Molybdenum Or Tungsten Containing Patents (Class 420/57)
-
Patent number: 11608539Abstract: The present invention relates to an air conditioner. The air conditioner according to the present embodiment has a refrigeration capacity of 7 kW to 11 kW, inclusive, and uses a refrigerant R32 as a refrigerant, and since a refrigerant pipe therein is made of a ductile stainless steel material having 1% or less of a delta-ferrite matrix structure with respect to the grain size area thereof, and includes a suction pipe guiding the suction of the refrigerant into a compressor and having an outer diameter of 15.88 mm, the refrigerant pipe can maintain strength and hardness as good as or better than those of a copper pipe, while also maintaining good processability.Type: GrantFiled: January 11, 2018Date of Patent: March 21, 2023Assignee: LG ELECTRONICS INC.Inventor: Seokpyo Hong
-
Patent number: 10563917Abstract: Embodiments include a heating device for heating a workpiece, including a furnace defining a closed space insulated from an exterior and surrounded by a heat insulator, a heater disposed in the furnace to heat a workpiece, a bar-shaped support element for supporting a workpiece in the furnace, and bases holding longitudinal ends of the support element for mounting the support element on a wall of the furnace, the support element being configured to increase the bending strength against sagging between its longitudinal ends.Type: GrantFiled: October 14, 2016Date of Patent: February 18, 2020Assignee: TOYODA IRON WORKS CO., LTD.Inventor: Nobuyuki Kawahara
-
Patent number: 10407746Abstract: The invention relates to a method for manufacturing a ferritic-austenitic stainless steel having good formability, good weldability and high elongation. The stainless steel containing the sum of carbon and nitrogen C+N in the range 0.17-0.295 in weight % in which sum C+N a lower carbon content to avoid sensitisation during welding is compensated by an increased nitrogen content to maintain formability is heat treated so that the microstructure of the stainless steel contains 45-75% austenite in the heat treated condition, the remaining microstructure being ferrite, and the measured Md30 temperature of the stainless steel is adjusted between 0 and 50° C. in order to utilize the transformation induced plasticity (TRIP) for improving the formability of the stainless steel.Type: GrantFiled: April 18, 2012Date of Patent: September 10, 2019Assignee: OUTOKUMPU OYJInventors: James Oliver, Jan Y. Jonsson, Juho Talonen, Rachel Petersson, Jan-Olof Andersson
-
Patent number: 9822434Abstract: The invention relates to a duplex stainless steel having austenitic-ferritic microstructure of 35-65% by volume, preferably 40-60% by volume of ferrite and having good weldability, good corrosion resistance and good hot workability. The steel contains 0.005-0.04% by weight carbon, 0.2-0.7% by weight silicon, 2.5-5% by weight manganese, 23-27% by weight chromium, 2.5-5% by weight nickel, 0.5-2.5% by weight molybdenum, 0.2-0.35% by weight nitrogen, 0.1-1.0% by weight copper, optionally less than 1% by weight tungsten, less than 0.0030% by weight one or more elements of the group containing boron and calcium, less than 0.1% by weight cerium, less than 0.04% by weight aluminium, less than 0.010% by weight sulphur and the rest iron with incidental impurities.Type: GrantFiled: December 17, 2009Date of Patent: November 21, 2017Assignee: Outokumpu OyjInventors: Peter Samuelsson, Simon Lille, Jan-Olof Andersson, Mats Liljas, Erik Schedin, Pelle Johansson
-
Patent number: 9738959Abstract: Disclosed are non-magnetic metal alloy compositions and applications that relate to non-magnetic metal alloys with excellent wear properties for use in dynamic three-body tribological wear environments where an absence of magnetic interference is required. In one aspect, the disclosure can relate to a drilling component for use in directional drilling applications capable of withstanding service abrasion. In a second aspect, a hardbanding for protecting a drilling component for use in directional drilling can be provided. In a third aspect, a method for prolonging service life of a drilling component for use in directional drilling can be provided.Type: GrantFiled: October 10, 2013Date of Patent: August 22, 2017Assignee: Scoperta, Inc.Inventors: Justin Lee Cheney, John Hamilton Madok, Kyle Walter Rafa
-
