Manganese Containing Patents (Class 420/553)
-
Patent number: 11361791Abstract: An aluminum alloy sheet for a magnetic disk includes an aluminum alloy comprising 0.10 to 3.00 mass % (hereafter simply “%”) of Fe, 0.1 to 3.0% of Mn, 0.003 to 1.000% of Cu, and 0.005 to 1.000 s % of Zn, wherein second phase particles having a maximum diameter of 100 ?m or more and 300 ?m or less are dispersed at a distribution density of 50 particles/mm2 or less in a region (A) occupying 25% or less of a sheet thickness from a sheet thickness center plane to opposite surfaces of the sheet, second phase particles having a maximum diameter of 100 ?m or more and 300 ?m or less are 0 particles/mm2 in a region (C) that is obtained by excluding the region (A) from a region (B) occupying 50% or less of the sheet thickness from the sheet thickness center plane to the opposite surfaces of the sheet, and the amount of Mn solid solution is 0.03 mass % or more.Type: GrantFiled: July 24, 2019Date of Patent: June 14, 2022Assignees: UACJ CORPORATION, FURUKAWA ELECTRIC CO., LTD.Inventors: Kotaro Kitawaki, Makoto Yonemitsu, Hideyuki Hatakeyama, Sadayuki Toda, Ryo Sakamoto, Yasuo Fujii
-
Patent number: 11211088Abstract: Provided are a magnetic disk and a method of fabricating the magnetic disk. The magnetic disk includes an aluminum alloy plate fabricated by a process involving a CC method and a compound removal process, and an electroless Ni—P plating layer disposed on the surface of the plate. The aluminum alloy plate is composed of an aluminum alloy containing 0.4 to 3.0 mass % (hereinafter abbreviated simply as “%”) of Fe, 0.1% to 3.0% of Mn, 0.005% to 1.000% of Cu, 0.005% to 1.000% of Zn, with a balance of Al and unavoidable impurities. In the magnetic disk, the maximum amplitude of waviness in a wavelength range of 0.4 to 5.0 mm is 5 nm or less, and the maximum amplitude of waviness in a wavelength range of 0.08 to 0.45 mm is 1.5 nm or less.Type: GrantFiled: November 28, 2018Date of Patent: December 28, 2021Assignees: UACJ CORPORATION, FURUKAWA ELECTRIC CO., LTD.Inventors: Takuya Murata, Kotaro Kitawaki, Makoto Yonemitsu, Hideyuki Hatakeyama, Takashi Nakayama, Ryo Sakamoto, Hiroki Ota
-
Patent number: 8524015Abstract: An aluminum-magnesium alloy sheet having a high strength prior to baking treatment, and having a high bake softening resistance. Contains, as a percentage of mass, 2-5% magnesium, more than 0.05% and 1.5% or less iron, 0.05-1.5% manganese, and crystal grain refiner, the remainder comprising aluminum and inevitable impurities, and among the inevitable impurities, less than 0.20% silicon being contained, the total amount of iron and manganese being greater than 0.3%, the amount of iron dissolved in solid solution being 50 ppm or greater, 5000 or more intermetallic compounds with a circle-equivalent diameter of 1-6 ?m existing per square millimeter, and the average diameter of the recrystallized grains being 20 ?m or smaller.Type: GrantFiled: December 19, 2003Date of Patent: September 3, 2013Assignee: Nippon Light Metal Company, Ltd.Inventors: Pizhi Zhao, Masaru Shinohara
-
Patent number: 8349462Abstract: Decorative shape cast products and methods, systems, compositions and apparatus for producing the same are described. In one embodiment, the decorative shape cast products are produced from an Al—Ni or Al—Ni—Mn alloy, with a tailored microstructure to facilitate production of anodized decorative shape cast product having the appropriate finish and mechanical properties.Type: GrantFiled: January 12, 2010Date of Patent: January 8, 2013Assignee: Alcoa Inc.Inventors: Jen C. Lin, James R. Fields, Albert L. Askin, Xinyan Yan, Ralph R. Sawtell, Shawn Patrick Sullivan, Janell Lyn Abbott
-
Patent number: 8317947Abstract: The present invention provides an aluminum alloy sheet for press forming, having the crystallo-graphic texture in which the orientation density of CR orientation ({001}<520>) is higher than that of any orientation other than the CR orientation. The orientation density of the CR orientation is preferably 10 or more (random ratio). The orientation densities of all orientations other than the CR orientation are preferably less than 10. The aluminum alloy sheet is preferably made of an Al—Mg—Si alloy.Type: GrantFiled: May 29, 2008Date of Patent: November 27, 2012Assignee: Sumitomo Light Metal Industries, Ltd.Inventors: Mineo Asano, Hidetoshi Uchida
-
