Group Iv Or V Transition Metal Containing Patents (Class 420/70)
-
Patent number: 11351606Abstract: A method of manufacturing a part, the method involving providing an apparatus, the apparatus having a metal skin component; a metal HIP can and a hollow space between a portion of the HIP can and a portion of the skin component, the method further involving filling the HIP can with a metal powder; evacuating the HIP can; sealing the evacuated HIP can; and applying a HIP process to the apparatus in a HIP chamber so as to form the part.Type: GrantFiled: August 2, 2018Date of Patent: June 7, 2022Assignee: BAE Systems plcInventors: Howard James Price, John Chippendale
-
Patent number: 11298684Abstract: A catalyst for oxidative coupling of methane, and preparation and application thereof. The catalyst comprises: a manganese sesquioxide, a tungstate, a manganese composite oxide having a perovskite structure and/or a spinel structure, and a carrier. The manganese sesquioxide, tungstate, and manganese composite oxide having a perovskite structure and/or a spinel structure are supported on the carrier, or the manganese sesquioxide and tungstate are supported on the admixture of the said manganese composite oxide having a perovskite structure and/or a spinel structure and the said carrier. Based on 100 parts by weight of the catalyst, the content of the manganese sesquioxide is a parts by weight, the content of the tungstate is b parts by weight, the content of the manganese composite oxide having the perovskite structure and/or the spinel structure is c parts by weight The content of the carrier is d parts by weight. 0<a?20, 1?b?20, 1?c?40, 20?d<98.Type: GrantFiled: March 12, 2018Date of Patent: April 12, 2022Assignees: EAST CHINA NORMAL UNIVERSITY, ZHEJIANG JIRUITONG NEW MATERIAL CO., LTD.Inventors: Yong Lu, Xin Zhang, Pengwei Wang, Guofeng Zhao, Ye Liu, Mingyuan He
-
Patent number: 10775711Abstract: An object of the present invention is to provide a ferrite carrier core material for an electrophotographic developer having desired resistance properties and charging properties with small environmental variation of resistivity and charge amount while maintaining the advantages of ferrite carriers, a ferrite carrier for an electrophotographic developer, an electrophotographic developer using the ferrite carrier, and a method for manufacturing the ferrite carrier core material for an electrophotographic developer. In order to solve the problem, a ferrite carrier core material comprising ferrite particles containing 15 mass % or more and 25 mass % or less of Mn, 0.5 mass % or more and 5.0 mass % or less of Mg, 0.05 mass % or more and 4.0 mass % of Sr, and 45 mass % or more and 55 mass % or less of Fe, with Si localized in the surface thereof is used.Type: GrantFiled: March 29, 2017Date of Patent: September 15, 2020Assignee: POWDERTECH CO., LTD.Inventors: Takao Sugiura, Kazutaka Ishii, Koji Aga
-
Patent number: 9782859Abstract: A flux (55) for superalloy laser welding and additive processing (20, 50), including constituents which decompose when heated in a laser induced plasma or to a melt temperature of the superalloy (42), creating one or more gases (46) that blanket the melt to protect it from air, while producing not more than 5 wt. % of slag relative to the weight of the flux. Embodiments may further include compounds providing one or more functions of surface cleaning, scavenging of impurities in the melt, and elemental additions to the superalloy.Type: GrantFiled: July 16, 2015Date of Patent: October 10, 2017Assignee: SIEMENS ENERGY, INC.Inventors: Gerald J. Bruck, Ahmed Kamel
-
Patent number: 9677159Abstract: A method of manufacturing a martensitic stainless steel sheet by allowing ingot steel to pass through two casting rolls rotating in opposing directions through a twin roll strip caster is provided. The method includes rolling a steel sheet cast between the casting rolls at a temperature of 1000 to 1200° C. and a draft percentage of 25 to 50% with a first roller, and rolling the steel sheet at a temperature of 800 to 1000° C. and a draft percentage of 5 to 15% with a second roller.Type: GrantFiled: November 12, 2014Date of Patent: June 13, 2017Assignee: POSCOInventors: Man-Jin Ha, Sung-Jin Park, Byoung-Jun Song
-
Patent number: 9487660Abstract: A wire-like spray material (4) based on an iron for electric arc wire spraying and also a functional layer (2) which can be produced therewith on a substrate (1). The functional layer (2) has good corrosion resistance towards diesel fuel having a high sulphur content.Type: GrantFiled: May 3, 2011Date of Patent: November 8, 2016Assignee: Daimler AGInventors: Patrick Izquierdo, Rainer Joos, Tobias Lux, Eyuep Akin Oezdeniz
-
