
    Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M(C, N).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 23, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
  • Patent number: 7959854
    Abstract: A heat resistant alloy comprising, in % by weight, over 0.6% to not more than 0.9% of C, up to 2.5% of Si, up to 3.0% of Mn, 20 to 28% of Cr, 8 to 55% of Ni, 0.01 to 0.8% of Ti and 0.05 to 1.5% of Nb, the balance being Fe and inevitable impurities, the value of (Ti+Nb)/C being 0.12 to 0.29 in atomic % ratio. When the alloy further contains up to 0.5% of Zr, the value of (Ti+Nb+Zr)/C is 0.12 to 0.29 in atomic % ratio. When the alloy is heated at a temperature of at least about 800 degrees C., a fine Ti—Nb—Cr carbide or Ti—Nb—Zr—Cr carbide precipitates within grains to thereby retard creep deformation and give an improved creep rupture strength. The alloy is therefore suitable as a material for hydrogen production reforming tubes.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 14, 2011
    Assignee: Kubota Corporation
    Inventors: Makoto Takahashi, Kunihide Hashimoto, Makoto Hineno
  • Patent number: 7901519
    Abstract: A precipitation hardenable martensitic stainless steel that includes, in percent by weight, 11.0 to 12.5 percent chromium, 1.0 to 2.5 percent molybdenum, 0.15 to 0.5 percent titanium, 0.7 to 1.5 percent aluminum, 0.5 to 2.5 percent copper, 9.0 to 11.0 percent nickel, up to 0.02 percent carbon, up to 2.0 percent tungsten, and up to 0.001 percent boron. Articles formed from the stainless steel and methods of forming the same are also disclosed.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: March 8, 2011
    Assignee: ATI Properties, Inc.
    Inventor: Wei-Di Cao
  • Patent number: 7879159
    Abstract: A precipitation-hardened stainless maraging steel which exhibits a combination of strength, toughness, and corrosion resistance comprises by weight about: 8 to 15% chromium (Cr), 2 to 15% cobalt (Co), 7 to 14% nickel (Ni), and up to about 0.7% aluminum (Al), less than about 0.4% copper (Cu), 0.5 to 2.6% molybdenum (Mo), 0.4 to less than about 0.75% titanium (Ti), up to about 0.5% tungsten (W), and up to about 120 wppm carbon (C), the balance essentially iron (Fe) and incidental elements and impurities, characterized in that the alloy has predominantly lath martensite microstructure essentially without topologically close packed intermetallic phases and strengthened primarily by a dispersion of intermetallic particles primarily of the eta-Ni3Ti phase and wherein the titanium and carbon (Ti) and (C) levels are controlled such that C can be dissolved during a homogenization step and subsequently precipitated during forging to provide a grain-pinnning dispersion.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: February 1, 2011
    Assignee: QuesTek Innovations, LLC
    Inventors: James Wright, Jin-Won Jung
  • Patent number: 7842141
    Abstract: A steel composition contains: 0.05% or less of C; 0.5% or less of Si; 0.20% to 1.80% of Mn; 0.03% or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; and 0.006% or less of O on a mass basis, and satisfies the following expressions: Cr+0.65Ni+0.6Mo+0.55Cu?20C?18.5 and Cr+Mo+0.3Si?43.5C?0.4Mn?Ni?0.3Cu?9N?11 (where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents (mass %)). After such a steel pipe material is formed into a steel pipe, the steel pipe is quenched by cooling after heating to a temperature of the AC3 transformation point or more and tempered at a temperature of the AC1 transformation point or less.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: November 30, 2010
    Assignee: JFE Steel Corporation
    Inventors: Mitsuo Kimura, Takanori Tamari, Takaaki Toyooka
  • Patent number: 7815848
    Abstract: A corrosion resistant alloy is provided which includes, in percent by weight: (a) 16 to 24% Ni; (b) 18 to 26% Cr; (c) 1.5 to 3.5% Mo; (d) 0.5 to 1.5% Si; (e) 0.001 to 1.5% Nb; (f) 0.0005 to 0.5% Zr; (g) 0.01 to 0.6% N; (h) 0.001 to 0.2% Al; (j) less than 0.2% Ti; and (k) less than 1% Mn, trace impurities, and the balance Fe. Articles, such as flexible automotive exhaust couplings, including the present alloys are also provided.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 19, 2010
    Assignee: Huntington Alloys Corporation
    Inventors: James Roy Crum, Nathan Charles Eisinger, Stephen Mark Gosnay, Gaylord Darrell Smith
  • Publication number: 20100196799
    Abstract: The present invention relates to the use of the A286 alloy grade for the manufacture of a sheet, optionally surfaced, making it possible to obtain a conducting plate of mono polar or bipolar type for a fuel cell element. The invention also relates to this optional surface treatment process, which comprises a cold-rolling step followed by a continuous annealing step in an oxidizing atmosphere and by an acid pickling step.
