Hydrogen Storage Patents (Class 420/900)
  • Publication number: 20040206424
    Abstract: A modified Ti—Mn2 hydrogen storage alloy. The alloy generally is comprised of Ti and Mn. A generic formula for the alloy is: TiQ-XZrXMnZ-YAY, where A is generally one or more of V, Cr, Fe, Ni and Al. Most preferably A is one or more of V, Cr, and Fe. The subscript Q is preferably between 0.9 and 1.1, and most preferably Q is 1.0. The subscript X is between 0.0 and 0.35, more preferably X is between 0.1 and 0.2, and most preferably X is between 0.1 and 0.15. The subscript Y is preferably between 0.3 and 1.8, more preferably Y is between 0.6 and 1.2, and most preferably Y is between 0.6 and 1.0. The subscript Z is preferably between 1.8 and 2.1, and most preferably Z is between 1.8 and 2.0. The alloys are generally single phase materials, exhibiting a hexagonal C14 Laves phase crystalline structure.
    Type: Application
    Filed: May 11, 2004
    Publication date: October 21, 2004
    Inventors: Ned T. Stetson, Jun Yang, Benjamin Chao, Vitaliy Myasnikov, Zhaosheng Tan
  • Patent number: 6790558
    Abstract: A method of producing an electrode alloy powder is disclosed, wherein, to provide an electrode alloy powder capable of yielding an alkaline storage battery excellent in high-rate discharge property, self-discharge property and cycle life, a first step of immersing a starting powder comprising a hydrogen storage alloy containing 20 to 70 wt % of Ni in an aqueous solution containing 30 to 80 wt % of sodium hydroxide at a temperature of 90° C. or higher and a second step of washing with water the powder which has been subjected to the first step are conducted.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: September 14, 2004
    Assignees: Matsushita Electric Industrial Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukihiro Okada, Miho Kayama, Yoichiro Tsuji
  • Patent number: 6787103
    Abstract: The present invention is to obtain a Ti—Zn—Mn—V—Fe based hydrogen storage alloy having the excellent hydrogen absorbing and discharging performance at a low cost. An alloy represented by the general formula: Ti1−xZrxMnw−y−zVyFez (wherein 0≦x≦0.5, 0<y≦0.6, 0<z≦0.2, and 1.8≦w≦2.2) is produced using a ferrovanadium (alloy of a V and an Fe) as one of the raw materials. The oxygen content of the alloy is limited to 5,000 ppm or less. A hydrogen storage alloy having the excellent hydrogen absorbing and discharging performance can be produced using an inexpensive ferrovanadium. Furthermore, an impurity oxygen, which adversely effect the performance, can be limited easily.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: September 7, 2004
    Assignee: Japan Steel Works Ltd.
    Inventors: Yasuhiro Aoki, Takaaki Miyaki
  • Publication number: 20040170520
    Abstract: An object of the present invention is to provide a hydrogen absorbing alloy which can improve a high rate discharge property while suppressing particle size reduction, exhibits cycle life characteristics equal to or higher than those of conventional alloys even when its cobalt content is decreased, and has a high capacity. Specifically, the present invention provides a hydrogen absorbing alloy having a CaCu5 type crystal structure in its principal phase, wherein the La content in the alloy is in the range of 24 to 33% by weight and the Mg or Ca content in the alloy is in the range of 0.1 to 1.0% by weight, as well as the aforesaid alloy wherein the Co content in the alloy is not greater than 9% by weight.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 2, 2004
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Takao Maeda, Satoshi Shima, Naofumi Shinya
  • Publication number: 20040170896
    Abstract: A hydrogen absorbing alloy containing at least a rare-earth element, magnesium (Mg), nickel (Ni) and aluminum (Al), having an intensity ratio (IA/IB) of not smaller than 0.6 (where IA represents an intensity of the highest peak in a range of 2&thgr;=30°˜34° in the X-ray diffraction pattern using CuK&agr;-radiation as the X-ray source and IB represents the intensity of the highest peak in a range of 2&thgr;=40°˜44°), and not substantially including La as the rare-earth element.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 2, 2004
    Inventors: Tetsuyuki Murata, Shigekazu Yasuoka, Jun Ishida
  • Publication number: 20040159377
    Abstract: The present invention relates to hydrogen storage alloys, methods for producing the same, and anodes produced with such alloys for nickel-hydrogen rechargeable batteries. The alloys are useful as electrode materials for nickel-hydrogen rechargeable batteries, excellent, when used as anode materials, in corrosion resistance or activity such as initial activity and high rate discharge performance, of low cost compared to the conventional alloys with a higher Co content, and recyclable. The alloys are of a composition represented by the formula (1), and has a substantially single phase structure, and the crystals thereof have an average long axis diameter of 30 to 160 &mgr;m, or not smaller than 5 &mgr;m and smaller than 30 &mgr;m. The present anodes for rechargeable batteries contain at least one of these hydrogen storage alloys.
