Molybdenum Or Tungsten Containing Patents (Class 420/57)
  • Patent number: 11608539
    Abstract: The present invention relates to an air conditioner. The air conditioner according to the present embodiment has a refrigeration capacity of 7 kW to 11 kW, inclusive, and uses a refrigerant R32 as a refrigerant, and since a refrigerant pipe therein is made of a ductile stainless steel material having 1% or less of a delta-ferrite matrix structure with respect to the grain size area thereof, and includes a suction pipe guiding the suction of the refrigerant into a compressor and having an outer diameter of 15.88 mm, the refrigerant pipe can maintain strength and hardness as good as or better than those of a copper pipe, while also maintaining good processability.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: March 21, 2023
    Assignee: LG ELECTRONICS INC.
    Inventor: Seokpyo Hong
  • Patent number: 10563917
    Abstract: Embodiments include a heating device for heating a workpiece, including a furnace defining a closed space insulated from an exterior and surrounded by a heat insulator, a heater disposed in the furnace to heat a workpiece, a bar-shaped support element for supporting a workpiece in the furnace, and bases holding longitudinal ends of the support element for mounting the support element on a wall of the furnace, the support element being configured to increase the bending strength against sagging between its longitudinal ends.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: February 18, 2020
    Assignee: TOYODA IRON WORKS CO., LTD.
    Inventor: Nobuyuki Kawahara
  • Patent number: 10407746
    Abstract: The invention relates to a method for manufacturing a ferritic-austenitic stainless steel having good formability, good weldability and high elongation. The stainless steel containing the sum of carbon and nitrogen C+N in the range 0.17-0.295 in weight % in which sum C+N a lower carbon content to avoid sensitisation during welding is compensated by an increased nitrogen content to maintain formability is heat treated so that the microstructure of the stainless steel contains 45-75% austenite in the heat treated condition, the remaining microstructure being ferrite, and the measured Md30 temperature of the stainless steel is adjusted between 0 and 50° C. in order to utilize the transformation induced plasticity (TRIP) for improving the formability of the stainless steel.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: September 10, 2019
    Assignee: OUTOKUMPU OYJ
    Inventors: James Oliver, Jan Y. Jonsson, Juho Talonen, Rachel Petersson, Jan-Olof Andersson
  • Patent number: 9822434
    Abstract: The invention relates to a duplex stainless steel having austenitic-ferritic microstructure of 35-65% by volume, preferably 40-60% by volume of ferrite and having good weldability, good corrosion resistance and good hot workability. The steel contains 0.005-0.04% by weight carbon, 0.2-0.7% by weight silicon, 2.5-5% by weight manganese, 23-27% by weight chromium, 2.5-5% by weight nickel, 0.5-2.5% by weight molybdenum, 0.2-0.35% by weight nitrogen, 0.1-1.0% by weight copper, optionally less than 1% by weight tungsten, less than 0.0030% by weight one or more elements of the group containing boron and calcium, less than 0.1% by weight cerium, less than 0.04% by weight aluminium, less than 0.010% by weight sulphur and the rest iron with incidental impurities.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 21, 2017
    Assignee: Outokumpu Oyj
    Inventors: Peter Samuelsson, Simon Lille, Jan-Olof Andersson, Mats Liljas, Erik Schedin, Pelle Johansson
  • Patent number: 9738959
    Abstract: Disclosed are non-magnetic metal alloy compositions and applications that relate to non-magnetic metal alloys with excellent wear properties for use in dynamic three-body tribological wear environments where an absence of magnetic interference is required. In one aspect, the disclosure can relate to a drilling component for use in directional drilling applications capable of withstanding service abrasion. In a second aspect, a hardbanding for protecting a drilling component for use in directional drilling can be provided. In a third aspect, a method for prolonging service life of a drilling component for use in directional drilling can be provided.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: August 22, 2017