Patent number: 8313590Abstract: An aluminium extrusion having a minimum section thickness and made from an aluminium alloy includes, in weight percent, between approximately 1.0 and 1.7 manganese, and between approximately 0.5 and 1.1 silicon, less than 0.3 iron with the balance being Al and inevitable impurities each less than 0.05 weight % and totaling less than 0.15 weight %, the extrusion being formed with an extrusion ratio less than 125 to retain a fibrous grain structure in which less than 40% of the minimum section thickness is recrystallized.Type: GrantFiled: December 3, 2009Date of Patent: November 20, 2012Assignee: Rio Tinto Alcan International LimitedInventors: Nicholas Charles Parson, Martin Fortier
-
Publication number: 20120020829Abstract: Disclosed is a heat-resistant aluminum alloy including aluminum and two types of alloy elements which are combined while forming a homogeneous solid solution reinforcing phase. The disclosed heat-resistant aluminum alloy includes the alloy elements that form a homogeneous solid solution and do not have a solvus line with respect to aluminum as a matrix metal and, therefore, the formed homogeneous solid solution reinforcing phase does not react with aluminum even at a temperature up to 300° C., thus not becoming coarse or undergoing phase decomposition. Consequently, the disclosed aluminum alloy may have remarkably enhanced heat resistance.Type: ApplicationFiled: January 25, 2010Publication date: January 26, 2012Applicant: KOREA AUTOMOTIVE TECHNOLOGY INSTITUTEInventors: Si Young Sung, Beom Suck Han, Young Jig Kim, Bong Jae Choi, Yung Mun Ryu, Dong Ok Kim, Sang Ho Noh, Chang Su Hahn
-
Patent number: 8043445Abstract: The invention relates to an aluminium alloy wrought product with high strength and fracture toughness and high fatigue resistance and low fatigue crack growth rate, and having a composition for the alloy comprising, in weight %, about 0.3 to 1.0% magnesium (Mg), about 4.4 to 5.5% copper (Cu), about 0 to 0.20% iron (Fe), about 0 to 0.20% silicon (Si), about 0 to 0.40% zinc (Zn), and Mn in a range 0.15 to 0.8 as a dispersoids forming element in combination with one or more of dispersoids forming elements selected from the group consisting of: (Zr, Sc, Cr, Hf, Ag, Ti, V), in ranges of: about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 1.0% silver (Ag), the balance being aluminium (Al) and other incidental elements, and whereby there is a limitation of the Cu—Mg content such that ?1.1[Mg]+5.38?[Cu]?5.5. The invention further relates to a method of manufacturing such a product.Type: GrantFiled: May 28, 2004Date of Patent: October 25, 2011Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Hinrich Johannes Wilhelm Hargarter
-
Patent number: 8025748Abstract: An extrudable aluminum alloy billet includes an aluminum alloy composition including, in weight percent, between 0.90 and 1.30 manganese, between 0.05 and 0.25 iron, between 0.05 and 0.25 silicon, between 0.01 and 0.02 titanium, less than 0.01 copper, less than 0.01 nickel, and less than 0.05 magnesium, the aluminum alloy billet being homogenized at a temperature ranging between 550 and 600° C.Type: GrantFiled: June 9, 2009Date of Patent: September 27, 2011Assignee: Rio Tinto Alcan International LimitedInventors: Nicholas Charles Parson, Alexandre Maltais
-
Patent number: 8021500Abstract: Provided are an aluminum alloy for die casting that has excellent die-castability, a molding with high hardness, and a molded article with excellent sheen. The aluminum alloy for die casting includes 0.5 to 2.5 wt. % Mn, 0.2 to 1.0 wt. % Cr, 0.1 to 0.5 wt. % Ti, 0.1 to less than 0.5 wt. % Mg, and Al. The molding is obtained by die-casting the aluminum alloy for die casting. The molding obtained by die-casting the aluminum alloy has excellent die-castability and high hardness. By performing the alumite treatment on the surface of the molding, a molded article having excellent sheen is obtained.Type: GrantFiled: March 23, 2007Date of Patent: September 20, 2011Assignee: Tanaka Sangyo Co., Ltd.Inventors: Kenji Tanaka, Takao Asami, Kiyoto Takeuchi, Yutaka Fujiwara, Koukiti Takahashi, Tadanori Manome
-
Patent number: 7998402Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt. %: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each <0.5 wt. %, and impurities or incidental elements each <0.05, total <0.15, and the balance being aluminium.Type: GrantFiled: August 14, 2006Date of Patent: August 16, 2011Assignee: Aleris Aluminum Koblenz, GmbHInventors: Nadia Telioui, Steven Dirk Meijers, Andrew Norman, Achim Buerger, Sabine Maria Spangel
-
Publication number: 20110064599Abstract: A method for producing a high strength aluminum alloy brackets, cases, tubes, ducts, beams, spars and other parts containing L12 dispersoids from an aluminum alloy powder containing the L12 dispersoids. The powder is consolidated into a billet having a density of about 100 percent. The billet is extruded using an extrusion die shaped to produce the component.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Applicant: UNITED TECHNOLOGIES CORPORATIONInventor: Awadh B. Pandey