    Type: Application
    Filed: March 5, 2004
    Publication date: August 19, 2004
    Inventors: Kiyofumi Takamaru, Hideaki Ikeda, Koji Tatsumi
  • Publication number: 20040161360
    Abstract: A hydrogen storage material of the present invention comprises a plurality of planar molecular layers stacked, and a particle being inserted into the planar molecular layers to define an interlayer distance between the planar molecular layers. Because the hydrogen storage material of the present invention has a sufficient hydrogen storage capacity, it is possible to realize a fuel cell vehicle capable of storing a sufficient amount of hydrogen to attain a long-distance drive.
    Type: Application
    Filed: January 14, 2004
    Publication date: August 19, 2004
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Tomaru Ogawa, Junji Katamura, Masashi Ito, Masaharu Hatano, Mikio Kawai
  • Patent number: 6759165
    Abstract: A hydrogen-absorbing alloy which is excellent in stability in an aqueous solution and in mechanical pulverizability is disclosed. This hydrogen-absorbing alloy contains an alloy represented by the following general formula (I): Mg2M1y  (I) wherein M1 is at least one element selected (excluding Mg, elements which are capable of causing an exothermic reaction with hydrogen, Al and B) from elements which are incapable of causing an exothermic reaction with hydrogen; and y is defined as 1<y≦1.5.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: July 6, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Tsuruta, Tatsuoki Kohno, Motoya Kanda
  • Patent number: 6746645
    Abstract: Hydrogen propelled vehicles and fundamentally new magnesium-based hydrogen storage alloy materials which for the first time make it feasible and practical to use solid state storage and delivery of hydrogen to power internal combustion engine or fuel cell vehicles. These exceptional alloys have remarkable hydrogen storage capacity of well over 6 weight % coupled with extraordinary absorption kinetics such that the alloy powder absorbs 80% of its total capacity within 10 minutes at 300° C. and a cycle life of at least 500 cycles without loss of capacity or kinetics.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: June 8, 2004
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa T. Young
  • Patent number: 6740450
    Abstract: An alkaline storage battery which is excellent in charge and discharge cycle life characteristics and high-rate discharge characteristics is provided by constructing it using an electrode made of an MmNi type hydrogen-absorbing alloy powders having modified surface. The alkaline storage battery comprises a negative electrode made using a hydrogen-absorbing alloy in the form of powders comprising at least one rare earth element, nickel and at least one transition metal in which the surface portion of the alloy has nickel in metallic state exposed at the surface, pores positioned between the nickel and the nickel, and a nickel-rich layer present on the alloy surface contacting with the pores, a positive electrode made using a metal oxide, a separator, and an alkaline electrolyte.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: May 25, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Susumu Kikuyama, Takashi Ebihara, Akiko Miyahara, Xianglong Wang, Kohji Yuasa
  • Patent number: 6737194
    Abstract: A low temperature hydrogen storage alloy which is not pyrophoric upon exposure to ambient atmosphere, particularly even after hydrogen charge/discharge cycling.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 18, 2004
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa T. Young, Baoquan Huang
  • Patent number: 6733724
    Abstract: An object of the present invention is to provide a hydrogen absorbing alloy which can improve a high rate discharge property while suppressing particle size reduction, exhibits cycle life characteristics equal to or higher than those of conventional alloys even when its cobalt content is decreased, and has a high capacity. Specifically, the present invention provides a hydrogen absorbing alloy having a CaCu5 type crystal structure in its principal phase, wherein the La content in the alloy is in the range of 24 to 33% by weight and the Mg or Ca content in the alloy is in the range of 0.1 to 1.0% by weight, as well as the aforesaid alloy wherein the Co content in the alloy is not greater than 9% by weight.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: May 11, 2004