    Assignee: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok, Kyle Walter Rafa
  • Patent number: 9279172
    Abstract: Ferritic stainless steel is excellent in terms of both oxidation resistance and thermal fatigue resistance without adding expensive elements, such as Mo or W. The ferritic stainless steel, contains: C: 0.015 mass % or lower, Si: 1.0 mass % or lower, Mn: 1.0 mass % or lower, P: 0.04 mass % or lower, S: 0.010 mass % or lower, Cr: 16 to 23 mass % or lower, N: 0.015 mass % or lower, Nb: 0.3 to 0.65 mass %, Ti: 0.15 mass % or lower, Mo: 0.1 mass % or lower, W: 0.1 mass % or lower, Cu: 1.0 to 2.5 mass %, Al: 0.2 to 1.5 mass %, and the balance of Fe and inevitable impurities.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: March 8, 2016
    Assignee: JFE Steel Corporation
    Inventors: Yasushi Kato, Norimasa Hirata, Tetsuyuki Nakamura, Takumi Ujiro, Hiroki Ota
  • Patent number: 9039961
    Abstract: The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A?80 0.1 B+7 0.1 C?40 0.40 D?80 0.40.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: May 26, 2015
    Assignee: Outokumpu Oyj
    Inventors: Juho Talonen, Suresh Kodukula, Tero Taulavuori
  • Patent number: 9028745
    Abstract: Various embodiments of the invention provide a low nickel austenitic stainless steel alloy composition including about 0.6% to about 0.8% by weight carbon; about 16% to about 18% by weight chromium; about 4.5% to about 5.5% by weight nickel; about 2.0% to about 5.0% by weight manganese; about 0.8% to about 1.2% by weight tungsten; about 0.8% to about 1.2% by weight molybdenum; about 0.65% to about 0.85% by weight niobium; about 0.3% to about 1.0% by weight silicon; balance iron and unavoidable impurities, wherein percentages are based on the overall weight of the composition. The invention further provides articles, such as turbine housings, prepared using the inventive alloys.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Honeywell International Inc.
    Inventors: Shouxing Zhu, Li Xu, Balasubramani Nandagopal
  • Patent number: 8980167
    Abstract: There is provided a cost-effective stainless steel pipe having excellent expandability for oil country tubular goods, the stainless steel pipe having excellent CO2 corrosion resistance under a severe corrosive environment containing CO2, Cl?, and the like. The stainless steel pipe having excellent expandability for oil country tubular goods contains 0.05% or less C, 0.50% or less Si, Mn: 0.10% to 1.50%, 0.03% or less P, 0.005% or less S, 10.5% to 17.0% Cr, 0.5% to 7.0% Ni, 3.0% or less Mo, 0.05% or less Al, 0.20% or less V, 0.15% or less N, and 0.008% or less O, optionally at least one selected from Nb, Cu, Ti, Zr, Ca, B, and W, in a specific content, and the balance being Fe and incidental impurities, wherein a microstructure mainly having a tempered martensitic phase has an austenitic phase content exceeding 20%.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: March 17, 2015
    Assignee: JFE Steel Corporation
    Inventors: Mitsuo Kimura, Yoshio Yamazaki, Masahito Tanaka
  • Publication number: 20150050180
    Abstract: The present invention relates to duplex ferritic austenitic stainless steel for the use chemical industry for nitric acid environments wherein good uniform corrosion resistance and high strength are required. The microstructure of the stainless steel has 35-65 volume % of ferrite, preferably 45-55 volume % of ferrite, the balance being austenite. The chemical composition contains less than 0.03 weight % carbon, less than 1 weight % silicon, less than 3 weight % manganese, 26-29.5 weight % chromium, 5-8.5 weight % nickel, 1-3 weight % molybdenum, 0.25-0.35 weight % nitrogen, 1-3 weight % copper, the rest being iron and inevitable impurities occurring in stainless steels.