-
Patent number: 7858024Abstract: Non-evaporable getter alloys, such as Y 75%-Mn 15%-Al 10%, are provided and can be activated at relatively low temperatures and have good properties in sorbing a wide variety of gases, particularly hydrogen.Type: GrantFiled: May 29, 2007Date of Patent: December 28, 2010Assignee: Saes Getters S.p.A.Inventors: Alberto Coda, Alessio Corazza, Alessandro Gallitognotta, Luca Toia, Paola Baronio, Magda Bovisio
-
Patent number: 7767042Abstract: A high-strength aluminum alloy extruded product for heat exchangers which excels in extrudability, allows a thin flat multi-cavity tube to be extruded at a high critical extrusion rate, and excels in intergranular corrosion resistance at a high temperature, and a method of manufacturing the same. The aluminum alloy extruded product includes an aluminum alloy including 0.2 to 1.8% of Mn and 0.1 to 1.2% of Si, having a ratio of Mn content to Si content (Mn %/Si %) of 0.7 to 2.5, and having a content of Cu as an impurity of 0.05% or less, with the balance being Al and impurities, the aluminum alloy extruded product having an electric conductivity of 50% IACS or more and an average particle size of intermetallic compounds precipitating in a matrix of 1 ?m or less.Type: GrantFiled: February 9, 2005Date of Patent: August 3, 2010Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.Inventors: Yoshiharu Hasegawa, Tomohiko Nakamura, Masaaki Kawakubo, Naoki Yamashita, Tatsuya Hikida
-
Publication number: 20100183869Abstract: Decorative shape cast products and methods, systems, compositions and apparatus for producing the same are described. In one embodiment, the decorative shape cast products are produced from an Al—Ni or Al—Ni—Mn alloy, with a tailored microstructure to facilitate production of anodized decorative shape cast product having the appropriate finish and mechanical properties.Type: ApplicationFiled: January 12, 2010Publication date: July 22, 2010Applicant: Alcoa Inc.Inventors: Jen C. Lin, James R. Fields, Albert L. Askin, Xinyan Yan, Ralph R. Sawtell, Shawn Patrick Sullivan, Janell Lyn Abbott
-
Patent number: 7691489Abstract: An aluminum alloy, a clad or unclad material for a brazed product containing the alloy as a core, and a method for producing the material, wherein the material is used for manufacturing the brazed product from the alloy.Type: GrantFiled: March 18, 2005Date of Patent: April 6, 2010Assignee: Sapa Heat Transfer ABInventors: Hans-Erik Ekström, Stefan Wass, Richard Westergård, Anders Oscarsson, Annika Moberg
-
Patent number: 7666267Abstract: An Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties. The present invention relates to an aluminium alloy product comprising or consisting essentially of, in weight %, about 6.5 to 9.5 zinc (Zn), about 1.2 to 2.2% magnesium (Mg), about 1.0 to 1.9% copper (Cu), preferable (0.9Mg?0.6)?Cu?(0.9Mg+0.05), about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 0.8% manganese (Mn), the balance being aluminium (Al) and other incidental elements. The invention relates also to a method of manufacturing such as alloy.Type: GrantFiled: April 9, 2004Date of Patent: February 23, 2010Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Nedia Telioui
-
Publication number: 20080138239Abstract: Aluminum alloys having improved strength at 300° C. characterized by formation from an intermediate amorphous state to a final fcc matrix hardened by optimal 25 nm-diameter Ll2 precipitates with an interphase misfit less than about 4% in all three dimensions and Al23Ni6M4 precipitates where M is one or more elements selected from the group consisting of Y and Yb. An appropriate melt of aluminum with selected transition metals (Co, Cu, Fe, Ni, Ti, Y) and Ll2 stabilizers (Sc, Yb) in amounts of about 2 to 12 and 2 to 15 atomic percent, respectively, is processed to achieve an intermediate amorphous state to dissolve Ll2-forming components. The amorphous alloys are then thermo-mechanically devitrified to a final crystalline microstructure. The alloys have good ductility and a short-term tensile strength exceeding about 275 MPa (40 ksi) at 300° C., and are useful for applications such as high-temperature turbine engine components or aircraft structural components.Type: ApplicationFiled: August 3, 2007Publication date: June 12, 2008Applicant: QuesTek Innovatioans LLCInventors: Gregory B. Olson, Weijia Tang, Caian Qiu, Herng-Jeng Jou
-
Patent number: 7323069Abstract: To cast a part, an injectable form of an aluminum-copper (206) alloy is generated and the aluminum-copper (206) alloy is injected into a mold. This mold corresponds to the part. In addition, the aluminum-copper (206) alloy is solidified to generate the part and the part is ejected from the mold.Type: GrantFiled: March 15, 2005Date of Patent: January 29, 2008Assignees: Contech U.S., LLC, Contech Operating UK, LtdInventors: Rathindra DasGupta, Zach Brown, Mark Musser