Patent number: 9279172Abstract: Ferritic stainless steel is excellent in terms of both oxidation resistance and thermal fatigue resistance without adding expensive elements, such as Mo or W. The ferritic stainless steel, contains: C: 0.015 mass % or lower, Si: 1.0 mass % or lower, Mn: 1.0 mass % or lower, P: 0.04 mass % or lower, S: 0.010 mass % or lower, Cr: 16 to 23 mass % or lower, N: 0.015 mass % or lower, Nb: 0.3 to 0.65 mass %, Ti: 0.15 mass % or lower, Mo: 0.1 mass % or lower, W: 0.1 mass % or lower, Cu: 1.0 to 2.5 mass %, Al: 0.2 to 1.5 mass %, and the balance of Fe and inevitable impurities.Type: GrantFiled: March 5, 2009Date of Patent: March 8, 2016Assignee: JFE Steel CorporationInventors: Yasushi Kato, Norimasa Hirata, Tetsuyuki Nakamura, Takumi Ujiro, Hiroki Ota
-
Patent number: 9039961Abstract: The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A?80 0.1 B+7 0.1 C?40 0.40 D?80 0.40.Type: GrantFiled: April 18, 2011Date of Patent: May 26, 2015Assignee: Outokumpu OyjInventors: Juho Talonen, Suresh Kodukula, Tero Taulavuori
-
Patent number: 9028745Abstract: Various embodiments of the invention provide a low nickel austenitic stainless steel alloy composition including about 0.6% to about 0.8% by weight carbon; about 16% to about 18% by weight chromium; about 4.5% to about 5.5% by weight nickel; about 2.0% to about 5.0% by weight manganese; about 0.8% to about 1.2% by weight tungsten; about 0.8% to about 1.2% by weight molybdenum; about 0.65% to about 0.85% by weight niobium; about 0.3% to about 1.0% by weight silicon; balance iron and unavoidable impurities, wherein percentages are based on the overall weight of the composition. The invention further provides articles, such as turbine housings, prepared using the inventive alloys.Type: GrantFiled: November 1, 2011Date of Patent: May 12, 2015Assignee: Honeywell International Inc.Inventors: Shouxing Zhu, Li Xu, Balasubramani Nandagopal
-
Patent number: 8980167Abstract: There is provided a cost-effective stainless steel pipe having excellent expandability for oil country tubular goods, the stainless steel pipe having excellent CO2 corrosion resistance under a severe corrosive environment containing CO2, Cl?, and the like. The stainless steel pipe having excellent expandability for oil country tubular goods contains 0.05% or less C, 0.50% or less Si, Mn: 0.10% to 1.50%, 0.03% or less P, 0.005% or less S, 10.5% to 17.0% Cr, 0.5% to 7.0% Ni, 3.0% or less Mo, 0.05% or less Al, 0.20% or less V, 0.15% or less N, and 0.008% or less O, optionally at least one selected from Nb, Cu, Ti, Zr, Ca, B, and W, in a specific content, and the balance being Fe and incidental impurities, wherein a microstructure mainly having a tempered martensitic phase has an austenitic phase content exceeding 20%.Type: GrantFiled: February 24, 2006Date of Patent: March 17, 2015Assignee: JFE Steel CorporationInventors: Mitsuo Kimura, Yoshio Yamazaki, Masahito Tanaka
-
Publication number: 20150050180Abstract: The present invention relates to duplex ferritic austenitic stainless steel for the use chemical industry for nitric acid environments wherein good uniform corrosion resistance and high strength are required. The microstructure of the stainless steel has 35-65 volume % of ferrite, preferably 45-55 volume % of ferrite, the balance being austenite. The chemical composition contains less than 0.03 weight % carbon, less than 1 weight % silicon, less than 3 weight % manganese, 26-29.5 weight % chromium, 5-8.5 weight % nickel, 1-3 weight % molybdenum, 0.25-0.35 weight % nitrogen, 1-3 weight % copper, the rest being iron and inevitable impurities occurring in stainless steels.Type: ApplicationFiled: November 1, 2012Publication date: February 19, 2015Inventors: Alexander Thulin, Jan Y. Jonsson, Mats Liljas, Rachel Pettersson, Jan-Olof Andersson, Staffan Hertzman
-
Patent number: 8877121Abstract: An austenitic stainless steel composition having low nickel and molybdenum and exhibiting high corrosion resistance and good formability. The austenitic stainless steel includes, in weight %, up to 0.20 C, 2.0-6.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 5.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities. The austenitic stainless steel has a ferrite number less than 11 and an MD30 value less than ?10° C.Type: GrantFiled: February 26, 2008Date of Patent: November 4, 2014Assignee: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Patent number: 8858872Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.Type: GrantFiled: October 15, 2012Date of Patent: October 14, 2014Assignee: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski, Charles P Stinner, John J. Dunn, John F. Grubb