    Type: Application
    Filed: November 1, 2012
    Publication date: February 19, 2015
    Inventors: Alexander Thulin, Jan Y. Jonsson, Mats Liljas, Rachel Pettersson, Jan-Olof Andersson, Staffan Hertzman
  • Patent number: 8877121
    Abstract: An austenitic stainless steel composition having low nickel and molybdenum and exhibiting high corrosion resistance and good formability. The austenitic stainless steel includes, in weight %, up to 0.20 C, 2.0-6.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 5.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities. The austenitic stainless steel has a ferrite number less than 11 and an MD30 value less than ?10° C.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: November 4, 2014
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
  • Patent number: 8858872
    Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 14, 2014
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P Stinner, John J. Dunn, John F. Grubb
  • Patent number: 8808471
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: August 19, 2014
    Assignee: QuesTek Innovations LLC
    Inventors: James A. Wright, Gregory B. Olson, Weijia Tang
  • Publication number: 20140227090
    Abstract: Disclosed is an austenitic stainless steel alloy that includes, by weight, about 16% to about 21% chromium, about 4.5% to about 5.5% nickel, about 2% to about 5% manganese, about 1% to about 2% silicon, about 0.8% to about 1.2% tungsten, about 0.4% to about 0.8% molybdenum, about 0.4% to about 0.6% niobium, about 0.4% to about 0.5% carbon, and a balance of iron. The alloy is suitable for use in turbocharger turbine housing applications for temperature up to about 1020° C.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Pavan Chintalapati, Balasubramani Nandagopal, Praveen Guruprasanna, Marc Wilson, Vijaymahantesh Patil, Jean-Jacques Laissus
  • Publication number: 20140212321
    Abstract: The object of the present invention is to provide a heat-resistant steel for exhaust valves, having relatively small Ni content, high mechanical characteristics (for example, tensile strength, fatigue strength, wear resistance and hardness) at high temperature, and excellent oxidation resistance. The present invention provides a heat-resistant steel for exhaust valves, which includes: 0.45?C<0.60 mass %, 0.30<N<0.50 mass %, 19.0?Cr<23.0 mass %, 5.0?Ni<9.0 mass %, 8.5?Mn<10.0 mass %, 2.5?Mo<4.0 mass %, 0.01?Si<0.50 mass %, and 0.01?Nb<0.30 mass %, with the balance being Fe and unavoidable impurities, in which the steel satisfies 0.02?Nb/C<0.70 and satisfies 4.5?Mo/C<8.9.
    Type: Application
    Filed: August 24, 2012
    Publication date: July 31, 2014
    Applicants: HONDA MOTOR CO., LTD., DAIDO STEEL CO., LTD.
    Inventors: Mototsugu Osaki, Shigeki Ueta, Takashi Tsuyumu
  • Publication number: 20140212322
    Abstract: Provided is duplex stainless steel having high strength, SCC resistance and SSC resistance excellent in a high-temperature chloride environment, and capable of suppressing precipitation of a ? phase. The duplex stainless steel of the present embodiment includes, in mass %, of: C: at most 0.03%; Si: 0.2 to 1%; Mn: more than 5.0% to at most 10%; P: at most 0.040%; S: at most 0.010%; Ni: 4.5 to 8%; sol. Al: at most 0.040%; N: more than 0.2% to at most 0.4%; Cr: 24 to 29%; Mo: 0.5 to less than 1.5%; Cu: 1.5 to 3.5%; W: 0.05 to 0.2%; the balance being Fe and impurities, wherein the duplex stainless steel satisfies Formula (1): Cr+8Ni+Cu+Mo+W/2?65 . . . (1), where a symbol of each element in Formula (1) represents a content of the element (in mass %).
    Type: Application
    Filed: August 28, 2012
    Publication date: July 31, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Takabe, Hisashi Amaya, Kazuhiro Ogawa
  • Publication number: 20140154129
    Abstract: Stainless steel for fuel cell separators contains C: ?0.03%, Si: ?1.0%, Mn: ?1.0%, S: ?0.01%, P: ?0.05%, Al: ?0.20%, N: ?0.03%, Cr: 16 to 40%, and one or more of Ni: ?20%, Cu: ?0.6% and Mo: ?2.5%, the balance being Fe and inevitable impurities. According to X-ray photoelectron spectroscopy, the surface of the stainless steel contains fluorine and provides a 3.0 or higher ratio of the total of atomic concentrations of Cr and Fe in other than the metallic forms calculated from data resulting from the separation of peaks of Cr and Fe into metallic peaks and peaks other than the metallic peaks to the total of atomic concentrations of Cr and Fe in the metallic forms calculated from data resulting from the separation of peaks of Cr and Fe into metallic peaks and peaks other than the metallic peaks.
    Type: Application
    Filed: July 25, 2012
    Publication date: June 5, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Noriko Makiishi, Hisato Noro, Shin Ishikawa, Shinsuke Ide, Tomohiro Ishii, Masayasu Nagoshi
  • Patent number: 8703047
    Abstract: As a stainless steel for a metal part for clothing ornament capable of working into a complicated form part and having such nonmagnetic properties that the worked part can cope with the detection through needle detecting device is provided a high-Mn austenitic stainless steel having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.03 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass %, provided that these components are contained so that ? cal (mass %) represented by the following equation (1) is not more than 5.5 mass %: ? cal (mass %)=(Cr+0.48Si+1.21Mo+2.2(V+Ti)+0.15Nb)?(Ni+0.47Cu+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7??(1) and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 22, 2014
    Assignee: Nippon Yakin Kogyo Co., Ltd.