Publication number: 20150114178Abstract: A metal powder for powder metallurgy contains Fe as a principal component, Cr in a proportion of 10% by mass or more and 30% by mass or less, C in a proportion of 0.15% by mass or more and 1.5% by mass or less, Si in a proportion of 0.3% by mass or more and 1% by mass or less, Zr in a proportion of 0.01% by mass or more and 0.5% by mass or less, Nb in a proportion of 0.01% by mass or more and 0.5% by mass or less, and Mn and Ni in a total proportion of 0.05% by mass or more and 1.6% by mass or less. Further, the metal powder for powder metallurgy preferably has a crystal structure of martensite-based stainless steel.Type: ApplicationFiled: October 30, 2014Publication date: April 30, 2015Inventors: Hideki ISHIGAMI, Hidefumi NAKAMURA, Yukihiko SHIOHARA
-
Patent number: 8980018Abstract: Ferritic stainless steel sheet for an exhaust part which has little deterioration in strength even if undergoing long term heat history and is low in cost, excellent in heat resistance and workability characterized by containing, characterized by containing, by mass %, C: less than 0.010%, N: 0.020% or less, Si: over 0.1% to 2.0%, Mn: 2.0% or less, Cr: 12.0 to 25.0%, Cu: over 0.9 to 2%, Ti: 0.05 to 0.3%, Nb: 0.001 to 0.1%, Al: 1.0% or less, and B: 0.0003 to 0.003%, having a Cu/(Ti+Nb) of 5 or more, and having a balance of Fe and unavoidable impurities.Type: GrantFiled: March 25, 2011Date of Patent: March 17, 2015Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Junichi Hamada, Shinichi Teraoka, Yoshiharu Inoue, Norihiro Kanno
-
Patent number: 8900380Abstract: The present invention provides an optimum low-chromium stainless steel which prevents corrosion resistance degradation of a weld in the case of welding a low-chromium stainless steel utilizing martensite transformation in multiple passes (multipass), is excellent in weld intergranular corrosion resistance even in a severe corrosion environment, simultaneously avoids occurrence of preferential corrosion at the bond-bordering region of the weld heat-affected zone, and is also excellent in productivity, which low-chromium stainless steel comprises, in mass %, C: 0.015 to 0.025%, N: 0.008 to 0.014%, Si: 0.2 to 1.0%, Mn: 1.0 to 1.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 13%, Ni 0.2 to 1.5%, and Al: 0.005 to 0.1% or less, and further comprises Ti: 6×(C %+N %) or greater and 0.25% or less, the balance being Fe and unavoidable impurities, and the contents of the elements satisfy specified expressions.Type: GrantFiled: February 21, 2011Date of Patent: December 2, 2014Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Shinichi Teraoka, Shunji Sakamoto, Masuhiro Fukaya
-
Patent number: 8900510Abstract: A heat-resistant, ferritic cast steel having excellent room-temperature toughness, which has a composition comprising by mass 0.32-0.48% of C, 0.85% or less of Si, 2% or less of Mn, 1.5% or less of Ni, 16-19.8% of Cr, 3.2-5% of Nb, Nb/C being 9-11.5, 0.15% or less of N, 0.002-0.2% of S, and 0.8% or less in total of W and/or Mo, the balance being Fe and inevitable impurities, and a structure in which a eutectic (?+NbC) phase formed from a ? phase and Nb carbide (NbC) has an area ratio of 60-90%, and an exhaust member made thereof.Type: GrantFiled: March 31, 2011Date of Patent: December 2, 2014Assignee: Hitachi Metals, Ltd.Inventor: Masahide Kawabata
-
Patent number: 8894924Abstract: This ferrite stainless steel includes: by mass %, C: 0.020% or less; N: 0.025% or less; Si: 1.0% or less; Mn: 0.5% or less; P: 0.035% or less; S: 0.01% or less; Cr: 16% to 25%; Al: 0.15% or less; Ti: 0.05% to 0.5%; and Ca: 0.0015% or less, with the balance being Fe and inevitable impurities, wherein the following formula (1) is fulfilled, BI=3Al+Ti+0.5Si+200Ca?0.8??(1) (wherein Al, Ti, Si, and Ca in the formula (1) represent contents (mass %) of the respective components in the steel).Type: GrantFiled: February 5, 2010Date of Patent: November 25, 2014Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Tooru Matsuhashi, Michio Nakata
-
Publication number: 20140294660Abstract: This hot-rolled ferritic stainless steel sheet contains, in terms of % by mass: 0.0150% or less of C, 0.01% to 2.00% of Si, 0.01% to 2.00% of Mn, less than 0.040% of P, 0.010% or less of S, 10.0% to 30.0% of Cr, 0.001% to 0.100% of Al, and 0.0200% or less of N, with a balance being Fe and unavoidable impurities, wherein in a cross section in a range of ¼ to ¾ of a sheet thickness, a length L of all crystal grain boundaries having orientation differences of 1° or more to less than 180° and a length La of subgrain boundaries having orientation differences of 1° or more to less than 15° satisfy a relation of La/L?0.20.Type: ApplicationFiled: December 6, 2012Publication date: October 2, 2014Inventors: Ken Kimura, Junichi Hamada, Jun Takahashi, Yuuji Koyama, Shigeyuki Gotoh
-