-
Patent number: 8808471Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.Type: GrantFiled: April 13, 2009Date of Patent: August 19, 2014Assignee: QuesTek Innovations LLCInventors: James A. Wright, Gregory B. Olson, Weijia Tang
-
Publication number: 20140227090Abstract: Disclosed is an austenitic stainless steel alloy that includes, by weight, about 16% to about 21% chromium, about 4.5% to about 5.5% nickel, about 2% to about 5% manganese, about 1% to about 2% silicon, about 0.8% to about 1.2% tungsten, about 0.4% to about 0.8% molybdenum, about 0.4% to about 0.6% niobium, about 0.4% to about 0.5% carbon, and a balance of iron. The alloy is suitable for use in turbocharger turbine housing applications for temperature up to about 1020° C.Type: ApplicationFiled: February 12, 2013Publication date: August 14, 2014Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Pavan Chintalapati, Balasubramani Nandagopal, Praveen Guruprasanna, Marc Wilson, Vijaymahantesh Patil, Jean-Jacques Laissus
-
Publication number: 20140212322Abstract: Provided is duplex stainless steel having high strength, SCC resistance and SSC resistance excellent in a high-temperature chloride environment, and capable of suppressing precipitation of a ? phase. The duplex stainless steel of the present embodiment includes, in mass %, of: C: at most 0.03%; Si: 0.2 to 1%; Mn: more than 5.0% to at most 10%; P: at most 0.040%; S: at most 0.010%; Ni: 4.5 to 8%; sol. Al: at most 0.040%; N: more than 0.2% to at most 0.4%; Cr: 24 to 29%; Mo: 0.5 to less than 1.5%; Cu: 1.5 to 3.5%; W: 0.05 to 0.2%; the balance being Fe and impurities, wherein the duplex stainless steel satisfies Formula (1): Cr+8Ni+Cu+Mo+W/2?65 . . . (1), where a symbol of each element in Formula (1) represents a content of the element (in mass %).Type: ApplicationFiled: August 28, 2012Publication date: July 31, 2014Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Hideki Takabe, Hisashi Amaya, Kazuhiro Ogawa
-
Publication number: 20140212321Abstract: The object of the present invention is to provide a heat-resistant steel for exhaust valves, having relatively small Ni content, high mechanical characteristics (for example, tensile strength, fatigue strength, wear resistance and hardness) at high temperature, and excellent oxidation resistance. The present invention provides a heat-resistant steel for exhaust valves, which includes: 0.45?C<0.60 mass %, 0.30<N<0.50 mass %, 19.0?Cr<23.0 mass %, 5.0?Ni<9.0 mass %, 8.5?Mn<10.0 mass %, 2.5?Mo<4.0 mass %, 0.01?Si<0.50 mass %, and 0.01?Nb<0.30 mass %, with the balance being Fe and unavoidable impurities, in which the steel satisfies 0.02?Nb/C<0.70 and satisfies 4.5?Mo/C<8.9.Type: ApplicationFiled: August 24, 2012Publication date: July 31, 2014Applicants: HONDA MOTOR CO., LTD., DAIDO STEEL CO., LTD.Inventors: Mototsugu Osaki, Shigeki Ueta, Takashi Tsuyumu
-
Publication number: 20140154129Abstract: Stainless steel for fuel cell separators contains C: ?0.03%, Si: ?1.0%, Mn: ?1.0%, S: ?0.01%, P: ?0.05%, Al: ?0.20%, N: ?0.03%, Cr: 16 to 40%, and one or more of Ni: ?20%, Cu: ?0.6% and Mo: ?2.5%, the balance being Fe and inevitable impurities. According to X-ray photoelectron spectroscopy, the surface of the stainless steel contains fluorine and provides a 3.0 or higher ratio of the total of atomic concentrations of Cr and Fe in other than the metallic forms calculated from data resulting from the separation of peaks of Cr and Fe into metallic peaks and peaks other than the metallic peaks to the total of atomic concentrations of Cr and Fe in the metallic forms calculated from data resulting from the separation of peaks of Cr and Fe into metallic peaks and peaks other than the metallic peaks.Type: ApplicationFiled: July 25, 2012Publication date: June 5, 2014Applicant: JFE STEEL CORPORATIONInventors: Noriko Makiishi, Hisato Noro, Shin Ishikawa, Shinsuke Ide, Tomohiro Ishii, Masayasu Nagoshi
-
Patent number: 8703047Abstract: As a stainless steel for a metal part for clothing ornament capable of working into a complicated form part and having such nonmagnetic properties that the worked part can cope with the detection through needle detecting device is provided a high-Mn austenitic stainless steel having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.03 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass %, provided that these components are contained so that ? cal (mass %) represented by the following equation (1) is not more than 5.5 mass %: ? cal (mass %)=(Cr+0.48Si+1.21Mo+2.2(V+Ti)+0.15Nb)?(Ni+0.47Cu+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7??(1) and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.Type: GrantFiled: February 26, 2010Date of Patent: April 22, 2014Assignee: Nippon Yakin Kogyo Co., Ltd.Inventors: Shigeru Hirata, Yuji Ikegami, Kazuhiro Yamakawa