    Inventors: Shigeru Hirata, Yuji Ikegami, Kazuhiro Yamakawa
  • Publication number: 20140086785
    Abstract: An austenitic iron-based alloy containing manganese and at most 10% by weight and in particular at most 5% by weight nickel, based in each case on the overall weight of the iron-based alloy.
    Type: Application
    Filed: April 30, 2012
    Publication date: March 27, 2014
    Applicant: BORGWARNER INC.
    Inventor: Antoine Claude
  • Publication number: 20140030134
    Abstract: A purpose of the present invention is to provide a martensitic stainless steel applicable in environments involving both wet carbon dioxide gas and wet hydrogen sulfide and excellent in weldability, manufacturability, and resistance to strain age hardening. Provided is a martensitic stainless steel having excellent corrosion resistance and resistance to strain age hardening comprising, in percent by mass, 0.02% or less of C, 0.02% or less of N, 0.1 to 0.5% of Si, 0.1 to 0.5% of Mn, 10 to 13% Cr, Ni exceeding 5.0% but 8% or less, 1.5 to 3% of Mo, 0.01 to 0.05% of V, 0.16 to 0.30% of Zr, 0.01 to 0.05% of Ta, and the balance of Fe and unavoidable impurities, wherein the martensitic stainless steel satisfies the condition that the sum of the carbon and the nitrogen exceeds 0.02% but 0.04% or less.
    Type: Application
    Filed: April 11, 2011
    Publication date: January 30, 2014
    Applicant: NKK TUBES
    Inventors: Shuji Hashizume, Yusuke Minami, Yu Yamamoto
  • Publication number: 20130343948
    Abstract: A nitrogen-rich two-phase stainless steel that has corrosion resistance equal to that of standard type of two-phase stainless steel and is not susceptible to corrosion in a welding heat-affected part, wherein the austenite phase area ratio is 40-70%, the PI value expressed by formula (1) is 30-38, the NI value expressed by formula (2) is 100-140, and the ?pre expressed by formula (3) is 1350-1450. (1) PI=Cr+3.
    Type: Application
    Filed: March 9, 2012
    Publication date: December 26, 2013
    Inventors: Yusuke Oikawa, Shinji Tsuge, Hiroshige Inoue, Ryo Matsuhashi
  • Publication number: 20130336834
    Abstract: The present invention provides austenitic stainless steel which is not only excellent in brazeability, but is also excellent in corrosion resistance in an environment where condensation of combustion exhaust gas causes formation of condensed water which contains nitric acid ions or sulfuric acid ions and which is low in pH or in an environment of an aqueous solution which contains chloride ions, which contains, by mass %, C: 0.080% or less, Si: 1.2 to 3.0%, Mn: 0.4 to 2.0%, P: 0.03% or less, S: 0.003% or less, Ni: 6.0 to 12.0%, Cr: 16.0 to 20.0%, Cu: 0.2 to 3.0%, Al: 0.002 to 0.10%, N: 0.030 to 0.150%, and Mo: 0.1 to 1.0%, has a balance of Fe and unavoidable impurities, and satisfies Formula (A): 1.6?[Cu]×[Si?]4.4 and Formula (B): 0.16?2[N]+[Mo?]1.0.
    Type: Application
    Filed: March 28, 2012
    Publication date: December 19, 2013
    Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Tooru Matsuhashi, Jun Tokunaga
  • Publication number: 20130315776
    Abstract: A duplex stainless steel, which can suppress precipitation of a ? phase under high heat input welding, is excellent in SCC resistance under high-temperature chloride environments and has a high strength. The duplex stainless steel includes a chemical composition containing, in mass percent, C: at most 0.030%, Si: 0.20 to 1.00%, Mn: at most 8.00%, P: at most 0.040%, S: at most 0.0100%, Cu: more than 2.00% and at most 4.00%, Ni: 4.00 to 8.00%, Cr: 20.0 to 28.0%, Mo: 0.50 to 2.00%, N: 0.100 to 0.350%, and sol. Al: at most 0.040%, the balance being Fe and impurities, and satisfying Expression (1) and Expression (2); a structure having a ferrite rate of at least 50%; and a yield strength of at least 550 MPa or more: 2.