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Takao Maeda, Satoshi Shima, Naofumi Shinya
  • Patent number: 6733563
    Abstract: Methods for making hydrogen storage tanks may include disposing a substantially solid block of hydrogen-absorbing alloy within an activation vessel. Hydrogen gas may then be introduced into the activation vessel under conditions that will cause the hydrogen-absorbing alloy to absorb hydrogen and crack or break apart. Preferably, a substantially powdered hydrogen-absorbing alloy is formed thereby. Thereafter, the substantially powdered hydrogen-absorbing alloy can be transferred from the activation vessel to a hydrogen storage tank without substantially exposing the powered hydrogen-absorbing alloy to oxygen. The hydrogen-absorbing alloy is preferably ingot-shaped when introduced into the activation vessel. Further, the substantially powdered hydrogen-absorbing alloy is preferably produced by continuously breaking the ingot-shaped hydrogen-absorbing alloy within the activation vessel due to volume expansion caused by the hydrogen-absorbing alloy having absorbed hydrogen.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: May 11, 2004
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Katsuyoshi Fujita, Hideki Morino, Hidehito Kubo, Keiji Toh, Hiroyuki Mitsui, Shinichi Towata, Kazuhiko Itoh, Makoto Ishikura
  • Patent number: 6733725
    Abstract: Hydrogen storage compositions which liberate hydrogen readily and which are readily regenerated from a dehydrogenated state formed by liberation of hydrogen are derived from an AlH3-based complex hydride incorporating a member selected from a metalloid such as B, C, Si, P and S, a metal such as Cr, Mn, Fe, Co, Ni, Cu, Mo, Zn, Ga, In and Sn, a metal which forms a stable hydride such as Be, Mg, Ca, Ti, V, Y, Zr and La and a second AlH3-based complex hydride.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: May 11, 2004
    Assignee: McGill University
    Inventors: Alicja Zaluska, Leszek Zaluski, John Olaf Strom-Olsen
  • Patent number: 6726783
    Abstract: A fundamentally new magnesium-based hydrogen storage alloy material which makes it feasible and practical to use solid state storage and delivery of hydrogen to power internal combustion engine or fuel cell vehicles. These alloys have remarkable hydrogen storage capacity of well over 6 weight percent. The alloys also have extraordinary absorption kinetics such that the alloy absorbs 80 percent of its total capacity within five minutes. The alloys are in particle form where the particles have a size ranging from 30 to 70 microns. The alloys also have a dual phase structure (formed by cooling from the melt at a cooling rate of 103-104° C.). The dual phase structure is such that an intergranular region surrounds a major hydrogen storage phase thus providing the alloys with resistance to sintering during high temperature hydriding/dehydriding cycling thereof. As a result of the dual phase structure, the alloys have an extended cycle life.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: April 27, 2004
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Rosa Young, Benjamin Chao, Stanford R. Ovshinsky
  • Patent number: 6726892
    Abstract: Various aspects of the present invention provides a nanocrystalline powder suitable for storing hydrogen and a method of producing such a powder. One embodiment provides a nanocrystalline powder containing crystals of an aluminum alloy selected from the group consisting of NaAlx, LiAlx, and MgAl2x, wherein x is between 0.9 and 1.1, desirably 0.95-1.05, preferably about 1. The nanocrystalline powder also desirably includes an intercalated catalyst selected from the group consisting of C, Ti, Pt, Pd, V, Zr, and combinations of two or more of those materials.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: April 27, 2004
    Assignee: Quantum Fuel Systems Technologies Worldwide, Inc.