-
Publication number: 20140086785Abstract: An austenitic iron-based alloy containing manganese and at most 10% by weight and in particular at most 5% by weight nickel, based in each case on the overall weight of the iron-based alloy.Type: ApplicationFiled: April 30, 2012Publication date: March 27, 2014Applicant: BORGWARNER INC.Inventor: Antoine Claude
-
Publication number: 20140030134Abstract: A purpose of the present invention is to provide a martensitic stainless steel applicable in environments involving both wet carbon dioxide gas and wet hydrogen sulfide and excellent in weldability, manufacturability, and resistance to strain age hardening. Provided is a martensitic stainless steel having excellent corrosion resistance and resistance to strain age hardening comprising, in percent by mass, 0.02% or less of C, 0.02% or less of N, 0.1 to 0.5% of Si, 0.1 to 0.5% of Mn, 10 to 13% Cr, Ni exceeding 5.0% but 8% or less, 1.5 to 3% of Mo, 0.01 to 0.05% of V, 0.16 to 0.30% of Zr, 0.01 to 0.05% of Ta, and the balance of Fe and unavoidable impurities, wherein the martensitic stainless steel satisfies the condition that the sum of the carbon and the nitrogen exceeds 0.02% but 0.04% or less.Type: ApplicationFiled: April 11, 2011Publication date: January 30, 2014Applicant: NKK TUBESInventors: Shuji Hashizume, Yusuke Minami, Yu Yamamoto
-
Publication number: 20130343948Abstract: A nitrogen-rich two-phase stainless steel that has corrosion resistance equal to that of standard type of two-phase stainless steel and is not susceptible to corrosion in a welding heat-affected part, wherein the austenite phase area ratio is 40-70%, the PI value expressed by formula (1) is 30-38, the NI value expressed by formula (2) is 100-140, and the ?pre expressed by formula (3) is 1350-1450. (1) PI=Cr+3.Type: ApplicationFiled: March 9, 2012Publication date: December 26, 2013Inventors: Yusuke Oikawa, Shinji Tsuge, Hiroshige Inoue, Ryo Matsuhashi
-
Publication number: 20130336834Abstract: The present invention provides austenitic stainless steel which is not only excellent in brazeability, but is also excellent in corrosion resistance in an environment where condensation of combustion exhaust gas causes formation of condensed water which contains nitric acid ions or sulfuric acid ions and which is low in pH or in an environment of an aqueous solution which contains chloride ions, which contains, by mass %, C: 0.080% or less, Si: 1.2 to 3.0%, Mn: 0.4 to 2.0%, P: 0.03% or less, S: 0.003% or less, Ni: 6.0 to 12.0%, Cr: 16.0 to 20.0%, Cu: 0.2 to 3.0%, Al: 0.002 to 0.10%, N: 0.030 to 0.150%, and Mo: 0.1 to 1.0%, has a balance of Fe and unavoidable impurities, and satisfies Formula (A): 1.6?[Cu]×[Si?]4.4 and Formula (B): 0.16?2[N]+[Mo?]1.0.Type: ApplicationFiled: March 28, 2012Publication date: December 19, 2013Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATIONInventors: Tooru Matsuhashi, Jun Tokunaga
-
Publication number: 20130315776Abstract: A duplex stainless steel, which can suppress precipitation of a ? phase under high heat input welding, is excellent in SCC resistance under high-temperature chloride environments and has a high strength. The duplex stainless steel includes a chemical composition containing, in mass percent, C: at most 0.030%, Si: 0.20 to 1.00%, Mn: at most 8.00%, P: at most 0.040%, S: at most 0.0100%, Cu: more than 2.00% and at most 4.00%, Ni: 4.00 to 8.00%, Cr: 20.0 to 28.0%, Mo: 0.50 to 2.00%, N: 0.100 to 0.350%, and sol. Al: at most 0.040%, the balance being Fe and impurities, and satisfying Expression (1) and Expression (2); a structure having a ferrite rate of at least 50%; and a yield strength of at least 550 MPa or more: 2.Type: ApplicationFiled: February 10, 2012Publication date: November 28, 2013Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Kenta Yamada, Hiroyuki Nagayama, Masahiko Hamada, Daisuke Motoya, Hisashi Amaya
-
Patent number: 8535606Abstract: Disclosed are corrosion resistant, non-magnetic austenitic stainless steels containing alloying elements molybdenum, nickel, and copper and further containing small quantities of an additional element selected from the group consisting of a rare-earth element, calcium, cobalt, iridium, osmium, rhenium, rhodium, ruthenium, silver, and a combination thereof.Type: GrantFiled: July 9, 2009Date of Patent: September 17, 2013Assignee: Baker Hughes IncorporatedInventor: Hendrik John