    Type: Application
    Filed: February 10, 2012
    Publication date: November 28, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kenta Yamada, Hiroyuki Nagayama, Masahiko Hamada, Daisuke Motoya, Hisashi Amaya
  • Patent number: 8535606
    Abstract: Disclosed are corrosion resistant, non-magnetic austenitic stainless steels containing alloying elements molybdenum, nickel, and copper and further containing small quantities of an additional element selected from the group consisting of a rare-earth element, calcium, cobalt, iridium, osmium, rhenium, rhodium, ruthenium, silver, and a combination thereof.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: September 17, 2013
    Assignee: Baker Hughes Incorporated
    Inventor: Hendrik John
  • Publication number: 20130224062
    Abstract: The alloys of the present invention provide austenitic, paramagnetic materials with high strength, ductility, and yield strength and good corrosion resistance in media with high chloride concentrations. Alloys of the present invention were developed because of the need by oilfield industries for superior materials. The alloys of the present invention may be used in drilling string components, and the tests performed demonstrate that such alloys exhibit properties balanced for very high yield strength, magnetic permeability, and corrosion resistance superior in every respect to presently available paramagnetic, high strength, corrosion resistant austenitic stainless steels.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 29, 2013
    Applicant: JORGENSEN FORGE CORPORATION
    Inventor: JORGENSEN FORGE CORPORATION
  • Patent number: 8486204
    Abstract: The hinge is made with a metal injection molding process from an alloy having at least: from 4 to 32 wt % Mn, from 16 to 37 wt % Cr, and from Fe that fills up the rest of the percentage.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: July 16, 2013
    Assignee: Shin Zu Shing Co., Ltd.
    Inventors: Yu-Chi Lu, Yu-Chan Hsieh, Shun-Tian Lin
  • Publication number: 20130156629
    Abstract: Stainless steel alloys for fabricating endoprostheses. Endoprostheses can include a variety of devices such as staples, orthodontic wires, heart valves, filter devices, and stents, many of which devices are diametrically expandable devices.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: W. L. GORE & ASSOCIATES, INC.
    Inventor: W. L. GORE & ASSOCIATES, INC.
  • Patent number: 8454765
    Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: June 4, 2013
    Assignees: Boehler Edelstahl GmbH & Co. KG, Schoeller-Bleckmann Oilfield Technology GmbH
    Inventors: Gabriele Saller, Herbert Aigner, Josef Bernauer, Raimund Huber
  • Publication number: 20130108426
    Abstract: Various embodiments of the invention provide a low nickel austenitic stainless steel alloy composition including about 0.6% to about 0.8% by weight carbon; about 16% to about 18% by weight chromium; about 4.5% to about 5.5% by weight nickel; about 2.0% to about 5.0% by weight manganese; about 0.8% to about 1.2% by weight tungsten; about 0.8% to about 1.2% by weight molybdenum; about 0.65% to about 0.85% by weight niobium; about 0.3% to about 1.0% by weight silicon; balance iron and unavoidable impurities, wherein percentages are based on the overall weight of the composition. The invention further provides articles, such as turbine housings, prepared using the inventive alloys.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Shouxing Zhu, Li Xu, Balasubramani Nandagopal
  • Publication number: 20130078134
    Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(C))?(Nb+Ti+V+Ta+Zr)?1.5, Fe, and incidental impurities.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Applicant: ATI PROPERTIES, INC.
    Inventor: ATI Properties, Inc.
  • Publication number: 20130039802
    Abstract: The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A?80 0.1 B+7 0.1 C?40 0.40 D?80 0.40.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 14, 2013
    Applicant: OUTOKUMPU OYJ
    Inventors: Juho Talonen, Suresh Kodukula, Tero Taulavuori
  • Patent number: 8337749
    Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(% C))?(% Nb+% Ti+% V+% Ta+% Zr)?1.5, Fe, and incidental impurities.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: December 25, 2012
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski
  • Patent number: 8337748
    Abstract: An austenitic stainless steel composition including relatively low nickel and molybdenum levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher nickel and molybdenum levels. Embodiments of the austenitic stainless steel include, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, up to 4.0 W, (7.5(% C))?(Nb+Ti+V+Ta+Zr)?1.5, up to 0.01 B, up to 1.0 Co, iron and impurities. Additionally, embodiments of the steel may include 0.5?(Mo+W/2)?5.0 and/or 1.0?(Ni+Co)?8.0.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: December 25, 2012
    Assignee: ATI Properties, Inc.