    Type: Application
    Filed: June 19, 2007
    Publication date: August 5, 2010
    Applicants: L'Air Liquide Societe Anonyme Pour L'Etude et L'Exploration DesProcedes George Claude, Arcelormittal-Stainless & Nickel Alloys, Alfa Laval Corporate AB
    Inventors: Eric Claude, Richard Bousquet, Gilles Platen, Claude Roussel
  • Patent number: 7754142
    Abstract: A high-carbon austenitic iron-base alloy with good corrosion and wear resistance, particularly useful for valve seat insert applications when corrosion resistance is required, comprises about 1.8-3.5 wt % carbon, about 12-24 wt % chromium, about 0.5-4 wt % silicon, about 12-25 wt % nickel, about 2-12 wt % molybdenum and tungsten combined, about 0.05-4 wt % niobium and vanadium combined, about 0-1 wt % titanium, about 0.01-0.2 wt % aluminum, about 0.05-3 wt % copper, and less than 1.5 wt % manganese, with the balance being iron and a small amount of impurities.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: July 13, 2010
    Assignee: Winsert, Inc.
    Inventor: Xuecheng Liang
  • Patent number: 7749432
    Abstract: A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M23C6, and M(C, N).
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 6, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Govindarajan Muralidharan, Vinod Kumar Sikka, Philip J. Maziasz, Roman I. Pankiw
  • Publication number: 20100154939
    Abstract: By focusing on the non-diffusible hydrogen that causes hydrogen embrittlement of austenitic stainless steel, the present invention provides an austenitic stainless steel in which the non-diffusible hydrogen is removed by maintaining the austenitic stainless steel in a vacuum of 0.2 Pa or less and heating at a heating temperature of 200° C. to 500° C. for 460 hours or less to remove the hydrogen (H) contained therein to a level of 0.00007 mass % (0.7 mass ppm) or less.
    Type: Application
    Filed: January 15, 2010
    Publication date: June 24, 2010
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Yukitaka MURAKAMI, Saburo MATSUOKA, Yoji MINE, Toshihiko KANEZAKI
  • Publication number: 20100147247
    Abstract: A superaustenitic stainless steel comprises in weight %, 0.15 to 0.9% C, 0.2 to 1.3% Si, 0 to 0.45% Mn, 32.5 to 37.5% Cr, 13.5 to 17.5% Ni, 3.2 to 5.5% Mo, 0 to 2% Nb, 0 to 0.5% B, 0 to 2% Zr and 30 to 51% Fe. In a preferred embodiment, the superaustenitic stainless steel consists essentially of, in weight %, 0.5 to 0.9% C, 0.2 to 0.5% Si, 0.2 to 0.4% Mn, 33.0 to 35.0% Cr, 15.5 to 17.5% Ni, 4.0 to 4.5% Mo, 0.7 to 0.9% Nb, 0.07 to 0.13% B, 0 to 0.05% Zr and 40 to 46% Fe. The superaustenitic stainless steel is useful for valve seat inserts for internal combustion engines such as diesel or natural gas engines.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 17, 2010
    Applicant: L. E. Jones Company
    Inventors: CONG YUE QIAO, Todd Trudeau
  • Patent number: 7731895
    Abstract: An austenitic stainless steel improved in creep strength, creep ductility, weldability and also hot workability. The steel, consisting of, by mass %, C: 0.05-0.15%, Si: not more than 2%, Mn: 0.1-3%, P: 0.05-0.30%, S: not more than 0.03%, Cr: 15-28%, Ni: 8-55%, Cu: 0-3.0%, Ti: 0.05-0.6%, REM: 0.001-0.5%, sol. Al: 0.001-0.1%, N: not more than 0.03%, and the balance being Fe and incidental impurities. This steel may contain one or more of Mo, W, B, Nb, V, Co, Zr, Hf, Ta, Mg and Ca. It is preferable that REM is Nd.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: June 8, 2010
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hirokazu Okada, Masaaki Igarashi, Kazuhiro Ogawa, Yasutaka Noguchi
  • Patent number: 7708842
    Abstract: A metal gasket formed from a suitable iron-nickel chromium alloy includes at least one embossment that exhibits essentially full functional recovery at temperatures exceeding 1000° F. and including in the range of 1100° F. to 1600° F. or more and which is made from sheet material that is work hardened and strengthened by cold rolling, or a combination of cold rolling and precipitation hardening, without any post embossment heat treating that would act to further harden the material. Suitable iron-nickel-chromium alloys include those comprising, by weight, greater than 18% nickel; greater than 14% chrome and 0.1-10% of at least one element selected from the group consisting of Mo, Ti, V, Al, Co, Nb, Ta and Cu, with the balance being substantially Fe, wherein the gasket sheet alloy has a deformed microstructure.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: May 4, 2010
    Assignee: Federal-Mogul World Wide, Inc.