-
Publication number: 20130224062Abstract: The alloys of the present invention provide austenitic, paramagnetic materials with high strength, ductility, and yield strength and good corrosion resistance in media with high chloride concentrations. Alloys of the present invention were developed because of the need by oilfield industries for superior materials. The alloys of the present invention may be used in drilling string components, and the tests performed demonstrate that such alloys exhibit properties balanced for very high yield strength, magnetic permeability, and corrosion resistance superior in every respect to presently available paramagnetic, high strength, corrosion resistant austenitic stainless steels.Type: ApplicationFiled: February 11, 2013Publication date: August 29, 2013Applicant: JORGENSEN FORGE CORPORATIONInventor: JORGENSEN FORGE CORPORATION
-
Patent number: 8486204Abstract: The hinge is made with a metal injection molding process from an alloy having at least: from 4 to 32 wt % Mn, from 16 to 37 wt % Cr, and from Fe that fills up the rest of the percentage.Type: GrantFiled: November 17, 2010Date of Patent: July 16, 2013Assignee: Shin Zu Shing Co., Ltd.Inventors: Yu-Chi Lu, Yu-Chan Hsieh, Shun-Tian Lin
-
Publication number: 20130156629Abstract: Stainless steel alloys for fabricating endoprostheses. Endoprostheses can include a variety of devices such as staples, orthodontic wires, heart valves, filter devices, and stents, many of which devices are diametrically expandable devices.Type: ApplicationFiled: February 15, 2013Publication date: June 20, 2013Applicant: W. L. GORE & ASSOCIATES, INC.Inventor: W. L. GORE & ASSOCIATES, INC.
-
Patent number: 8454765Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.Type: GrantFiled: April 15, 2011Date of Patent: June 4, 2013Assignees: Boehler Edelstahl GmbH & Co. KG, Schoeller-Bleckmann Oilfield Technology GmbHInventors: Gabriele Saller, Herbert Aigner, Josef Bernauer, Raimund Huber
-
Publication number: 20130108426Abstract: Various embodiments of the invention provide a low nickel austenitic stainless steel alloy composition including about 0.6% to about 0.8% by weight carbon; about 16% to about 18% by weight chromium; about 4.5% to about 5.5% by weight nickel; about 2.0% to about 5.0% by weight manganese; about 0.8% to about 1.2% by weight tungsten; about 0.8% to about 1.2% by weight molybdenum; about 0.65% to about 0.85% by weight niobium; about 0.3% to about 1.0% by weight silicon; balance iron and unavoidable impurities, wherein percentages are based on the overall weight of the composition. The invention further provides articles, such as turbine housings, prepared using the inventive alloys.Type: ApplicationFiled: November 1, 2011Publication date: May 2, 2013Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Shouxing Zhu, Li Xu, Balasubramani Nandagopal
-
Publication number: 20130078134Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(C))?(Nb+Ti+V+Ta+Zr)?1.5, Fe, and incidental impurities.Type: ApplicationFiled: November 20, 2012Publication date: March 28, 2013Applicant: ATI PROPERTIES, INC.Inventor: ATI Properties, Inc.
-
Publication number: 20130039802Abstract: The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A?80 0.1 B+7 0.1 C?40 0.40 D?80 0.40.Type: ApplicationFiled: April 18, 2011Publication date: February 14, 2013Applicant: OUTOKUMPU OYJInventors: Juho Talonen, Suresh Kodukula, Tero Taulavuori
-
Patent number: 8337749Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(% C))?(% Nb+% Ti+% V+% Ta+% Zr)?1.5, Fe, and incidental impurities.Type: GrantFiled: November 2, 2009Date of Patent: December 25, 2012Assignee: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski
-
Patent number: 8337748Abstract: An austenitic stainless steel composition including relatively low nickel and molybdenum levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher nickel and molybdenum levels. Embodiments of the austenitic stainless steel include, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, up to 4.0 W, (7.5(% C))?(Nb+Ti+V+Ta+Zr)?1.5, up to 0.01 B, up to 1.0 Co, iron and impurities. Additionally, embodiments of the steel may include 0.5?(Mo+W/2)?5.0 and/or 1.0?(Ni+Co)?8.0.Type: GrantFiled: February 20, 2008Date of Patent: December 25, 2012Assignee: ATI Properties, Inc.Inventors: James M. Rakowski, David S. Bergstrom, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Publication number: 20120315180Abstract: A stainless steel music string having a composition in percent by weight (wt %) of, 0.01?C?0.04; 0.01?N?0.06; 0.1?Si?1.0; 0.2?Mn?2.0; 5.0?Ni?10; 16?Cr?20; 0.2?Cu?3.0; 0?Mo?2.0; 0?W?0.5; 0?V?0.5; 0?Ti?1.0; 0?Al?1.0; 0?Nb?1.0; 0?Co?1.0, and the balance being Fe and normally occurring impurities The music string also includes at least 90% martensite phase by volume.Type: ApplicationFiled: December 22, 2010Publication date: December 13, 2012Applicant: SANDVIK INTELLECTUAL PROPERTY ABInventors: Anders Soderman, Lars Nylof