    Inventor: Ming Au
  • Patent number: 6709497
    Abstract: Heat transfer management/compartmentalization system for a metal hydride hydrogen storage containment unit. The hydrogen storage alloy is preferably divided into compartments having a honeycomb configuration. Heat exchanger tubing is placed through the compartments to promote heat transfer between the hydrogen storage alloy and the exterior environment.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: March 23, 2004
    Assignee: Texaco Ovonic Hydrogen Systems LLC
    Inventors: Vitaliy Myasnikov, Baoquan Huang, Rosa Young, Stanford R. Ovshinsky
  • Patent number: 6703164
    Abstract: There is provided a hydrogen-absorbing alloy comprising, as a principal phase, at least one kind of phase selected from the group consisting of a first phase having a hexagonal crystal system (excluding a phase having a CaCu5 type crystal structure) and a second phase having a rhombohedral crystal system, the hydrogen-absorbing alloy having a composition represented by the following general formula (1): R1-a-bMgaTbNiZ-X-Y-&agr;M1XM2YMn&agr;  (1) wherein R is at least one kind of element selected from rare earth elements (which include Y), T is at least one element selected from the group consisting of Ca, Ti, Zr and Hf, M1 is at least one element selected from the group consisting of Co and Fe, M2 is at least one element selected from the group consisting of Al, Ga, Zn, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, Li, P and S, and the atomic ratios of a, b, X, Y, &agr; and Z are respectively a number satisfying the conditions of: 0.15≦a≦0.37, 0≦b≦0.3, 0≦X≦1.3, 0≦Y≦0.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: March 9, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hirotaka Hayashida, Masaaki Yamamoto, Hiroshi Kitayama, Shusuke Inada, Isao Sakai, Tatsuoki Kono, Hideki Yoshida, Takamichi Inaba, Motoya Kanda
  • Publication number: 20040037733
    Abstract: A hydrogen storage alloy and its production method are disclosed, which has an extremely high effective hydrogen storage capacity in the pressure range from 0.001 to 10 MPa, and a variety of use. The alloy is principally of a body-centered cubic crystal structure, and represented by the compositional formula CraTibVcFedMeXf (M: Al etc.; X: La etc.; 30≦a≦70, 20≦b≦50, 5≦c≦20, 0≦d≦10, 0≦e≦10, and 0≦f≦10, a+b+c+d+e+f=100). The alloy contains 0.005 to 0.150 wt % of O2, and has hydrogen absorption-desorption capability of not less than 2.2% of its weight from 0 to 100° C. and from 0.001 to 10 MPa. The method includes step (a) of melting starting materials for the alloy, deoxidizing step (b) such as step (b1) of blowing Ar into the alloy melt, and casting step (c).
    Type: Application
    Filed: May 13, 2003
    Publication date: February 26, 2004
    Inventor: Yutaka Oka
  • Patent number: 6689193
    Abstract: To produce a hydrogen absorbing alloy powder, a starting powder and a plurality of balls are thrown into a container of a ball mill, and then, the inside of the container is maintained in a hydrogen atmosphere to conduct a mechanical alloying.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: February 10, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Mitsuya Hosoe, Izuru Kanoya, Junichi Kitagawa, Terumi Furuta, Takanori Suzuki
  • Patent number: 6689233
    Abstract: A hydrogen storage material which is characterized by having, as a cast alloy, a flaky or similar shape with a thickness of 50 to 500 &mgr;m and showing such crystallite orientation that the X-ray diffraction pattern has an intensity ratio of plane indices (002)/(200) of 2 to 10 as measured with the cooled surface of the flaky cast alloy being in parallel with a mount, and a process of producing the same.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: February 10, 2004
    Assignee: Mitsui Mining & Smelting Company Ltd.
    Inventors: Kiyotaka Yasuda, Daisuke Mukai, Minoru Sakai, Shigeo Hirayama, Kazuhito Komatsu, Shinya Kagei
  • Publication number: 20040011444
    Abstract: According to the invention, hydrogen absorbed in a PCT curve low pressure region not desorbed and utilized so far can be desorbed easily by controlling a hydrogen storage alloy temperature in the final stage of a hydrogen desorption process (T2) to a temperature higher than the hydrogen storage alloy temperature in the hydrogen absorption process (T0) and a hydrogen storage alloy temperature in the initial stage of the hydrogen desorption process (T1) (T2>T1≧T0).