    Inventor: Thomas Zurfluh
  • Publication number: 20100074791
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Inventor: Takemori Takayama
  • Publication number: 20100054983
    Abstract: An austenitic stainless steel, which comprises by mass %, C<0.04%, Si?1.5%, Mn?2%, Cr: 15 to 25%, Ni: 6 to 30%, N: 0.02 to 0.35%, sol. Al?0.03% and further contains one or more elements selected from Nb?0.5%, Ti?0.4%, V?0.4%, Ta?0.2%, Hf?0.2% and Zr?0.2%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfy the conditions F1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.0075 and 0.05?F2=Nb+Ta+Zr+Hf+2Ti+(V/10)?1.7?9×F1 has not only excellent liquation cracking resistance in the HAZ on the occasion of welding and excellent embrittling cracking resistance in the HAZ during a long period of use at high temperatures but also excellent polythionic acid SCC resistance and high temperature strength.
    Type: Application
    Filed: August 28, 2009
    Publication date: March 4, 2010
    Inventors: Takahiro OSUKI, Kazuhiro OGAWA, Hiroyuki HIRATA, Yoshitaka NISHIYAMA
  • Patent number: 7651575
    Abstract: An Fe—Ni-based alloy that has improved wear resistance at high temperature over Ni-based superalloys is provided. The alloy is particularly useful for manufacturing engine exhaust valves and other high temperature engine components subjected to corrosion, wear and oxidation.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: January 26, 2010
    Assignee: Eaton Corporation
    Inventors: Maria K. Sawford, Shubhayu Sinharoy, Sundaram L. Narasimhan, Alojz Kajinic, Andrzej L. Wojcieszynski, Jeryl K. Wright
  • Publication number: 20090098319
    Abstract: A heat resistant alloy comprising, in % by weight, over 0.6% to not more than 0.9% of C, up to 2.5% of Si, up to 3.0% of Mn, 20 to 28% of Cr, 8 to 55% of Ni, 0.01 to 0.8% of Ti and 0.05 to 1.5% of Nb, the balance being Fe and inevitable impurities, the value of (Ti+Nb)/C being 0.12 to 0.29 in atomic % ratio. When the alloy further contains up to 0.5% of Zr, the value of (Ti+Nb+Zr)/C is 0.12 to 0.29 in atomic % ratio. When the alloy is heated at a temperature of at least about 800 degrees C., a fine Ti—Nb—Cr carbide or Ti—Nb—Zr—Cr carbide precipitates within grains to thereby retard creep deformation and give an improved creep rupture strength. The alloy is therefore suitable as a material for hydrogen production reforming tubes.
    Type: Application
    Filed: October 30, 2006
    Publication date: April 16, 2009
    Applicant: KUBOTA CORPORATION
    Inventors: Makoto Takahashi, Kunihide Hashimoto, Makoto Hineno
  • Publication number: 20090081069
    Abstract: An austenitic stainless steel, which comprises by mass percent, C: not more than 0.10%, Si: 0.01 to 1.0%, Mn: 0.01 to 2%, Cr: 16 to 18%, Ni: more than 10% to less than 14%, Mo: more than 2.0% to not more than 3.0%, N: 0.03 to 0.10%, one or more elements selected from V, Nb and Ti satisfying the following formulas (1) and (2), 0.0013?(V/51)+(Nb/93)+(Ti/48)?0.0025??(1), {(C/12)+(N/14)}?{(V/51)+(Nb/93)+(Ti/48)}?0.0058??(2), wherein each element symbol in the formulas (1) and (2) represents the content (by mass %) of the element concerned, with the balance being Fe and impurities, wherein the content of P is not more than 0.04% and the content of S is not more than 0.003% among the impurities, has excellent corrosion resistance, in particular, excellent intergranular corrosion resistance. The preferable contents of Nb and Ti are not more than 0.030% and not more than 0.050%, respectively.