-
Patent number: 7323068Abstract: Disclosed is a high damage tolerant Al—Cu alloy of the AA2000 series having a high toughness and an improved fatigue crack growth resistance, including the following composition (in weight percent) Cu 3.8-4.7, Mg 1.0-1.6, Zr 0.06-0.18, Cr<0.15, Mn>0-0.50 , Fe?0.15, Si?0.15, and Mn-containing dispersoids, the balance essentially aluminum and incidental elements and impurities, wherein the Mn-containing dispersoids are at least partially replaced by Zr-containing dispersoids. There is also disclosed a method for producing a rolled high damage tolerant Al—Cu alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.Type: GrantFiled: August 18, 2003Date of Patent: January 29, 2008Assignee: Aleris Aluminum Koblenz GmbHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
-
Patent number: 7211160Abstract: An aluminum alloy piping material for automotive tubes having excellent tube expansion formability by bulge forming at the tube end and superior corrosion resistance, which is suitably used for a tube connecting an automotive radiator and heater, or for a tube connecting an evaporator, condenser, and compressor. The aluminum alloy piping material is an annealed material of an aluminum alloy containing 0.3 to 1.5% of Mn, 0.20% or less of Cu, 0.10 to 0.20% of Ti, more than 0.20% but 0.60% or less of Fe, and 0.50% or less of Si with the balance being aluminum and unavoidable impurities, wherein the aluminum alloy piping material has an average crystal grain size of 100 ?m or less, and Ti-based compounds having a grain size (circle equivalent diameter, hereinafter the same) of 10 ?m or more do not exist as an aggregate of two or more serial compounds in a single crystal grain.Type: GrantFiled: September 29, 2003Date of Patent: May 1, 2007Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Takahiro Koyama, Yoshifusa Shoji
-
Patent number: 7108042Abstract: An aluminum alloy suitable for diecasting of components with high elongation in the cast state contains, as well as aluminum and unavoidable impurities, 8.0 to 11.5 w. % silicon, 0.3 to 0.8 w. % manganese, 0.08 to 0.4 w. % magnesium, max 0.4 w. % iron, max 0.1 w. % copper, max 0.1 w. % zinc, max 0.15 w. % titanium and 0.05 to 0.5 w. % molybdenum. Optionally, the alloy also contains 0.05 to 0.3 w. % zirconium, 30 to 300 ppm strontium or 5 to 30 ppm sodium and/or 1 to 30 ppm calcium for permanent refinement and for grain refinement gallium phosphide and/or indium phosphide in a quantity corresponding to 1 to 250 ppm phosphorus and/or titanium and boron added by way of an aluminum master alloy with 1 to 2 w. % Ti and 1 to 2 w. % B.Type: GrantFiled: June 28, 2005Date of Patent: September 19, 2006Assignee: Aluminum Rheinfelden GmbHInventor: Hubert Koch
-
Patent number: 7060139Abstract: The present invention provides a high strength aluminum alloy composition and applications of the high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.Type: GrantFiled: November 8, 2002Date of Patent: June 13, 2006Assignee: UES, Inc.Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle, Yuly V. Milman, Dina V. Lotsko, Alexandr I. Sirko
-
Patent number: 6939417Abstract: When using AA3000 series and AA1000 series aluminum alloys to produce extruded products for heat exchanger applications, by controlling the level of copper and nickel in the alloy to very low levels it is possible to produce excellent corrosion resistance both before and after a brazing cycle. To achieve these results, the copper content should be no more than 0.006% by weight and the nickel no more than 0.005% by weight. A typical alloy of the invention contains about 0.001-0.5% by weight manganese, 0.001-0.7% by weight iron, 0.001-0.02% by weight titanium, 0.001-0.3% by weight silicon, less than 0.006% by weight copper, less than 0.005% by weight nickel and 0.001-0.02% by weight zinc, with the balance consisting of aluminum and incidental impurities. No zinc addition to the alloy is required either by zinc spraying or by alloy addition.Type: GrantFiled: March 6, 2001Date of Patent: September 6, 2005Assignee: Alcan International LimitedInventors: Pierre Henri Marois, Nicholas Parson
-