Patent number: 8721808Abstract: The ferrite system heat-resistant cast steel and the exhaust system component are provided, which are inexpensive and are able to improve the reliability by largely improving the toughness under normal temperature and thermal fatigue performance. The ferrite system heat-resistant cast steel includes composition structure comprised, percent by mass, of 0.1% to 0.4% carbon, 0.5% to 2.0% silicon, 0.2% to 1.2% manganese, 0.3% or less phosphorus, 0.01% to 0.4% sulfur, 14.0% to 21.0% chrome, 0.05% to 0.6% niobium, 0.01% to 0.8% aluminum, 0.15% to 2.3% nickel, residual iron and inevitable impurities.Type: GrantFiled: February 8, 2010Date of Patent: May 13, 2014Assignee: Aisin Takaoka Co., Ltd.Inventors: Daisuke Yamanaka, Zhong-zhi Zhang
-
Patent number: 8721960Abstract: The present invention provides a ferritic stainless steel comprised of, by mass %, C: 0.001 to 0.02%, Si: 0.01 to 0.6%, Mn: 0.01 to 0.6%, P: 0.005 to 0.04%, S: 0.0001 to 0.01%, Cr: 13 to 22%, N: 0.001 to 0.02%, Al: 0.005 to 0.05%, Sn: 0.001 to 1%, and a balance of Fe and unavoidable impurities, which steel satisfies the following formulae: 0<I(Fe)/I(Cr)<5 and 0<I(O)/I(Sn)<3, where I(Fe), I(Cr), I(Sn), and I(O) are the X-ray intensities of the Fe oxides, Cr oxides, Sn oxides, and the sum of X-ray intensities other detected oxides at the steel surface measured by an X-ray photoelectron spectrometer. The present invention also provides a method of producing the ferritic stainless steel.Type: GrantFiled: December 7, 2009Date of Patent: May 13, 2014Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Masaharu Hatano, Akihiko Takahashi, Eiichiro Ishimaru, Shigenori Takahata
-
Publication number: 20140069619Abstract: An aspect of a ferritic stainless steel contains, by mass %: C: 0.03% or less; N: 0.03% or less; Si: more than 0.1% to 1% or less; Mn: 0.02% to 1.2%; Cr: 15% to 23%; Al: 0.002% to 0.5%; and either one or both of Nb and Ti, with the remainder being Fe and unavoidable impurities, wherein Expression (1) and Expression (2) illustrated below are satisfied, an oxide film is formed on a surface thereof, and the oxide film contains Cr, Si, Nb, Ti and Al in a total cationic fraction of 30% or more, 8(C+N)+0.03?Nb+Ti?0.6??(1) Si+Cr+Al+{Nb+Ti?8(C+N)}?15.5??(2).Type: ApplicationFiled: March 28, 2012Publication date: March 13, 2014Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATIONInventors: Nobuhiko Hiraide, Fumio Fudanoki, Shunji Sakamoto
-
Patent number: 8641835Abstract: An iron alloy according to the present invention comprises: Al in an amount of from 3 to 5.5%; Mn in an amount from 0.2 to 6%; and the balance being iron (Fe), and inevitable impurities and/or a modifying element; when the entirety is taken as 100%. Since a high damping factor is obtainable at a low-strain amplitude, this iron alloy demonstrates a stable damping property even in a high-temperature region. Moreover, since the alloying elements are Al and Mn alone, and since their contents are less, the iron alloy according to the present invention is low in cost.Type: GrantFiled: September 8, 2009Date of Patent: February 4, 2014Assignee: Kabushiki Kaisha Toyota JidoshokkiInventors: Keita Yamana, Motoharu Tanizawa, Masanori Harata, Kyoichi Kinoshita
-
Patent number: 8607941Abstract: A steel sheet for a brake disc contains, on a mass percent basis, 0.02% or more and less than 0.10% C, 0.6% or less Si, more than 0.5% and 2.0% or less Mn, 0.06% or less P, 0.01% or less S, 0.05% or less Al, 11.0% to 13.5% Cr, 0.01% to 0.30% Ni, 0.10% to 0.60% Nb, 0.03% or more and less than 0.10% N, more than 0.0010% and 0.0060% or less B, and the balance being Fe and incidental impurities, and the steel sheet after quenching has a hardness of 32 HRC to 40 HRC on a Rockwell hardness scale C (HRC).Type: GrantFiled: May 31, 2010Date of Patent: December 17, 2013Assignee: JFE Steel CorporationInventors: Katsuhisa Yamauchi, Mitsuyuki Fujisawa, Yasushi Kato, Hiroki Ota, Hideya Furusawa, Takumi Ujiro
-
Publication number: 20130319583Abstract: The present invention provides a low-alloy high-purity ferritic stainless steel sheet provided with improved oxidation resistance and high-temperature strength by utilizing Sn addition in trace amounts without relying on excessive alloying of Al and Si which reduces fabricability and weldability or addition of rare elements such as Nb, Mo, W, and rare earths, and a process for producing the same. The high-purity ferritic stainless steel sheet includes C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001 to 0.01%, Cr: 16 to 30%, N: 0.001 to 0.03%, Al: 0.05 to 3%, and Sn: 0.01 to 1% (% by mass), with the remainder being Fe and unavoidable impurities. A stainless steel slab having such steel components is heated, wherein an extraction temperature is 1100 to 1250° C., and a winding temperature after hot rolling is 650° C. or lower. A hot-rolled sheet is annealed at 900 to 1050° C., and cooled at 10° C./sec or less over a temperature range of 550 to 850° C.Type: ApplicationFiled: January 23, 2012Publication date: December 5, 2013Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATIONInventors: Masaharu Hatano, Eiichiro Ishimaru, Akihiko Takahashi