    Type: Application
    Filed: November 25, 2008
    Publication date: March 26, 2009
    Inventors: Kiyoko Takeda, Masayuki Sagara, Masaaki Terunuma
  • Publication number: 20080304996
    Abstract: An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.
    Type: Application
    Filed: April 16, 2008
    Publication date: December 11, 2008
    Applicant: UT-BATTELLE, LLC
    Inventors: Michael P. Brady, Michael L. Santella, Yukinori Yamamoto, Chain-tsuan Liu
  • Patent number: 7455811
    Abstract: An iron based brazing material for joining objects by brazing represents an alloy, which apart from iron contains approximately 9-30% Cr, approximately 0-8% Mn, approximately 0-25% Ni, 0-1% N, a maximum of 7% Mo, less than about 6% Si, approximately 0-2% B and/or about 0-15% P, all stated in weight percent, which addition of Si, P, and B in combination or separately lowers the liquidus temperature, that is the temperature at which the brazing material is completely melted. A brazed product is manufactured by brazing of iron based objects with an iron based brazing material which is alloyed with a liquidus lowering element as Si, P and B.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 25, 2008
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Erik Sjodin
  • Publication number: 20080008617
    Abstract: An Fe—Ni-based alloy that has improved wear resistance at high temperature over Ni-based superalloys is provided. The alloy is particularly useful for manufacturing engine exhaust valves and other high temperature engine components subjected to corrosion, wear and oxidation.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 10, 2008
    Inventors: Maria K. Sawford, Shubhayu Sinharoy, Sundaram L. Narasimhan, Alojz Kajinic, Andrzej L. Wojcieszynski, Jeryl K. Wright
  • Publication number: 20070258844
    Abstract: A corrosion resistant alloy is provided which includes, in percent by weight: (a) 16 to 24% Ni; (b) 18 to 26% Cr; (c) 1.5 to 3.5% Mo; (d) 0.5 to 1.5% Si; (e) 0.001 to 1.5% Nb; (f) 0.0005 to 0.5% Zr; (g) 0.01 to 0.6% N; (h) 0.001 to 0.2% Al; (j) less than 0.2% Ti; and (k) less than 1% Mn, trace impurities, and the balance Fe. Articles, such as flexible automotive exhaust couplings, including the present alloys are also provided.
    Type: Application
    Filed: April 23, 2007
    Publication date: November 8, 2007
    Applicant: Huntington Alloys Corporation
    Inventors: James Roy Crum, Nathan Charles Eisinger, Stephen Mark Gosnay, Gaylord Darrell Smith
  • Patent number: 7014720
    Abstract: The present invention provides an austenitic stainless steel tube with a uniform fine grained structure of regular grains, which is not changed to a coarse structure and the steam oxidation resistance is maintained even if the tube is subjected to a high temperature reheating during welding and high temperature bending working. The austenitic stainless steel tube consists of, by mass %, C: 0.03–0.12%, Si: 0.1–0.9%, Mn: 0.1–2%, Cr: 15–22%, Ni: 8–15%, Ti: 0.002–0.05%, Nb: 0.3–1.5%, sol. Al: 0.0005–0.03%, N: 0.005–0.2% and O (oxygen): 0.001–0.008%, and the balance Fe and impurities, the austenitic stainless steel tube having austenitic grain size number of 7 or more and a mixed grain ratio of preferably 10% or less.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: March 21, 2006
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Atsuro Iseda
  • Publication number: 20040156737
    Abstract: An austenitic stainless steel comprises, by weight, 9 to 23% chromium, 30 to 35% nickel, 1 to 6% molybdenum, 0 to 0.03% titanium, 0.15% to 0.6% aluminum, up to 0.1% carbon, 1 to 1.5% manganese, 0 to less than 0.8% silicon, 0.25 to 0.6% niobium and iron. Embodiments of austenitic stainless steels according to the present invention exhibit enhanced resistance to corrosion. Thus, the stainless steels of the present invention may find broad application as, for example, automotive components and, more particularly, as automotive exhaust system flexible connectors and other components, as well as in other applications in which corrosion resistance is desired.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 12, 2004
    Inventor: James M. Rakowski
  • Patent number: 6562293
    Abstract: An article of equipment intended to be submerged in molten zinc and low percentage aluminum/zinc melts, said article containing an alloy material comprised of carbon, chromium, nickel, tungsten, molybdenum, vanadium, niobium (columbium), cobalt, boron, iron and/or zirconium, wherein vanadium is present in an amount sufficient to limit the &ggr;-region.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: May 13, 2003
    Assignee: Alphatech, Inc.