    Type: Application
    Filed: March 26, 2003
    Publication date: January 22, 2004
    Inventors: Masuo Okada, Takahiro Kuriiwa, Shinichi Yamashita
  • Patent number: 6676159
    Abstract: A device for storing fuel in an engine-powered transport vehicle including at least one closed construction element which is incorporated as an integral part of the body or chassis structure of the transport vehicle. The closed construction element is arranged as a storage unit for the fuel. As a result of the invention, an improved fuel storage unit is provided for, in particular, hydrogen-gas-powered motor vehicles.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: January 13, 2004
    Inventor: Per-Ivar Sellergren
  • Patent number: 6672078
    Abstract: A combine bulk storage/single stage metal hydride compressor, a hydrogen storage alloy therefore and a hydrogen transportation/distribution infrastructure which incorporates the combine bulk storage/single stage metal hydride compressor.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: January 6, 2004
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa T. Young, Baoquan Huang, Farshad Bavarian, Gene Nemanich
  • Publication number: 20030228252
    Abstract: An apparatus, system, and method generate hydrogen through a controlled chemical reaction between water and a chemical hydride. The invention includes a chemical hydride isolated from water by a water-selective membrane. A fluid containing water is brought into contact with the water-selective membrane. The water diffuses through the water-selective membrane and reacts with the chemical hydride. The water diffuses through the membrane at a predetermined rate based on a water concentration gradient across the water-selective membrane. The water-selective membrane is substantially impermeable to elements and molecules other than water. Hydrogen generated within the chemical hydride is collected and used in various applications.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 11, 2003
    Inventor: James Kevin Shurtleff
  • Patent number: 6660431
    Abstract: The present invention relates to a hydrogen storage alloy electrode composed of a hydrogen storage alloy having a CaCu5 region and a Ce2Ni7 region in the crystal structure and satisfies the relational formula: p:q=1:(4+a), where p is the sum of the mole fraction of an element occupying the Ca site of the CaCu5 region and the mole fraction of an element occupying the Ce site of the Ce2Ni7 region, q is the sum of the mole fraction of an element occupying the Cu site of the CaCu5 region and the mole fraction of an element occupying the Ni site of the Ce2Ni7 region, and −0.2≦a≦0.4. Accordingly, although the hydrogen storage alloy electrode contains a little or no Co, it is possible to obtain an electrode having little deterioration due to pulverization of the alloy and a high capacity.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: December 9, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Sou Kuranaka, Akihiro Maeda, Yoshio Moriwaki
  • Patent number: 6656246
    Abstract: To produce a hydrogen absorbing alloy powder which is an aggregate of alloy particles each including a metal matrix and added-components, an aggregate of metal matrix particles and an aggregate of added-component particles are used, and mechanical alloying is carried out. In this case, the relationship between the particle size D of the metal matrix particles and the particle size d of the added-component particles is set at d≦D/6. Thus, the milling time can be shortened remarkably.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: December 2, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Izuru Kanoya, Takanori Suzuki, Mitsuya Hosoe, Hajime Goto
  • Publication number: 20030209296
    Abstract: A hydrogen containing material comprises a first compound including hydrogen containing material and fluoride, and a second compound including a metal which becomes highly reactive with hydrogen when the metal becomes a compound including fluorine, and a compound including fluorine. The first compound and the second compound are integrally formed into a one-piece layer on the surface of the hydrogen containing material. The metal which becomes highly reactive with hydrogen when the metal becomes a compound including fluorine is at least one metal selected from a rare earth metal, rare earth alloy, Fe, Al, Mg, Ca, Mn, Zn, Zr, Li, or alloys comprising these elements.
    Type: Application
    Filed: June 6, 2003
    Publication date: November 13, 2003
    Applicants: The Japan Steel Works, Ltd., Stella Chemifa Corporation
    Inventors: Fumiaki Aono, Toshiharu Tabata, Akiyoshi Kosuge, Hirohisa Kikuyama, Hiroto Izumi
  • Publication number: 20030205300
    Abstract: Hydrogen storage alloy has: (1) a main composition expressed by the formula of Mm—(Ni—Al—Co—Mn); (2) a ratio of the number of atoms expressed by the formula of (Ni—Al—Co—Mn) is 5.5<(Ni+Al+Co+Mn)≦9, and 3.5≦Ni, when Mm is set at 1 in a ratio of the number of atoms; and (3) an internal structure having a hydrogen storage alloy phase expressed by the general formula of AB5, and a second phase existing in the hydrogen storage alloy phase.