-
Publication number: 20130288074Abstract: This alloying element-saving hot rolled duplex stainless steel material contains, by mass %, C: 0.03% or less, Si: 0.05% to 1.0%, Mn: 0.5% to 7.0%, P: 0.05% or less, S: 0.010% or less, Ni: 0.1% to 5.0%, Cr: 18.0% to 25.0%, N: 0.05% to 0.30% and Al: 0.001% to 0.05%, with a remainder being Fe and inevitable impurities, wherein the alloying element-saving hot rolled duplex stainless steel material is produced by hot rolling, a chromium nitride precipitation temperature TN is in a range of 960° C. or lower, a yield strength is 50 MPa or more higher than that of a hot rolled steel material which is subjected to a solution heat treatment, and the alloying element-saving hot rolled duplex stainless steel material is as hot rolled state, and is not subjected to a solution heat treatment. This clad steel plate includes a duplex stainless steel as a cladding material, the duplex stainless steel has the above composition, and the chromium nitride precipitation temperature TN is in a range of 800° C. to 970° C.Type: ApplicationFiled: January 26, 2012Publication date: October 31, 2013Inventors: Shinji Tsuge, Yuusuke Oikawa, Yoichi Yamamoto, Haruhiko Kajimura, Kazuhiko Ishida
-
Patent number: 8470237Abstract: The stainless steel of the first embodiment includes C: 0.001 to 0.02%, N: 0.001 to 0.02%, Si: 0.01 to 0.5%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.01% or less, Ni: more than 3% to 5%, Cr: 11 to 26%, and either one or both of Ti: 0.01 to 0.5% and Nb: 0.02 to 0.6%, and contains as the remainder, Fe and unavoidable impurities. The stainless steel of the second embodiment has an alloy composition different from those of the first and third embodiments and satisfies the formula (A): Cr+3Mo+6Ni?23 and formula (B): Al/Nb?10 and contains as the remainder, Fe and unavoidable impurities. The stainless steel of the third embodiment has an alloy composition different from those of the first and second embodiments and includes either one or both of Sn: 0.005 to 2% and Sb: 0.005 to 1% and contains as the remainder, Fe and unavoidable impurities.Type: GrantFiled: May 8, 2007Date of Patent: June 25, 2013Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Nobuhiko Hiraide, Haruhiko Kajimura, Ken Kimura
-
Patent number: 8465898Abstract: There are provided a ferrite carrier core material for an electrophotographic developer, which contain 10 to 30% by weight of Mn, 1.0 to 3.0% by weight of Mg, 0.3 to 1.5% by weight of Ti and 40 to 60% by weight of Fe, a ferrite carrier for an electrophotographic developer obtained by coating the ferrite core material, and an electrophotographic developer using the ferrite carrier.Type: GrantFiled: June 16, 2011Date of Patent: June 18, 2013Assignee: Powdertech Co., Ltd.Inventors: Toru Iwata, Koji Aga
-
Patent number: 8444916Abstract: The stainless steel of the first embodiment includes C: 0.001 to 0.02%, N: 0.001 to 0.02%, Si: 0.01 to 0.5%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.01% or less, Ni: more than 3% to 5%, Cr: 11 to 26%, and either one or both of Ti: 0.01 to 0.5% and Nb: 0.02 to 0.6%, and contains as the remainder, Fe and unavoidable impurities. The stainless steel of the second embodiment has an alloy composition different from those of the first and third embodiments and satisfies the formula (A): Cr+3Mo+6Ni?23 and formula (B): Al/Nb?10 and contains as the remainder, Fe and unavoidable impurities. The stainless steel of the third embodiment has an alloy composition different from those of the first and second embodiments and includes either one or both of Sn: 0.005 to 2% and Sb: 0.005 to 1% and contains as the remainder, Fe and unavoidable impurities.Type: GrantFiled: May 8, 2007Date of Patent: May 21, 2013Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Nobuhiko Hiraide, Haruhiko Kajimura, Ken Kimura
-
Publication number: 20130121870Abstract: A ferritic stainless steel comprising Cr: max 24 mass %, Ti: 200 to 1000 mass ppm, Zr: at least 200 mass ppm, whereby the Zr/Ti ratio is greater than 0.3, O: 10 to 150 mass ppm, N: at least 70 mass ppm, whereby the N/O ratio is greater than 1.5, C: max. 0.03 mass %, and balance Fe and residual elements.Type: ApplicationFiled: April 26, 2011Publication date: May 16, 2013Inventors: Keiji Nakajima, Jesper Janis, Andrey Karasev, Pär Jönsson, Stefan Jonsson
-
Publication number: 20130039796Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.Type: ApplicationFiled: February 15, 2011Publication date: February 14, 2013Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.