    Inventors: James M. Rakowski, David S. Bergstrom, Charles P. Stinner, John J. Dunn, John F. Grubb
  • Publication number: 20120315180
    Abstract: A stainless steel music string having a composition in percent by weight (wt %) of, 0.01?C?0.04; 0.01?N?0.06; 0.1?Si?1.0; 0.2?Mn?2.0; 5.0?Ni?10; 16?Cr?20; 0.2?Cu?3.0; 0?Mo?2.0; 0?W?0.5; 0?V?0.5; 0?Ti?1.0; 0?Al?1.0; 0?Nb?1.0; 0?Co?1.0, and the balance being Fe and normally occurring impurities The music string also includes at least 90% martensite phase by volume.
    Type: Application
    Filed: December 22, 2010
    Publication date: December 13, 2012
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Anders Soderman, Lars Nylof
  • Patent number: 8313691
    Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: November 20, 2012
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
  • Publication number: 20120244031
    Abstract: The present invention provides a duplex stainless steel having excellent resistance to alkalis and particularly corrosion resistance against high-temperature concentrated alkali solutions and excellent weldability. The duplex stainless steel has a chemical composition comprising, in mass %, C: at most 0.03%, Si: at most 0.5%, Mn: at most 2.0%, P: at most 0.04%, S: at most 0.003%, Cr: at least 25.0% to less than 28.0%, Ni: at least 6.0% to at most 10.0%, Mo: at least 0.2% to at most 3.5%, N: less than 0.5%, W: at most 3.0%, and a remainder of Fe and impurities.
    Type: Application
    Filed: May 1, 2012
    Publication date: September 27, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Hideya KAMINAKA, Junichi Higuchi, Yoshiaki Yamade, Shuuji Yoshida, Junko Imamura
  • Publication number: 20120237388
    Abstract: An austenitic stainless steel sheet for springs having both a high strength and excellent formability has a chemical composition comprising C: 0.01-0.15%, Si: at most 3.0%, Mn: at most 3.0%, Cr: 10.0-30.0%, Ni: 4.0-20.0%, N: at most 0.40%, and a remainder of Fe and impurities, and it has a metallurgical structure such that the austenite content ?s (%) in the surface region of the steel sheet and the austenite content ?c (%) in the center region of the sheet thickness satisfy (?s+?c)/2?55 and ?s/?c?0.10, with the remaining structure being primarily strain-induced martensite.
    Type: Application
    Filed: May 10, 2012
    Publication date: September 20, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventor: Masayoshi SAWADA
  • Publication number: 20120187315
    Abstract: In one embodiment, a neutron shielding material is formed of boron-adding stainless steel of either austenite-ferrite two-phase stainless steel or ferritic stainless steel, the austenite-ferrite two-phase stainless steel containing, in mass %, B: 0.5% to 2.0%, Ni: 3.0 to 10.0%, and Cr: 21.00 to 32.00%, the ferritic stainless steel containing, in mass %, B: 0.5% to 2.0%, Ni: 4.0% or less, and Cr: 11.00 to 32.00%, and the boron-adding stainless steel being well in ductility and thermal conduction property.
    Type: Application
    Filed: January 27, 2012
    Publication date: July 26, 2012
    Inventors: Masanori KIBATA, Yuuji SAITO, Motoji TSUBOTA, Yoshitaka DOKEN, Makoto SATO, Shunichi HATANO, Masanori ISHIGA, Go ONO
  • Publication number: 20120177529
    Abstract: A duplex stainless steel excellent in the weldability during large heat input welding and in the stress corrosion cracking resistance in a chloride environment containing corrosive associated gases has a chemical composition consisting, by mass %, of C: 0.03% or less, Si: 0.2 to 1%, Mn: 5.0% or less, P: 0.040% or less, S: 0.010% or less, sol. Al: 0.040% or less, Ni: 4 to 8%, Cr: 20 to 28%, Mo: 0.5 to 2.0%, Cu: more than 2.0% and 4.0% or less and N: 0.1 to 0.35%, and optionally contains one or more selected from among V, Ca, Mg, B and a rare earth metal(s), with the balance being Fe and impurities; wherein the duplex stainless steel satisfies the following formulas: 2.2Cr+7Mo+3Cu>66 ??(1) Cr+11Mo+10Ni<12(Cu+30N) ??(2), wherein the symbols represent mass % of the elements in the steel.