Patent number: 6896749Abstract: The invention concerns a rolled or extructed product, in particular a tube, made of an alloy composition (expressed in wt. %) comprising: Si<0.30; Fe 0.20-0.05; Cu<0.05; Mn 0.5-1.2; Mg<0.05; Zn<0.50; Cr 0.10-0.30; Ti<0.05; Zr<0.05; the balance consisting of aluminium and unavoidable impurities. The invention also concerns a method for making extruded tubes of said composition comprising casting a billet, optionally homogenizing it, extruding a tube, drawing said tube in one or several passes and continuous annealing at a temperature ranging between 350 and 500° C. with a temperature increase of less than 10 seconds. The inventive products are designed for pipes and heat exchangers for motor vehicles, and exhibit good corrosion resistance.Type: GrantFiled: January 9, 2002Date of Patent: May 24, 2005Assignee: Pechiney RhenaluInventors: Bruce Morere, Isabelle Ronga, Jean-Louis Querbes
-
Patent number: 6848233Abstract: A composite aluminium panel comprising two parallel plates and/or sheets secured to the peaks and troughs of a corrugated aluminium stiffener sheet between the parallel plates and/or sheets, wherein the corrugated aluminium stiffener sheet is made from an aluminium alloy rolled sheet of composition (in weight percent): Mg 1.5-6.0, Mn 0.3-1.4, Zn 0.4-5.0, Fe up to 0.5, Si up to 0.5, Zr up to 0.30; optionally one or more of Cr 0.05-0.3, Ti 0.01-0.20, V 0.05-0.25, Ag 0.05-0.40, and Cu up to 0.40; and other elements up to 0.05 each, 0.15 total, with a balance of Al; and having in an H-condition or in an O-condition a ratio of PS/UTS in the range of 0.4 to 0.9 and having good roll formability.Type: GrantFiled: October 29, 1999Date of Patent: February 1, 2005Assignee: Corus Aluminium Walzprodukte GmbHInventors: Alfred Johann Peter Haszler, Desikan Sampath, Klaus Alfons Mechsner
-
Patent number: 6824737Abstract: An aluminium alloy suitable for diecasting of components with high elongation in the cast state comprises, as well as aluminium and unavoidable impurities, 9.0 to 11.0 w. % silicon, 0.5 to 0.9 w. % manganese, max 0.06 w. % magnesium, 0.15 w. % iron, max 0.03 w. % copper, max 0.10 w. % zinc, max 0.15 w. % titanium, 0.05 to 0.5 w. % molybdenum and 30 to 300 ppm strontium or 5 to 30 ppm sodium and/or 1 to 30 ppm calcium for permanent refinement. Optionally, the alloy also contains 0.05 to 0.3 w. % zirconium and for grain refinement gallium phosphide and/or indium phosphide in a quantity corresponding to 1 to 250 ppm phosphorus and/or titanium and boron added by way of an aluminium master alloy with 1 to 2 w. % Ti and 1 to 2 w. % B.Type: GrantFiled: January 20, 2004Date of Patent: November 30, 2004Assignee: Aluminium Rheinfelden GmbHInventor: Hubert Koch
-
Patent number: 6808864Abstract: Disclosed is a support for a lithographic printing plate obtained by subjecting an aluminum plate to a graining treatment and an anodizing treatment, the support comprising at least any one of Mn in a range from 0.1 to 1.5 wt % and Mg in a range from 0.1 to 1.5 wt %; Fe of 0 to 1 wt %; Si of 0 to 0.5 wt %; Cu of 0 to 0.2 wt %; at least one kind of element out of the elements listed in items (a) to (d) below in a range of content affixed thereto, (a) 1 to 100 ppm each of one or more kinds of elements selected from a group consisting of Li, Be, Sc, Mo, Ag, Ge, Ce, Nd, Dy and Au, (b) 0.Type: GrantFiled: September 10, 2002Date of Patent: October 26, 2004Assignee: Fuji Photo Film Co., Ltd.Inventors: Hirokazu Sawada, Akio Uesugi
-
Patent number: 6800244Abstract: The invention relates to an aluminium brazing alloy, ideally suitable as fin stock material, having a composition, in weight %: Si 0.7-1.2, Mn 0.7-1.2, Mg up to 0.35, Fe up to 0.8, Zn up to 3.0, Ni up to 0.005, Cu up to 0.5, optionally one or more members selected from the group comprising Ti up to 0.20, In up to 0.20, Zr up to 0.25, V up to 0.25, and Cr up to 0.25, others up to 0.05 each and up to 0.15 in total, and an Al balance.Type: GrantFiled: May 9, 2002Date of Patent: October 5, 2004Assignees: Corus L.P., Corus Aluminium Walzprodukte GmbHInventors: Adrianus Jacobus Wittebrood, Achim Bürger, Klaus Vieregge, Job Anthonius Van Der Hoeven, Scott W. Haller
-
Patent number: 6783869Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.Type: GrantFiled: November 7, 2002Date of Patent: August 31, 2004Assignee: MIBA Gleitlager AktiengesellschaftInventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
-
Patent number: 6783730Abstract: There is claimed an Al—Ni—Mn based alloy for die casting, squeeze casting, permanent mold casting, sand casting and/or semi-solid metal forming. The composition of this alloy includes, by weight percent: about 2-6% Ni, about 1-3% Mn, less than about 1% Fe, less than about 1% Si, the balance Al, incidental elements and impurities. It is suitable for aerospace and automotive cast parts.Type: GrantFiled: December 20, 2002Date of Patent: August 31, 2004Assignee: Alcoa Inc.Inventors: Jen C. Lin, Vadim S. Zolotorevsky, Michael V. Glazoff, Shawn J. Murtha, Nicholas A. Belov
-