-
Publication number: 20130022489Abstract: A heat-resistant, ferritic cast steel having excellent room-temperature toughness, which has a composition comprising by mass 0.32-0.48% of C, 0.85% or less of Si, 2% or less of Mn, 1.5% or less of Ni, 16-19.8% of Cr, 3.2-5% of Nb, Nb/C being 9-11.5, 0.15% or less of N, 0.002-0.2% of S, and 0.8% or less in total of W and/or Mo, the balance being Fe and inevitable impurities, and a structure in which a eutectic (?+NbC) phase formed from a ? phase and Nb carbide (NbC) has an area ratio of 60-90%, and an exhaust member made thereof.Type: ApplicationFiled: March 31, 2011Publication date: January 24, 2013Applicant: HITACHI METALS, LTD.Inventor: Masahide Kawabata
-
Patent number: 8357328Abstract: A formed article comprising a nanostructured ferritic alloy is provided. Advantageously, the article is not formed via extrusion, and thus, cost savings are provided. Methods are also provided for forming the article, and the articles so produced, exhibit sufficient continuous cycle fatigue crack growth resistance and hold time fatigue crack growth resistance to be utilized as turbomachinery components, and in particular, large, hot section components of a gas or steam turbine engines. In other embodiments, a turbomachinery component comprising an NFA is provided, and in some such embodiments, the turbomachinery component may be extruded.Type: GrantFiled: December 14, 2009Date of Patent: January 22, 2013Assignee: General Electric CompanyInventors: Richard Didomizio, Matthew Joseph Alinger, Raymond Joseph Stonitsch, Samuel Vinod Thamboo
-
Publication number: 20130017116Abstract: The stainless steel sheet according to the present invention is a ferritic stainless steel which is comprised of, by mass %, C: 0.001 to 0.03%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001 to 0.01%, Cr: 12 to 16%, N: 0.001 to 0.03%, Nb: 0.05 to 0.3%, Ti: 0.03 to 0.15%, Al: 0.005 to 0.5%, Sn: 0.01 to 1.0%, and has the remainder of Fe and unavoidable impurities and satisfies the relationship of 1?Nb/Ti?3.5. The method comprises heating a slab of stainless steel which contains the above steel ingredients, setting the extraction temperature 1080 to 1190° C., and setting the coiling temperature after the end of hot rolling 500 to 700° C. After hot rolling, the method comprises annealing the hot rolled sheet, which can be omitted, cold rolling once or cold rolling twice or more which includes processing annealing, and finish annealing the steel sheet at 850 to 980° C.Type: ApplicationFiled: March 22, 2011Publication date: January 17, 2013Inventors: Masaharu Hatano, Akihito Yamagishi, Shigenori Takahata, Eiichiro Ishimaru
-
Publication number: 20130004361Abstract: This ferritic stainless steel for components of an automobile exhaust system includes, in terms of percent by mass: C: ?0.015%; Si: 0.01% to 0.50%; Mn: 0.01% to 0.50%; P: ?0.050%; S: ?0.010%; N: ?0.015%; Al: 0.010% to 0.100%; Cr: 16.5% to 22.5%; Ni: 0.5% to 2.0%; and Sn: 0.01% to 0.50%, and further includes either one or both of Ti: 0.03% to 0.30% and Nb: 0.03% to 0.30%, with a remainder being Fe and inevitable impurities.Type: ApplicationFiled: March 9, 2011Publication date: January 3, 2013Inventors: Shunji Sakamoto, Shinichi Teraoka, Nobuhiko Hiraide
-
Publication number: 20120328466Abstract: The present invention provides an optimum low-chromium stainless steel which prevents corrosion resistance degradation of a weld in the case of welding a low-chromium stainless steel utilizing martensite transformation in multiple passes (multipass), is excellent in weld intergranular corrosion resistance even in a severe corrosion environment, simultaneously avoids occurrence of preferential corrosion at the bond-bordering region of the weld heat-affected zone, and is also excellent in productivity, which low-chromium stainless steel comprises, in mass %, C: 0.015 to 0.025%, N: 0.008 to 0.014%, Si: 0.2 to 1.0%, Mn: 1.0 to 1.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 13%, Ni 0.2 to 1.5%, and Al: 0.005 to 0.1% or less, and further comprises Ti: 6×(C %+N %) or greater and 0.25% or less, the balance being Fe and unavoidable impurities, and the contents of the elements satisfy specified expressions.Type: ApplicationFiled: February 21, 2011Publication date: December 27, 2012Inventors: Shinichi Teraoka, Shunji Sakamoto, Masuhiro Fukaya
-
Patent number: 8337748Abstract: An austenitic stainless steel composition including relatively low nickel and molybdenum levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher nickel and molybdenum levels. Embodiments of the austenitic stainless steel include, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, up to 4.0 W, (7.5(% C))?(Nb+Ti+V+Ta+Zr)?1.5, up to 0.01 B, up to 1.0 Co, iron and impurities. Additionally, embodiments of the steel may include 0.5?(Mo+W/2)?5.0 and/or 1.0?(Ni+Co)?8.0.Type: GrantFiled: February 20, 2008Date of Patent: December 25, 2012Assignee: ATI Properties, Inc.Inventors: James M. Rakowski, David S. Bergstrom, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Patent number: 8337749Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(% C))?(% Nb+% Ti+% V+% Ta+% Zr)?1.5, Fe, and incidental impurities.Type: GrantFiled: November 2, 2009Date of Patent: December 25, 2012Assignee: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski
-