    Type: Application
    Filed: March 5, 2012
    Publication date: July 12, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Hisashi Amaya, Hideki Takabe, Kazuhiro Ogawa
  • Publication number: 20120156085
    Abstract: An article of manufacture formed of an alloy having the following weight percent composition is described. Carbon 0.25 max. Manganese ?14-20? Silicon up to 2.0 Phosphorus 0.05 max. Sulfur ?0.5 max. Chromium ?12-22? Nickel ?3.5 max. Molybdenum 0.5-4?? Copper ?2.0 max. Nitrogen 0.2-0.8 Boron 0.06 max. The balance of the alloy is iron and the usual, inevitable impurities found in commercial grades of stainless steel alloys. Optionally, the alloy may contain niobium, titanium, vanadium, zirconium, hafnium, and tungsten in a combined amount of up to about 0.5%. An intermediate form of the article is armor plate made from the alloy. In accordance with another aspect of the present invention, the plate is shaped to form an armor part that is attached to a larger structure to provide resistance to an explosion fragments or a ballistic projectile.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 21, 2012
    Inventors: Peter T. Thompson, Christopher F. Pilliod
  • Patent number: 8192682
    Abstract: High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: June 5, 2012
    Assignee: Shell Oil Company
    Inventors: Phillip James Maziasz, John Paul Shingledecker, Michael Leonard Santella, Joachim Hugo Schneibel, Vinod Kumar Sikka, Harold J. Vinegar, Randy Carl John, Dong Sub Kim
  • Publication number: 20120014829
    Abstract: The alloys of the present invention provide austenitic, paramagnetic materials with high strength, ductility, and yield strength and good corrosion resistance in media with high chloride concentrations. Alloys of the present invention were developed because of the need by oilfield industries for superior materials. The alloys of the present invention may be used in drilling string components, and the tests performed demonstrate that such alloys exhibit properties balanced for very high yield strength, magnetic permeability, and corrosion resistance superior in every respect to presently available paramagnetic, high strength, corrosion resistant austenitic stainless steels.
    Type: Application
    Filed: June 9, 2011
    Publication date: January 19, 2012
    Applicant: Jorgensen Forge Corporation
    Inventors: Svetlana Yaguchi, George Luksetich
  • Publication number: 20110293464
    Abstract: A stainless steel and a flat cold product produced therefrom, which can be easily produced in an economical manner. A steel according to the invention, in the cold-rolled state, has a microstructure with 5-15% by volume ?-ferrite and austenite as the remainder. It contains (in % by weight): C: 0.05-0.14%, Si: 0.1-1.0%, Mn: 4.0-12.0%, Cr: >17.5-22.0%, Ni: 1.0-4.0%, Cu: 1.0-3.0%, N: 0.03-0.2%, P: max. 0.07%, S: max. 0.01%, Mo: max. 0.5%, optionally one or more elements from the group consisting of Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, and H wherein Ti: max. 0.02%, Nb: max. 0.1%, B: max. 0.004%, V: max. 0.1%, Al: 0.001-0.03%, Ca: 0.0005-0.003%, As: 0.003-0.015%, Sn: 0.003-0.01%, Pb: max. 0.01%, Bi: max. 0.01%, H: max. 0.0025%, and remainder Fe and unavoidable impurities.
    Type: Application
    Filed: September 3, 2009
    Publication date: December 1, 2011
    Applicant: THYSSENKRUPP NIROSTA GMBH
    Inventors: Cornel Abratis, Lutz Ernenputsch, Wilfried Klos, Hans-Joachim Krautschick, Michael Sachtleber
  • Publication number: 20110286879
    Abstract: As a stainless steel for a metal part for clothing ornament capable of working into a complicated form part and having such nonmagnetic properties that the worked part can cope with the detection through needle detecting device is provided a high-Mn austenitic stainless steel having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.03 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass %, provided that these components are contained so that ? cal (mass %) represented by the following equation (1) is not more than 5.5 mass %: ? cal (mass %)=(Cr+0.48Si+1.21Mo+2.2(V+Ti)+0.15Nb)?(Ni+0.47Cu+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7??(1) and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.
    Type: Application
    Filed: February 26, 2010
    Publication date: November 24, 2011
    Applicant: NIPPON YAKIN KOGYO CO., LTD.