Patent number: 6773664Abstract: An aluminum-magnesium alloy for casting operations consisting of, in weight percent, Mg 2.7-6.0, Mn 0.4-1.4, Zn 0.10-1.5, Zr 0.3 max., V 0.3 max., Sc 0.3 max., Ti 0.2 max., Fe 1.0 max., Si 1.4 max., balance aluminum and inevitable impurities. The casting alloy is particularly suitable for application in die-casting operations. Further the invention relates to the method of use of the casting alloy for die-casting automotive components.Type: GrantFiled: March 26, 2001Date of Patent: August 10, 2004Assignees: Corus Aluminium Voerde GmbH, Corus Aluminium Walzprodukte GmbHInventors: Martinus Godefridus Johannes Spanjers, Desikan Sampath, Alfred Johann Peter Haszler
-
Patent number: 6736911Abstract: An aluminum alloy contains at least 0.0001 mass % and not more than 0.03 mass % of copper, at least 0.0005 mass % and not more than 0.2 mass % of silicon, at least 0.5 mass % and not more than 4 mass % of manganese and at least 0.5 mass % and not more than 3 mass % of iron, and the rest contains aluminum and unavoidable impurities. The aluminum alloy further contains at least one of at least 0.01 mass % and not more than 0.5 mass % of chromium, at least 0.01 mass % and not more than 0.5 mass % of titanium and at least 0.01 mass % and not more than 0.5 mass % of zirconium. An aluminum alloy foil is prepared by heating up the aluminum alloy to a temperature of at leas 350° C. and not more than 580° C., holding the same immediately after the heating up or retaining an ingot of the aluminum alloy at a temperature of at least 350° C. and not more than 530° C. for not more than 15 hours, thereafter performing hot rolling at a starting temperature of at least 350° C. and not more than 530° C.Type: GrantFiled: December 21, 2001Date of Patent: May 18, 2004Assignee: Toyo Aluminium Kabushiki KaishaInventors: Akinori Ro, Masaaki Abe, Yoshiki Hashizume
-
Patent number: 6726785Abstract: An aluminum alloy sheet material, containing 2.6% by mass or more and less than 3.5% by mass (% by mass is simply denoted by % hereinafter) of Si, 0.05 to 0.5% of Mg, 0.5% or more and less than 1.2% of Cu, 0.6 to 1.5% of Mn, 0.5 to 1.6% of Zn, and 0.3 to 2.0% of Fe, and containing, if necessary, at least one of 0.01 to 0.2% of Cr, 0.01 to 0.2% of Zr, 0.01 to 0.2% of V, and 0.01 to 0.2% of Ti, with the balance of Al and unavoidable impurities. A method of producing the aluminum alloy sheet material, which method contains carrying out specific workings.Type: GrantFiled: May 16, 2002Date of Patent: April 27, 2004Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki KaishaInventors: Koji Oyama, Yoichiro Bekki, Noboru Hayashi, Morio Kuroki
-
Patent number: 6695935Abstract: Aluminum-magnesium alloy product for welded mechanical construction, having the following composition, in weight percent: Mg 3.5-6.0, Mn 0.4-1.2, Zn 0.4-1.5, Zr 0.25 max., Cr 0.3 max., Ti 0.2 max., Fe 0.5 max., Si 0.5 max., Cu 0.4 max.; one or more selected from the group: Bi 0.005-0.1, Pb 0.005-0.1, Sn 0.01-0.1, Ag 0.01-0.5, Sc 0.01-0.5, Li 0.01-0.5, V 0.01-0.3, Ce 0.01-0.3, Y 0.01-0.3, and Ni 0.01-0.3; others (each) 0.05 max., (total) 0.15 max.; and balance aluminum.Type: GrantFiled: February 15, 2002Date of Patent: February 24, 2004Assignee: Corus Aluminium Walzprodukte GmbHInventors: Alfred Johann Peter Haszler, Desikan Sampath
-
Patent number: 6676898Abstract: A bearing and a bearing alloy composition are described, the bearing alloy comprising in weight %: tin 5-10; copper 0.7-1.3; nickel 0.7-1.3; silicon 1.5-3.5; vanadium 0.1-0.3; manganese 0.1-0.3; and the balance being aluminium apart from unavoidable impurities.Type: GrantFiled: December 11, 2000Date of Patent: January 13, 2004Assignee: Dana CorporationInventors: Kenneth Macleod McMeekin, Ian David Massey
-
Patent number: 6638376Abstract: An aluminum alloy piping material exhibiting good corrosion resistance and having an excellent workability, such as bulge formation capability at the pipe ends. The aluminum alloy piping material is suitably used for pipes connecting automotive radiators and heaters or pipes connecting evaporators, condensers, and compressors. The aluminum alloy material is formed from an aluminum alloy which contains 0.3-1.5% of Mn, 0.20% or less of Cu, 0.06-0.30% of Ti, 0.01-0.20% of Fe, and 0.01-0.20% of Si, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the matrix, the number of compounds with a particle diameter of 0.5 &mgr;m or more is 2×104 or less per mm2. The aluminum alloy piping material may further comprise 0.4% or less of Mg.Type: GrantFiled: September 14, 2001Date of Patent: October 28, 2003Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Hirokazu Tanaka, Yoshifusa Shoji, Takahiro Koyama, Toshihiko Fukuda