    Type: Application
    Filed: March 24, 2003
    Publication date: November 6, 2003
    Inventor: Kenji Nakamura
  • Patent number: 6627340
    Abstract: Hydrogen propelled fuel cell vehicle system designs that reduce the relative cost of releasing hydrogen from hydrogen storage alloys by providing and/or utilizing secondary sources of heat to supply the heat of desorption of stored hydrogen. The secondary source can include combusting conventional secondary (non-hydrogen) fuels. The fuel supply system uses fundamentally new magnesium-based hydrogen storage alloy materials which for the first time make it feasible and practical to use solid state storage and delivery of hydrogen to power fuel cell vehicles. These exceptional alloys have remarkable hydrogen storage capacity of over 7 weight % coupled with extraordinary absorption kinetics such that the alloy powder absorbs 80% of its total capacity within 1.5 minutes at 300° C. and a cycle life of at least 2000 cycles without loss of capacity or kinetics.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: September 30, 2003
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa T. Young
  • Patent number: 6626323
    Abstract: A hydrogen storage unit which uses hydrogen storage alloys to store hydrogen, and more particularly a heat transfer management/compartmentalization system for use in such system. The hydrogen storage alloy may be divided into compartments, separated by discs, further divided into sub-compartments by a flapper wheel. The discs and flapper wheel provide for optimal heat transfer throughout the system. The compartmentalization of the vessel may prevent compaction of the hydrogen storage alloys, which could lead to excessive strain on the vessel causing damage, deformation, or rupture of the vessel.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: September 30, 2003
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Ned T. Stetson, Michael Marchio, Arthur Holland, Daniel Alper, David Gorman, Jun Yang
  • Patent number: 6627148
    Abstract: A magnesium hydrogen storage alloy that has been hydrided and compacted into highly dense pellets for shipment and use, a method for making said magnesium alloy and a method for the safe, economical shipment of said hydrided magnesium hydrogen storage material.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: September 30, 2003
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa T. Young, Ned T. Stetson, Vitaliy Myasnikov
  • Publication number: 20030175590
    Abstract: Hydrogen storage alloy has: (1) a main composition expressed by the formula of Mm-(Ni—Al—Co—Mn); (2) a ratio of the number of atoms expressed by the formula of (Ni—Al—Co—Mn) is 5.5<(Ni+Al+Co+Mn)≦9, and 3.5≦Ni, when Mm is set at 1 in a ratio of the number of atoms; and (3) an internal structure having a hydrogen storage alloy phase expressed by the general formula of AB5, and a second phase existing in the hydrogen storage alloy phase.
    Type: Application
    Filed: March 24, 2003
    Publication date: September 18, 2003
    Inventor: Kenji Nakamura
  • Patent number: 6610445
    Abstract: In the description, a hydrogen storage alloy electrode comprising a hydrogen storage alloy and a conductive metal and completely free of organic binder is disclosed, wherein at least two layers of an active material holding layer and a conductive metal layer essentially are integrated into an electrode sheet having a conductive network communicating throughout the electrode. The electrode can be used in a nickel-metal hydride storage battery, for example, particularly exhibits high efficiency charge/discharge characteristics while satisfying general characteristics as a battery, and has a relatively low cost and facilitates recycling.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 26, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshio Moriwaki, Sou Kuranaka, Mizuo Iwasaki, Yasuhiko Yamasaki, Akihiro Maeda
  • Patent number: 6605375
    Abstract: A method of activating a hydrogen storage alloy electrode. The method comprises the step of applying current cycles to the electrode where each current cycle includes a forward pulse effective to at least partially charge the electrode and a reverse pulse effective to at least partially discharge the electrode.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: August 12, 2003
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Boyko Aladjov, Srinivasan Venkatesan, Subhash K. Dhar, Thomas Hopper, Kevin Fok
  • Patent number: 6602639
    Abstract: A process for producing a hydrogen storage electrode, which comprises the steps of forming a molten metal having a composition of a hydrogen storage alloy, solidifying the molten metal at a rapid cooling speed to form a solidified hydrogen storage alloy, and heat treating the solidified hydrogen storage alloy in a range from 1000 to 1200° C. for 30 minutes-120 hours to precipitate a second phase, wherein the hydrogen storage alloy after the heat treating step comprises (1) a main composition expressed by the formula Mm—(Ni—Al—Co—Mn), (2) a ratio of the number of atoms expressed by the formula of (Ni—Al—Co—Mn) is exhibited as 5.5<(Ni+Al+Co+Mn)≦9, and 3.5≦Ni, when Mm is set at 1 in the ratio of the number of atoms, and (3) an internal structure having a hydrogen storage alloy phase expressed by the general formula of AB5, and the second phase forming an electrically conducting network in the hydrogen storage alloy phase.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: August 5, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Nakamura