-
Patent number: 8313691Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.Type: GrantFiled: February 26, 2008Date of Patent: November 20, 2012Assignee: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Publication number: 20120244031Abstract: The present invention provides a duplex stainless steel having excellent resistance to alkalis and particularly corrosion resistance against high-temperature concentrated alkali solutions and excellent weldability. The duplex stainless steel has a chemical composition comprising, in mass %, C: at most 0.03%, Si: at most 0.5%, Mn: at most 2.0%, P: at most 0.04%, S: at most 0.003%, Cr: at least 25.0% to less than 28.0%, Ni: at least 6.0% to at most 10.0%, Mo: at least 0.2% to at most 3.5%, N: less than 0.5%, W: at most 3.0%, and a remainder of Fe and impurities.Type: ApplicationFiled: May 1, 2012Publication date: September 27, 2012Applicant: SUMITOMO METAL INDUSTRIES, LTD.Inventors: Hideya KAMINAKA, Junichi Higuchi, Yoshiaki Yamade, Shuuji Yoshida, Junko Imamura
-
Publication number: 20120237388Abstract: An austenitic stainless steel sheet for springs having both a high strength and excellent formability has a chemical composition comprising C: 0.01-0.15%, Si: at most 3.0%, Mn: at most 3.0%, Cr: 10.0-30.0%, Ni: 4.0-20.0%, N: at most 0.40%, and a remainder of Fe and impurities, and it has a metallurgical structure such that the austenite content ?s (%) in the surface region of the steel sheet and the austenite content ?c (%) in the center region of the sheet thickness satisfy (?s+?c)/2?55 and ?s/?c?0.10, with the remaining structure being primarily strain-induced martensite.Type: ApplicationFiled: May 10, 2012Publication date: September 20, 2012Applicant: SUMITOMO METAL INDUSTRIES, LTD.Inventor: Masayoshi SAWADA
-
Publication number: 20120187315Abstract: In one embodiment, a neutron shielding material is formed of boron-adding stainless steel of either austenite-ferrite two-phase stainless steel or ferritic stainless steel, the austenite-ferrite two-phase stainless steel containing, in mass %, B: 0.5% to 2.0%, Ni: 3.0 to 10.0%, and Cr: 21.00 to 32.00%, the ferritic stainless steel containing, in mass %, B: 0.5% to 2.0%, Ni: 4.0% or less, and Cr: 11.00 to 32.00%, and the boron-adding stainless steel being well in ductility and thermal conduction property.Type: ApplicationFiled: January 27, 2012Publication date: July 26, 2012Inventors: Masanori KIBATA, Yuuji SAITO, Motoji TSUBOTA, Yoshitaka DOKEN, Makoto SATO, Shunichi HATANO, Masanori ISHIGA, Go ONO
-
Publication number: 20120177529Abstract: A duplex stainless steel excellent in the weldability during large heat input welding and in the stress corrosion cracking resistance in a chloride environment containing corrosive associated gases has a chemical composition consisting, by mass %, of C: 0.03% or less, Si: 0.2 to 1%, Mn: 5.0% or less, P: 0.040% or less, S: 0.010% or less, sol. Al: 0.040% or less, Ni: 4 to 8%, Cr: 20 to 28%, Mo: 0.5 to 2.0%, Cu: more than 2.0% and 4.0% or less and N: 0.1 to 0.35%, and optionally contains one or more selected from among V, Ca, Mg, B and a rare earth metal(s), with the balance being Fe and impurities; wherein the duplex stainless steel satisfies the following formulas: 2.2Cr+7Mo+3Cu>66 ??(1) Cr+11Mo+10Ni<12(Cu+30N) ??(2), wherein the symbols represent mass % of the elements in the steel.Type: ApplicationFiled: March 5, 2012Publication date: July 12, 2012Applicant: SUMITOMO METAL INDUSTRIES, LTD.Inventors: Hisashi Amaya, Hideki Takabe, Kazuhiro Ogawa
-