-
Patent number: 6623693Abstract: An aluminum alloy composition consists essentially of controlled amounts of iron, silicon, copper, manganese, magnesium, titanium, zinc, zirconium, and free machining elements with the balance being aluminum and incidental impurities. The alloy provides improvements in combined strength, corrosion resistance, machinability, and brazeability. A component or article made from the aluminum alloy can be machined to the right configuration and can be brazed to another component to form a high quality brazed joint. In addition, the article can withstand corrosive environments and has the necessary mechanical properties to interface with other components. The alloy is adapted for particular use as a component in a heat exchanger assembly, such as a connector block having one or more machined surfaces or passageways.Type: GrantFiled: November 17, 2000Date of Patent: September 23, 2003Assignee: Reynolds Metals CompanyInventor: Subhahish Sircar
-
Patent number: 6610247Abstract: The invention relates to an aluminium brazing alloy, ideally suitable as fin stock material, having the composition, in weight %: Si 0.4-1.0, Mn 0.7-1.2, Mg up to 0.10, Fe up to 0.8, Zn up to 3.0, Ni 0.5-0.9, Cu up to 0.15, optionally one or more selected from the group consisting of Ti up to 0.20, In up to 0.20, Zr up to 0.25, V up to 0.25 and Cr up to 0.25, other elements up to 0.05 each, up to 0.15 in total, Al balance.Type: GrantFiled: May 13, 2002Date of Patent: August 26, 2003Assignee: Corus Aluminium Walzprodukte GmbHInventors: Adrianus Jacobus Wittebrood, Achim Bürger, Klaus Vieregge, Job Anthonius Van Der Hoeven, Scott W. Haller
-
Patent number: 6607616Abstract: The invention relates to an aluminum casting alloy and to cast products made thereof consisting of, in weight percent: Mg 1.0-2.6, Si 0.5-2.0, Mn 0.9-1.4, Fe<0.50, Cu<1.0, Zn<0.30, Ti<0.20, Be<0.003, balance aluminum and inevitable impurities.Type: GrantFiled: June 15, 2001Date of Patent: August 19, 2003Assignee: Corus Aluminium Voerde GmbHInventors: Martinus Godefridus Johannes Spanjers, Timothy John Hurd
-
Patent number: 6602361Abstract: Rolled product for use in the manufacture of aircraft structural elements, made of an AlCuMg alloy processed by solution heat treatment, quenching and cold stretching. The product has a composition consisting essentially of, in % by weight: Fe<0.15; Si<0.15; Cu:3.8-4.4; Mg:1-1.5; Mn:0.5-0.8; Zr:0.08-0.15; other elements: <0.05 each and <0.15 total. This product has a thickness of between 6 and 60 mm, with an ultimate tensile strength Rm(L) in the quenched and stretched temper >475 MPa and yield stress R0.2(L)>370 MPa, with a ratio Rm(L)/R0.2(L)>1.25.Type: GrantFiled: January 10, 2000Date of Patent: August 5, 2003Assignee: Pechiney RhenaluInventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
-
Patent number: 6602363Abstract: A corrosion resistant aluminum alloy has controlled amounts of iron, manganese, chromium, and titanium along with levels of copper, silicon, nickel, and no more than impurity levels of zinc. The alloy chemistry is tailored such that the electrolytic potential of the grain boundaries matches the alloy matrix material to reduce intergranular corrosion. The alloy is particularly suited for the manufacture of tubing for heat exchangers using extrusion and brazing techniques.Type: GrantFiled: April 23, 2001Date of Patent: August 5, 2003Assignee: Alcoa Inc.Inventor: Baolute Ren
-
Patent number: 6596412Abstract: The invention relates to an aluminum alloy, to a plain bearing and to a method of manufacturing a layer, particularly for a plain bearing, to which there is added as a main alloy component tin (14) and a hard material (15) from at least one first element group containing iron, manganese, nickel, chromium, cobalt, copper or platinum, magnesium, or antimony. Added to the aluminum alloy from the first elementary group is a quantity of elements for forming inter-metallic phases, e.g. aluminide formation, in the boundary areas of the matrix, and further at least one further element from a second element group containing manganese, antimony, chromium, tungsten, niobium, vanadium, cobalt, silver, molybdenum of zirconium, for substituting a portion at least of a hard material of the first element group in order to form approximately spherical or cuboid aluminides (7).Type: GrantFiled: June 15, 1998Date of Patent: July 22, 2003Assignee: Miba Gleitlager AktiengesellschaftInventor: Robert Mergen
-