Publication number: 20120237390Abstract: Provided is a martensitic stainless steel produced by a twin roll strip casting process and a method for manufacturing the same, wherein the hot rolled steel has superior crack resistance. The martensitic stainless hot rolled steel sheet comprises, by weight %, C:0.1 to 1.5%, Cr:12 to 15%, Ni:1% or lower, Ti:0.005 to 0.1%, and the balance Fe and unavoidably added impurities, and wherein a primary chrome carbide precipitated at a grain boundary is fragmented and refined. Provided is a high hardness martensitic stainless cold rolled steel sheet manufactured by annealing and cold rolling the hot rolled steel sheet, and a method for manufacturing the same. A twin roll strip casting process is applied, and grain boundary strengthening elements are added to prevent center segregation, crack and strip breakage during casting, thereby ensuring the stability of the casting process.Type: ApplicationFiled: December 16, 2010Publication date: September 20, 2012Applicant: POSCOInventors: Seong-In Jeong, Yun-Yong Lee, Il-Goo Lee, Sung-Jin Park, Hee-Kyung Moon, Tae-Wook Kang
-
Publication number: 20120111529Abstract: A ferritic stainless steel suitable for use as an EGR cooler member, which can be Ni-brazed into an EGR cooler, contains, by mass, C: at most 0.03%, Si: from more than 0.1 to 3%, Mn: from 0.1 to 2%, Cr: from 10 to 25%, Nb: from 0.3 to 0.8%, and N: at most 0.03%, and optionally selectively contains (a) one or more of Mo, Cu, V and W in a total amount of at most 4%, (b) one or more of Ti, Al and Zr in a total amount of at most 0.3%, (c) one or more of Ni and Co in a total amount of at most 5%, and (d) one or more of REMs (rare earth metals) and Ca in a total amount of at most 0.2%, with a balance of Fe and inevitable impurities.Type: ApplicationFiled: July 27, 2009Publication date: May 10, 2012Applicant: NISSHIN STEEL CO., LTD.Inventors: Manabu Oku, Sadayuki Nakamura, Yoshiaki Hori
-
Patent number: 8168008Abstract: A martensitic stainless steel pipe having a heat-affected zone with high resistance to intergranular stress corrosion cracking is provided. In particular, the martensitic stainless steel pipe contains less than 0.0100% of C; less than 0.0100% of N; 10% to 14% of Cr; and 3% to 8% of Ni on a mass basis. Alternatively, the martensitic stainless steel pipe may further contain Si, Mn, P, S, and Al within an appropriate content range. The martensitic stainless steel pipe may further contain one or more selected from the group consisting of 4% or less of Cu, 4% or less of Co, 4% or less of Mo, and 4% or less of W and one or more selected from the group consisting of 0.15% or less of Ti, 0.10% or less of Nb, 0.10% or less of V, 0.10% or less of Zr, 0.20% or less of Hf, and 0.20% or less of Ta on a mass basis. The content Csol defined by the following equation is equal to less than 0.0050%: Csol=C??×Cpre, wherein Cpre=12.0 {Ti/47.9+½(Nb/92.9+Zr/91.2)+?(V/50.9+Hf/178.5+Ta/180.9)?N/14.0} or Cpre=0 when Cpre<0.Type: GrantFiled: December 1, 2004Date of Patent: May 1, 2012Assignee: JFE Steel CorporationInventors: Yukio Miyata, Mitsuo Kimura, Noritsugu Itakura, Katsumi Masamura
-
Patent number: 8163233Abstract: A martensitic stainless steel for welded structures including by mass %, C: 0.001 to 0.05%, Si: 0.05 to 1%, Mn: 0.05 to 2%, P: 0.03% or less, REM: 0.0005 to 0.1%, Cr: 8 to 16%, Ni: 0.1 to 9% and sol. Al: 0.001 to 0.1%; and further including one or more elements selected from among Ti: 0.005 to 0.5%, Zr: 0.005 to 0.5%, Hf: 0.005 to 0.5%, V: 0.005 to 0.5% and Nb: 0.005 to 0.5%; and O: 0.005% or less, N: 0.1% or less, with the balance being Fe and impurities; and the P and REM content satisfies: P?0.6×REM. This steel possesses excellent SCC (stress corrosion cracking) resistance in welded sections in Sweet environments.Type: GrantFiled: February 27, 2009Date of Patent: April 24, 2012Assignee: Sumitomo Metal Industries, Ltd.Inventors: Hisashi Amaya, Kazuhiro Ogawa, Akira Taniyama, Masakatsu Ueda, Hideki Takabe
-
Patent number: 8153055Abstract: A ferritic stainless steel contains no expensive elements such as Mo and W, is free from the oxidation resistance loss caused by addition of Cu, and thereby has excellent levels of oxidation resistance (including water vapor oxidation resistance), thermal fatigue property, and high-temperature fatigue property. The ferritic stainless steel contains, in mass %, C at 0.015% or less, Si at 0.4 to 1.0%, Mn at 1.0% or less, P at 0.040% or less, S at 0.010% or less, Cr at 16 to 23%, Al at 0.2 to 1.0%, N at 0.015% or less, Cu at 1.0 to 2.5%, Nb at 0.3 to 0.65%, Ti at 0.5% or less, Mo at 0.1% or less, and W at 0.1% or less, the Si and the Al satisfying a relation Si (%)?Al (%).Type: GrantFiled: July 5, 2010Date of Patent: April 10, 2012Assignee: JFE Steel CorporationInventors: Tetsuyuki Nakamura, Hiroki Ota, Yasushi Kato, Takumi Ujiro
-
Publication number: 20120014828Abstract: In a non-oriented electrical steel sheet, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, and so on are contained. (1) expression described below is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]. [Ti]?0.8×[Bi]+0.Type: ApplicationFiled: May 25, 2010Publication date: January 19, 2012Applicant: NIPPON STEEL CORPORATIONInventors: Masafumi Miyazaki, Hideaki Yamamura, Takeshi Kubota, Yousuke Kurosaki, Kazuto Kawakami, Kazumi Mizukami, Takeaki Wakisaki
-