Publication number: 20120156085Abstract: An article of manufacture formed of an alloy having the following weight percent composition is described. Carbon 0.25 max. Manganese ?14-20? Silicon up to 2.0 Phosphorus 0.05 max. Sulfur ?0.5 max. Chromium ?12-22? Nickel ?3.5 max. Molybdenum 0.5-4?? Copper ?2.0 max. Nitrogen 0.2-0.8 Boron 0.06 max. The balance of the alloy is iron and the usual, inevitable impurities found in commercial grades of stainless steel alloys. Optionally, the alloy may contain niobium, titanium, vanadium, zirconium, hafnium, and tungsten in a combined amount of up to about 0.5%. An intermediate form of the article is armor plate made from the alloy. In accordance with another aspect of the present invention, the plate is shaped to form an armor part that is attached to a larger structure to provide resistance to an explosion fragments or a ballistic projectile.Type: ApplicationFiled: December 14, 2010Publication date: June 21, 2012Inventors: Peter T. Thompson, Christopher F. Pilliod
-
Patent number: 8192682Abstract: High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.Type: GrantFiled: April 26, 2010Date of Patent: June 5, 2012Assignee: Shell Oil CompanyInventors: Phillip James Maziasz, John Paul Shingledecker, Michael Leonard Santella, Joachim Hugo Schneibel, Vinod Kumar Sikka, Harold J. Vinegar, Randy Carl John, Dong Sub Kim
-
Publication number: 20120014829Abstract: The alloys of the present invention provide austenitic, paramagnetic materials with high strength, ductility, and yield strength and good corrosion resistance in media with high chloride concentrations. Alloys of the present invention were developed because of the need by oilfield industries for superior materials. The alloys of the present invention may be used in drilling string components, and the tests performed demonstrate that such alloys exhibit properties balanced for very high yield strength, magnetic permeability, and corrosion resistance superior in every respect to presently available paramagnetic, high strength, corrosion resistant austenitic stainless steels.Type: ApplicationFiled: June 9, 2011Publication date: January 19, 2012Applicant: Jorgensen Forge CorporationInventors: Svetlana Yaguchi, George Luksetich
-
Publication number: 20110293464Abstract: A stainless steel and a flat cold product produced therefrom, which can be easily produced in an economical manner. A steel according to the invention, in the cold-rolled state, has a microstructure with 5-15% by volume ?-ferrite and austenite as the remainder. It contains (in % by weight): C: 0.05-0.14%, Si: 0.1-1.0%, Mn: 4.0-12.0%, Cr: >17.5-22.0%, Ni: 1.0-4.0%, Cu: 1.0-3.0%, N: 0.03-0.2%, P: max. 0.07%, S: max. 0.01%, Mo: max. 0.5%, optionally one or more elements from the group consisting of Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, and H wherein Ti: max. 0.02%, Nb: max. 0.1%, B: max. 0.004%, V: max. 0.1%, Al: 0.001-0.03%, Ca: 0.0005-0.003%, As: 0.003-0.015%, Sn: 0.003-0.01%, Pb: max. 0.01%, Bi: max. 0.01%, H: max. 0.0025%, and remainder Fe and unavoidable impurities.Type: ApplicationFiled: September 3, 2009Publication date: December 1, 2011Applicant: THYSSENKRUPP NIROSTA GMBHInventors: Cornel Abratis, Lutz Ernenputsch, Wilfried Klos, Hans-Joachim Krautschick, Michael Sachtleber
-
Publication number: 20110286879Abstract: As a stainless steel for a metal part for clothing ornament capable of working into a complicated form part and having such nonmagnetic properties that the worked part can cope with the detection through needle detecting device is provided a high-Mn austenitic stainless steel having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.03 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass %, provided that these components are contained so that ? cal (mass %) represented by the following equation (1) is not more than 5.5 mass %: ? cal (mass %)=(Cr+0.48Si+1.21Mo+2.2(V+Ti)+0.15Nb)?(Ni+0.47Cu+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7??(1) and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.Type: ApplicationFiled: February 26, 2010Publication date: November 24, 2011Applicant: NIPPON YAKIN KOGYO CO., LTD.Inventors: Shigeru Hirata, Yuji Ikegami, Kazuhiro Yamakawa
-
Patent number: 8043446Abstract: A high manganese duplex stainless steel with excellent hot workability, comprising (in weight %): less than 0.1% of C; 0.05-2.2% of Si; 2.1-7.8% of Mn; 20-29% of Cr; 3.0-9.5% of Ni; 0.08-0.5% of N; less than 5.0% of Mo and 1.2-8% of W, alone or composite; the balance Fe and inevitable impurities; and a method for manufacturing the duplex stainless steel, comprising the steps of: solution heating the duplex stainless steel composition at a temperature of 1,050 to 1,250° C., hot working at a starting temperature of 1,130 to 1,280° C. and then ending at a temperature greater than 1,000° C., and then cooling within the temperature range from 1,000 to 700° C. at a cooling rate of more than 3° C./min. The duplex stainless steel exhibits a reduction in area of more than 50% at 1,050° C., and possesses a yield strength of more than 400 MPa, and a corrosion rate of less than 0.36 mm/year, after solution heating.Type: GrantFiled: April 26, 2002Date of Patent: October 25, 2011Assignee: Research Institute of Industrial Science and TechnologyInventors: Jae-Young Jung, Bong-Year Ma