    Inventors: Shigeru Hirata, Yuji Ikegami, Kazuhiro Yamakawa
  • Patent number: 8043446
    Abstract: A high manganese duplex stainless steel with excellent hot workability, comprising (in weight %): less than 0.1% of C; 0.05-2.2% of Si; 2.1-7.8% of Mn; 20-29% of Cr; 3.0-9.5% of Ni; 0.08-0.5% of N; less than 5.0% of Mo and 1.2-8% of W, alone or composite; the balance Fe and inevitable impurities; and a method for manufacturing the duplex stainless steel, comprising the steps of: solution heating the duplex stainless steel composition at a temperature of 1,050 to 1,250° C., hot working at a starting temperature of 1,130 to 1,280° C. and then ending at a temperature greater than 1,000° C., and then cooling within the temperature range from 1,000 to 700° C. at a cooling rate of more than 3° C./min. The duplex stainless steel exhibits a reduction in area of more than 50% at 1,050° C., and possesses a yield strength of more than 400 MPa, and a corrosion rate of less than 0.36 mm/year, after solution heating.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: October 25, 2011
    Assignee: Research Institute of Industrial Science and Technology
    Inventors: Jae-Young Jung, Bong-Year Ma
  • Publication number: 20110255988
    Abstract: A precipitation hardenable martensitic stainless steel excellent in the stability of martensite, having the high strength, high toughness and high corrosion resistance is provided. The precipitation hardenable martensitic stainless steel contains at a mass rate, C: 0.05-0.10%, Cr: 12.0-13.0%, Ni: 6.0-7.0%, Mo: 1.0-2.0%, Si: 0.01-0.05%, Mn: 0.06-1.0%, Nb: 0.3-0.5%, V: 0.3-0.5%, Ti: 1.5-2.5%, Al: 1.0-2.3%, and the remainder consisting of Fe and an unavoidable impurity.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 20, 2011
    Inventors: Shinji OIKAWA, Hideo Yoda, Masahiko Arai, Hiroyuki Doi
  • Publication number: 20110250088
    Abstract: The invention relates to a duplex stainless steel having austenitic-ferritic microstructure of 35-65% by volume, preferably 40-60% by volume of ferrite and having good weldability, good corrosion resistance and good hot workability. The steel contains 0.005-0.04% by weight carbon, 0.2-0.7% by weight silicon, 2.5-5% by weight manganese, 23-27% by weight chromium, 2.5-5% by weight nickel, 0.5-2.5% by weight molybdenum, 0.2-0.35% by weight nitrogen, 0.1-1.0% by weight copper, optionally less than 1% by weight tungsten, less than 0.0030% by weight one or more elements of the group containing boron and calcium, less than 0.1% by weight cerium, less than 0.04% by weight aluminium, less than 0.010% by weight sulphur and the rest iron with incidental impurities.
    Type: Application
    Filed: December 17, 2009
    Publication date: October 13, 2011
    Applicant: OUTOKUMPU OYJ
    Inventors: Peter Samuelsson, Simon Lille, Jan-Olof Andersson, Mats Liljas, Erik Schedin, Pelle Johansson
  • Publication number: 20110226459
    Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Inventor: Per Erik Sjodin
  • Publication number: 20110120977
    Abstract: An alloy comprising about 0.5 weight percent to about 2 weight percent carbon, about 15 weight percent to about 30 weight percent chromium, about 4 weight percent to about 12 weight percent nickel, up to about 3 weight percent manganese, up to about 2.5 weight percent silicon, up to about 1 weight percent zirconium, up to about 3 weight percent molybdenum, up to about 3 weight percent tungsten, up to about 0.5 weight percent boron, up to about 0.5 weight percent impurities, and iron.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 26, 2011
    Inventors: George Y. Lai, Bingtao Li
  • Publication number: 20110064601
    Abstract: The invention relates to a stainless steel product, particularly to a duplex stainless steel casting with high machinability, to the use of the product and to the method to produce the product. The product contains in weight percent up to 0.07% carbon, up to 2% silicon, 3-8% manganese, 19-23% chromium, 0.5-1.7% nickel, up to 1% of molybdenum and/or tungsten with the formula (Mo+½W) less than 1%, up to 1% copper and 0.15-0.30% nitrogen, the remainder being iron and incidental impurities.
    Type: Application
    Filed: May 14, 2009
    Publication date: March 17, 2011
    Applicant: OUTOKUMPU OYJ
    Inventors: Mats Liljas, Jan Olsson, Peter Samuelsson, Mikael willför