Publication number: 20110236248Abstract: The present invention provides high purity ferrite stainless steel able to reduce deterioration in surface conditions due to pitting corrosion or rusting or other corrosion to an extent no different from SUS304 or better without inviting a drop in manufacturability or workability and without relying on the addition of rare elements, and a method of production of the same, that is, ferritic stainless steel containing, by mass %, C: 0.01% or less, Si: 0.01 to 0.20%, Mn: 0.01 to 0.30%, P: 0.04% or less, S: 0.01% or less, Cr: 13 to 22%, N: 0.001 to 0.020%, Ti: 0.05 to 0.35%, Al: 0.005 to 0.050%, Sn: 0.001 to 1%, and a balance of Fe and unavoidable impurities to which Sn is added to modify the passive film and improve the corrosion resistance. To improve the effect of modification of the passive film by the addition of Sn, after the final annealing, the steel is held in the 200 to 700° C. temperature range for 1 minute or more.Type: ApplicationFiled: January 13, 2009Publication date: September 29, 2011Inventors: Masaharu Hatano, Akihiko Takahashi
-
Patent number: 8007715Abstract: A steel has the following chemical composition (amounts in % by weight): 0.05-0.14 C, 8-13 Cr, 1-2.6 Ni, 0.5-1.9 Mo, 0.5-1.5 Mn, 0.15-0.5 Si, 0.2-0.4 V, 0-0.04 B, 2.1-4.0 Re, 0-0.07 Ta, 0-60 ppm Pd, remainder Fe and unavoidable impurities. The steel can be used effectively as a welding additive material and has outstanding properties at very high temperatures, in particular a good creep rupture strength/resistance and a good oxidation resistance.Type: GrantFiled: February 12, 2010Date of Patent: August 30, 2011Assignee: ALSTOM Technology Ltd.Inventors: Mohamed Nazmy, Paul Claus Gerdes, Andreas Kuenzler
-
Patent number: 7985372Abstract: A ferritic stainless steel sheet for use in raw material pipes for forming bellows pipes has excellent formability. More specifically, the ferritic stainless steel sheet contains 10 % to 25 % by mass of Cr and has a yield stress in the range of 300 to 450 MPa and the product of the yield stress and the uniform elongation properties of at least 5200 (MPa·%). Preferably, the ferritic stainless steel sheet for use in raw material pipes for forming bellows pipes has an average crystal grain size D of 35 ?m or less or a surface roughness of 0.40 ?m or less as determined by Ra.Type: GrantFiled: May 29, 2006Date of Patent: July 26, 2011Assignee: JFE Steel CorporationInventors: Yoshihiro Ozaki, Yasushi Kato, Takaaki Iguchi
-
Patent number: 7943085Abstract: A ferritic stainless steel for automobile exhaust gas passage components comprises, in mass percent, C: not more than 0.03%, Si: not more than 1%, Mn: not more than 1.5%, Ni: not more than 0.6%, Cr: 10-20%, Nb: not more than 0.5%, Ti: 0.05-0.3%, Al: more than 0.03% to 0.12%, Cu: more than 1% to 2%, V: not more than 0.2%, N: not more than 0.03%, B: 0.0005-0.02%, O: not more than 0.01%, and the balance of Fe and unavoidable impurities, whose composition satisfies the relationships Nb?8 (C+N) and 0.02?Al?(54/48))?0.1. The steel enables fabrication of automobile exhaust gas passage components that are excellent in high-temperature strength and weld toughness, and offers a wide range of freedom in selecting suitable pipe-making conditions.Type: GrantFiled: December 5, 2007Date of Patent: May 17, 2011Assignee: Nisshin Steel Co., Ltd.Inventors: Takeo Tomita, Manabu Oku
-
Publication number: 20110110812Abstract: This ferrite stainless steel for use in producing a urea water tank includes: in terms of mass %, C: 0.05% or less; N: 0.05% or less; Si: 0.02 to 1.5%; Mn: 0.02 to 2%; Cr: 15 to 23%; and either one or both of Nb and Ti at a content within a range of 8(C+N) to 1% (herein, C and N represent the contents of C and N (expressed by mass %), respectively, and the numerical values shown in front of the atomic symbols represent constant numbers), with the remainder being iron and unavoidable impurities, wherein an effective amount of Cr expressed by any one of the following Equations (I), (II), and (III) is 15% or more (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers).Type: ApplicationFiled: July 23, 2009Publication date: May 12, 2011Inventors: Nobulhiko Hiraide, Haruhiko Kajimura, Akihiko Takahashi, Shigeru Maeda
-
Publication number: 20110101621Abstract: The present invention pertains to wear-resistant components for internal combustion engines, particularly piston rings, especiallly piston rings that feature a wear protection layer with iron base alloy on their surface that is subjected to wear and are characterized in that they are manufactured of a coating powder by means of high-velocity flame spraying (HVOF), wherein the coating is single-phase and comprises the elements Fe, Cr, V and C, and wherein VC forms mixed crystals and also leads to a dispersion strengthening. The present invention furthermore pertains to a method for manufacturing wear-resistant components for internal combustion engines, particularly piston rings, according to the present invention.Type: ApplicationFiled: January 21, 2009Publication date: May 5, 2011Inventors: Marcus Kennedy, Michael Zinnabold, Marc-Manuel Matz
-
Publication number: 20110033731Abstract: A ferritic stainless steel suited for use as a member for heat exchangers to be brazed with Ni-based filler metal or Cu-based filler metal, comprising, on the basis of mass percent, C: 0.03% or less, Si: 3% or less, Mn: 2% or less, P: 0.05% or less, S: 0.03% or less, Cr: from 11 to 30%, Nb: from 0.15 to 0.8%, and N: 0.03% or less, wherein the balance is composed of Fe and incidental impurities, and wherein a value A determined by the following equation is 0.10 or greater: A=Nb?(C×92.9/12+N×92.9/14).Type: ApplicationFiled: May 11, 2009Publication date: February 10, 2011Applicant: NISSHIN STEEL CO., LTD.Inventors: Akinori Kawano, Taichirou Mizoguchi, Kouki Tomimura, Wakahiro Harada