Patent number: 6511555Abstract: The present invention relates to a cylinder head and motor block casting and a method of making the same, including an aluminum alloy having the following composition: Si 6.80-7.20, Fe 0.35-0.45, Cu 0.30-0.40, Mn 0.25-0.30, Mg 0.35-0.45, Ni 0.45-0.55 Zn 0.10-0.15, Ti 0.11-0.15 with the remainder being aluminum as well as unavoidable impurities with a maximum content of 0.05 each, but not more than a maximum of 0.15 impurities in all.Type: GrantFiled: September 12, 2001Date of Patent: January 28, 2003Assignee: Vaw Aluminium AGInventors: Franz Josef Feikus, Leonhard Heusler
-
Patent number: 6503446Abstract: An aluminum alloy composition includes controlled amounts of iron, manganese, zinc, zirconium, vanadium, and titanium to effectively inhibit grain growth during exposure to elevated temperatures while maintaining extrudability and corrosion resistance. The composition is especially adapted for use as micro-multivoid tubing for brazed heat exchanger applications and has a post-braze grain structure that is more resistant to intergranular corrosion so as to reduce or eliminate heat exchanger failures during service.Type: GrantFiled: July 13, 2000Date of Patent: January 7, 2003Assignee: Reynolds Metals CompanyInventors: Baolute Ren, Subhasish Sircar, William A. Cassada, III
-
Patent number: 6485682Abstract: A hardened aluminum alloy, for use in the manufacture of printed circuit boards, having elevated levels of manganese and magnesium and produced as a sheet by a cold rolling process to a specified thickness.Type: GrantFiled: November 6, 2000Date of Patent: November 26, 2002Inventor: Dieter Backhaus
-
Patent number: 6458224Abstract: An aluminum alloy article containing the alloying amounts of iron, silicon, manganese, titanium, and zinc has controlled levels of iron and manganese to produce an alloy article that combines excellent corrosion resistant with good formability. The alloy article composition employs a controlled ratio of manganese to iron and controlled total amounts of iron and manganese to form intermetallic compounds in the final alloy article. The electrolytic potential of the intermetallic compounds match the aluminum matrix of the article to minimize corrosion. The levels of iron and manganese are controlled so that the intermetallic compounds are present in a volume fraction that allows the alloy article to be easily formed. The aluminum alloy composition is especially adapted for extrusion processes, and tubing that are used in heat exchanger applications.Type: GrantFiled: May 3, 2000Date of Patent: October 1, 2002Assignee: Reynolds Metals CompanyInventors: Baolute Ren, Subhasish Sircar, William A. Cassada, III
-
Patent number: 6451453Abstract: Strip or drawn tube for the manufacture of a brazed heat exchanger, formed from an aluminum alloy containing Si, Cu and Mn, with optional amounts of Mg, Fe, Zn and Ti, where Fe≦Si, and Cu+Mg>0.4. In the form of a strip, the alloy may be coated on one or both surfaces with an aluminum brazing alloy.Type: GrantFiled: July 20, 2000Date of Patent: September 17, 2002Assignee: Pechiney RhenaluInventors: Jean-Claude Kucza, Ravi Shahani, Bruce Morere, Jean-Luc Hoffmann
-
Patent number: 6408938Abstract: An aluminum alloy containing (in wt. %): 0.2-0.5 Fe; 0.7-1.2 Si; 1.2-1.6 Mn; up to 0.3 Mg; up to 0.5 Cu; up to 0.2 Zn; up to 0.1 Ti is used to make the fins of heat exchangers particularly car radiators. The finstock has high post braze strength and thermal conductivity, and has a sufficiently electronegative potential as to be capable of acting as a sacrificial anode for the heat exchanger tubes. By virtue of the absence of Sn, In, and Cr, these heat exchangers can be scrapped and melted for re-use.Type: GrantFiled: April 20, 1998Date of Patent: June 25, 2002Assignee: Alcan International LimitedInventors: Alan Gray, Richard Kendall Bolingbroke, John Michael Evans
-
Patent number: 6403232Abstract: A core material of an aluminum brazing sheet restricts Mg to less than 0.3 wt % and Fe to not more than 0.2 wt %, and contains more than 0.2 wt % and not more than 1.0 wt % of Cu, 0.3 to 1.3 wt % of Si, 0.3 to 1.5 wt % of Mn and the balance of Al and inevitable impurities. A brazing filler material is formed on one surface of the core material by Al—Si based aluminum alloy. Also, a cladding material is formed on the other surface of the core material, and contains less than 0.2 wt % of Si, 2.0 to 3.5 wt % of Mg, not less than 0.5 wt % and less than 2.0 wt % of Zn and the balance of Al and inevitable impurities. Further, the value (cladding material hardness)/(the core material hardness) that is a ratio of the hardness of the cladding material to the hardness of the core material is not more than 1.5.Type: GrantFiled: July 25, 2001Date of Patent: June 11, 2002Assignees: Kobe Alcoa Transportation Products Ltd., Denso CorporationInventors: Tadashi Okamoto, Osamu Takezoe, Takahiko Nagaya, Yasuaki Isobe, Taketoshi Toyama, Sunao Fukuda