    Inventor: Jorge A. Morando
  • Patent number: 6494789
    Abstract: A golf club head comprises a ball-hitting face made of a steel alloy containing maximum amounts of 0.03% of C by weight, 0.2% of Si by weight, 0.2% of Mn by weight, 0.2% of P by weight, 0.02% of S by weight, 10.5-11.0% of Cr by weight, 1.8-2.2% of Mo by weight, 9.5-10.5% of Ni by weight, 0.9-1.2% of Ti by weight, 0.5% of Al by weight, 0.1% of Cu by weight, 0.3% of Nb by weight, 0.3% of B by weight, 0.01% of N by weight, 0.1% of V by weight, 0.1% of W by weight, and the rest being Fe. The steel alloy is made by a metallurgical method involving two vacuum melting processes. The texture of the steel alloy is mainly formed of martensite.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: December 17, 2002
    Inventor: Archer C. C. Chen
  • Patent number: 6485679
    Abstract: A heat resistant austenitic stainless steel with high strength at elevated temperatures, good steam oxidation resistance, good fire side corrosion resistance, and a sufficient structural stability, suitable for use in boilers operating at high temperatures has a composition (by weight) of. 0.04 to 0.10% carbon (C), not more than 0.4% silicon (Si), not more than 0.6% manganese (MN), 20 to 27% chromium (Cr), 22.5 to 32% nickel (Ni), not more than 0.5% molybdenum (Mo), 0,20 to 0.60% niobium (Nb), 0.4 to 4.0% tungsten (W), 0.10 to 0.30% nitrogen (N), 0.002 to 0.008% boron (B), less than 0.05% aluminium (Al), at least one of the elements Mg and Ca in amounts less than 0.010% Mg and less than 0.010% Ca, and the balance being iron and inevitable impuities.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: November 26, 2002
    Assignee: Sandvik AB
    Inventors: Ann Sundström, Goucai Chai
  • Patent number: 6352670
    Abstract: An austenitic stainless steel comprising, by weight, 17 to 23% chromium, 19 to 23% nickel, 1 to 6% molybdenum. The addition of molybdenum to the iron-base alloys of the invention increases their resistance to corrosion. The austenitic stainless steel may consisting essentially of, by weight, 17 to 23% chromium, 19 to 23% nickel, 1 to 6% molybdenum, 0 to 0.1% carbon, 0 to 1.5% manganese, 0 to 0.05% phosphorus, 0 to 0.02% sulfur, 0 to 1.0% silicon, 0.15 to 0.6% titanium, 0.15 to 0.6% aluminum, 0 to 0.75% copper, iron, and incidental impurities. Austenitic stainless steels according to the present invention exhibit enhanced resistance corrosion by salt at a broad temperature range up to at least 1500° F. Thus, the stainless steel of the present invention would find broad application as, for example, automotive components and, more particularly, as automotive exhaust system components and flexible connectors, as well as in other applications in which corrosion resistance is desired.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: March 5, 2002
    Assignee: ATI Properties, Inc.
    Inventor: James M. Rakowski
  • Patent number: 6290905
    Abstract: A welding method for two members adapted to be welded and formed of a low-alloy steel for structural purposes causing the weld metal to develop martensite transformation during cooling after welding, so that the weld metal becomes expanded to a greater degree at room temperature than at a temperature at which the martensite transformation initiates. The welding material comprises a ferrous alloy containing C, Cr, Ni, Si, Mn, Mo and Nb, all of which meet substantially with the contents of the following equation (1): 170≦719−(795×C wt %)−(23.7×Cr wt %)−(26.5×Ni wt %)−(35.55×Si wt %)−(13.25×Mn wt %)−(23.7×Mo wt %)−(11.85×Nb wt %)<250  (1).
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: September 18, 2001
    Assignee: Kawasaki Steel Corporation
    Inventors: Osamu Watanabe, Akihiko Ohta, Chiaki Shiga, Satoshi Nishijima