-
Patent number: 7883663Abstract: The present invention provides optimal low chromium stainless steel preventing the deterioration in corrosion resistance at the weld zone in the case of multipass welding, superior in grain boundary corrosion resistance of the weld zone even in a harsh corrosive environment, simultaneously free from preferential corrosion at the heat affected zones near weld fusion lines, and further superior in manufacturability, that is, low chromium stainless steel containing, by mass %, C: 0.03% or less, N: 0.004 to 0.02%, Si: 0.2 to 1%, Mn: over 1.5 to 2.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 15%, Ni: 0.2 to 3.0%, and Al: 0.005 to 0.1%, further containing Ti: 4×(C %+N %) to 0.35%, and having a balance of Fe and unavoidable impurities, having a ?p(%) expressed by a predetermined formula satisfying 80 or more, and satisfying Ti %×N %<0.004 as well.Type: GrantFiled: July 3, 2007Date of Patent: February 8, 2011Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Masuhiro Fukaya, Akihiko Takahashi, Shinichi Teraoka, Shunji Sakamoto
-
Publication number: 20110024540Abstract: A refiner or disperser blade is made of a steel alloy by casting. The alloy comprises, in weight percent: 0.6 to 4 wt-% carbon (C), 0.5 to 1.5 wt-% silicon (Si), 0.4 to 1.5 wt-% manganese (Mn), 12 to 28 wt-% chromium (Cr), 4 to 12 wt-% niobium (Nb), as well as iron (Fe).Type: ApplicationFiled: March 19, 2009Publication date: February 3, 2011Applicant: METSO PAPER, INC.Inventors: Karri Vihma, Johan Norberg
-
Patent number: 7862666Abstract: A highly corrosion resistant high strength stainless steel pipe for linepipe, having a composition containing about 0.001 to about 0.015% C, about 0.01 to about 0.5% Si, about 0.1 to about 1.8% Mn, about 0.03% or less P, about 0.005% or less S, about 15 to about 18% Cr, about 0.5% or more and less than about 5.5% Ni, about 0.5 to about 3.5% Mo, about 0.02 to about 0.2% V, about 0.001 to about 0.015% N, and about 0.006% or less O, by mass, so as to satisfy (Cr+0.65 Ni +0.6Mo+0.55Cu?20C?18.5), (Cr+Mo+0.3Si?43.5C?0.4Mn?Ni?0.3Cu?9 N?11.5) and (C+N?0.025). Preferably quenching and tempering treatment is applied to the pipe. The composition may further contain about 0.002 to about 0.05% Al, and may further contain one or more of Nb, Ti, Zr, B, and W, and/or Cu and Ca. The microstructure preferably contains martensite, ferrite, and residual ?.Type: GrantFiled: October 22, 2004Date of Patent: January 4, 2011Assignee: JFE Steel CorporationInventors: Mitsuo Kimura, Takanori Tamari, Yoshio Yamazaki, Ryosuke Mochizuki
-
Patent number: 7842141Abstract: A steel composition contains: 0.05% or less of C; 0.5% or less of Si; 0.20% to 1.80% of Mn; 0.03% or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; and 0.006% or less of O on a mass basis, and satisfies the following expressions: Cr+0.65Ni+0.6Mo+0.55Cu?20C?18.5 and Cr+Mo+0.3Si?43.5C?0.4Mn?Ni?0.3Cu?9N?11 (where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents (mass %)). After such a steel pipe material is formed into a steel pipe, the steel pipe is quenched by cooling after heating to a temperature of the AC3 transformation point or more and tempered at a temperature of the AC1 transformation point or less.Type: GrantFiled: April 2, 2009Date of Patent: November 30, 2010Assignee: JFE Steel CorporationInventors: Mitsuo Kimura, Takanori Tamari, Takaaki Toyooka
-
Publication number: 20100272594Abstract: This ferritic stainless steel with excellent brazeability includes, in terms of mass percent, 0.03% or less of C, 0.05% or less of N, 0.015% or more of C+N, 0.02 to 1.5% of Si, 0.02 to 2% of Mn, 10 to 22% of Cr, 0.03 to 1% of Nb, and 0.5% or less of Al, and further includes Ti in a content that satisfies the following formulae (1) and (2), with the remainder composed of Fe and unavoidable impurities. Ti—3N?0.03??(1) 10(Ti—3N)+Al?0.5??(2) (Here, the atomic symbols in formulae (1) and (2) indicate the content (mass %) of the respective element, and the numerical values that precede the atomic symbols are constants.Type: ApplicationFiled: December 24, 2008Publication date: October 28, 2010Inventor: Nobuhiko Hiraide
-
Patent number: 7767037Abstract: A stainless steel pipe for use in oil wells which has a high strength having a YS of 654 MPa or more and superior corrosion resistance even in a severe corrosive environment in which CO2 and are present and the temperature is high, such as up to 230° C. The pipe contains on a mass percent basis: 0.005% to 0.05% of C; 0.05% to 0.5% of Si; 0.2% to 1.8% of Mn; 0.03% or less of P; 0.005% or less of S; 15.5% to 18% of Cr; 1.5% to 5% of Ni; 1% to 3.5% of Mo; 0.02% to 0.2% of V; 0.01% to 0.15% of N; 0.006% or less of 0; and the balance being Fe and unavoidable impurities, in which Cr+0.65Ni+0.6Mo+0.55Cu?20C?19.5 and Cr+Mo+0.3Si?43.5C?0.4Mn?Ni?0.3Cu?9N?11.5 are satisfied (where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent the respective contents on a mass percent basis).Type: GrantFiled: August 11, 2004Date of Patent: August 3, 2010Assignee: JFE Steel CorporationInventors: Mitsuo Kimura, Takanori Tamari, Yoshio Yamazaki, Ryosuke Mochizuki