-
Publication number: 20110255988Abstract: A precipitation hardenable martensitic stainless steel excellent in the stability of martensite, having the high strength, high toughness and high corrosion resistance is provided. The precipitation hardenable martensitic stainless steel contains at a mass rate, C: 0.05-0.10%, Cr: 12.0-13.0%, Ni: 6.0-7.0%, Mo: 1.0-2.0%, Si: 0.01-0.05%, Mn: 0.06-1.0%, Nb: 0.3-0.5%, V: 0.3-0.5%, Ti: 1.5-2.5%, Al: 1.0-2.3%, and the remainder consisting of Fe and an unavoidable impurity.Type: ApplicationFiled: April 14, 2011Publication date: October 20, 2011Inventors: Shinji OIKAWA, Hideo Yoda, Masahiko Arai, Hiroyuki Doi
-
Publication number: 20110250088Abstract: The invention relates to a duplex stainless steel having austenitic-ferritic microstructure of 35-65% by volume, preferably 40-60% by volume of ferrite and having good weldability, good corrosion resistance and good hot workability. The steel contains 0.005-0.04% by weight carbon, 0.2-0.7% by weight silicon, 2.5-5% by weight manganese, 23-27% by weight chromium, 2.5-5% by weight nickel, 0.5-2.5% by weight molybdenum, 0.2-0.35% by weight nitrogen, 0.1-1.0% by weight copper, optionally less than 1% by weight tungsten, less than 0.0030% by weight one or more elements of the group containing boron and calcium, less than 0.1% by weight cerium, less than 0.04% by weight aluminium, less than 0.010% by weight sulphur and the rest iron with incidental impurities.Type: ApplicationFiled: December 17, 2009Publication date: October 13, 2011Applicant: OUTOKUMPU OYJInventors: Peter Samuelsson, Simon Lille, Jan-Olof Andersson, Mats Liljas, Erik Schedin, Pelle Johansson
-
Publication number: 20110226459Abstract: The invention relates to an iron-based brazing material comprising a brazing alloy, which alloy comprises: from about 9 wt % to about 30 wt % Cr, from about 5 wt % to about 25 wt % Ni, from about 0 wt % to about 9 wt % Mo, from about 0 wt % to about 5 wt % Mn, from about 0 wt % to about 1 wt % N, from about 6 wt % to about 20 wt % Si. Within the alloy is at least one of the B and the P are present as a melting point lowering supplement to Si, and wherein B is from about 0.1 wt % to about 1.5 wt %, or wherein P is from about 0.1 to about 15 wt % P. The brazing alloy may comprise contaminating elements as at least one of C, O, and S, and optionally the brazing alloy also comprises at least one micro-alloying element as V, Ti, W, Nb, or Ta, and the micro-alloying element is less than 1.5 wt % in the brazing alloy. All values are stated in weight percent, and wherein Si, B and P lower the liquidus temperature, that is the temperature when the brazing material is completely melted.Type: ApplicationFiled: March 22, 2011Publication date: September 22, 2011Inventor: Per Erik Sjodin
-
Publication number: 20110120977Abstract: An alloy comprising about 0.5 weight percent to about 2 weight percent carbon, about 15 weight percent to about 30 weight percent chromium, about 4 weight percent to about 12 weight percent nickel, up to about 3 weight percent manganese, up to about 2.5 weight percent silicon, up to about 1 weight percent zirconium, up to about 3 weight percent molybdenum, up to about 3 weight percent tungsten, up to about 0.5 weight percent boron, up to about 0.5 weight percent impurities, and iron.Type: ApplicationFiled: January 19, 2010Publication date: May 26, 2011Inventors: George Y. Lai, Bingtao Li
-
Publication number: 20110064601Abstract: The invention relates to a stainless steel product, particularly to a duplex stainless steel casting with high machinability, to the use of the product and to the method to produce the product. The product contains in weight percent up to 0.07% carbon, up to 2% silicon, 3-8% manganese, 19-23% chromium, 0.5-1.7% nickel, up to 1% of molybdenum and/or tungsten with the formula (Mo+½W) less than 1%, up to 1% copper and 0.15-0.30% nitrogen, the remainder being iron and incidental impurities.Type: ApplicationFiled: May 14, 2009Publication date: March 17, 2011Applicant: OUTOKUMPU OYJInventors: Mats Liljas, Jan Olsson, Peter Samuelsson, Mikael willför