  • Patent number: 6596055
    Abstract: A process is provided for the transport and storage of hydrogen by reversible sorption and containment within carbon-metal hybrid materials. The process comprises contacting a carbon-metal hybrid composition with a hydrogen-containing gas at conditions of temperature and pressure whereby the carbon-metal hybrid composition sorbs the hydrogen gas. The hydrogen that is sorbed in the carbon-metal composition is subsequently released by lowering the H2 pressure and/or increasing the temperature to levels which cause desorption of the hydrogen gas.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: July 22, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Alan Charles Cooper, Guido Peter Pez
  • Patent number: 6593031
    Abstract: A nickel metal-hydride cell having a paste type nickel positive electrode containing nickel hydroxide and a cobalt conducting aid selected from the group consisting of metal cobalt and cobalt compounds, a negative electrode which comprises a hydrogen absorbing alloy having a composition of the formula: MmNi5−x+yMx in which Mm is a rare earth element, M is a metal element, 0<x<2, and −0.2<y<0.6, a separator interposed between two electrodes, and an alkaline electrolytic solution, where a ratio of C—H to C—Co(II) is 1.3 or less, wherein C—H is a quantity of electricity of a discharge reserve formed in the negative electrode, and C—Co(II) is a quantity of electricity necessary for reducing cobalt oxide in the positive electrode to cobalt(II) oxide.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: July 15, 2003
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Masuhiro Onishi, Hiroshi Fukunaga, Masato Isogai, Ryo Nagai
  • Patent number: 6589686
    Abstract: A method of activating a metal hydride electrode of an alkaline fuel cell. The method comprises the step of applying current cycles to the anode where each current cycle includes a forward current effective to at least partially charge the electrode and a reverse current effective to at least partially discharge the electrode.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: July 8, 2003
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Boyko Aladjov, Srinivasan Venkatesan, Subhash K. Dhar, Thomas Hopper, Kevin Fok
  • Patent number: 6576367
    Abstract: A hydrogen storage alloy, for use in alkaline storage batteries, having a CaCu5-type crystal structure and represented by the compositional formula MmNixCoyMnzMl-z (wherein M represents at least one element selected from the group consisting of aluminum (Al) and copper (Cu); x is a nickel (Ni) stoichiometry and satisfies 3.0≦x≦5.2; y is a cobalt (Co) stoichiometry and satisfies 0≦y≦1.2; z is a manganese (Mn) stoichiometry and satisfies 0.1≦z≦0.9; and the sum of x, y and z satisfies 4.4≦x+y+z≦5.4). The hydrogen storage alloy includes a bulk region having a CaCu5-type crystal structure and a substantially uniform composition and a surface region surrounding said bulk region and having a graded composition. When the sum in percentage of numbers of cobalt (Co) atoms and copper (Cu) atoms present in the surface region is given by a and that in the bulk region by b, the relationship a/b≧1.3 is satisfied.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: June 10, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Teruhiko Imoto, Masutaka Ouchi, Yohei Hirota, Kikuko Kato, Nobuyuki Higashiyama, Mamoru Kimoto, Shin Fujitani, Koji Nishio
  • Publication number: 20030103861
    Abstract: A modified Ti—Mn2 hydrogen storage alloy. The alloy generally is comprised of Ti and Mn. A generic formula for the alloy is: TiQ−XZrXMnZ−YAY, where A is generally one or more of V, Cr, Fe, Ni and Al. Most preferably A is one or more of V, Cr, and Fe. The subscript Q is preferably between 0.9 and 1.1, and most preferably Q is 1.0. The subscript X is between 0.0 and 0.35, more preferably X is between 0.1 and 0.2, and most preferably X is between 0.1 and 0.15. The subscript Y is preferably between 0.3 and 1.8, more preferably Y is between 0.6 and 1.2,and most preferably Y is between 0.6 and 1.0. The subscript Z is preferably between 1.8 and 2.1,and most preferably Z is between 1.8 and 2.0. The alloys are generally single phase materials, exhibiting a hexagonal C14 Laves phase crystalline structure.
    Type: Application
    Filed: November 30, 2001
    Publication date: June 5, 2003
    Inventors: Ned T. Stetson, Jun Yang, Benjamin Chao, Vitaliy Myasnikov, Zhaosheng Tan
  • Publication number: 20030096164
    Abstract: The present invention provides a hydrogen absorbing alloy containing as a principal phase at least one phase selected from the group consisting of a second phase having a rhombohedral crystal structure and a first phase having a crystal structure of a hexagonal system excluding a phase having a CaCu5 type structure, wherein a content of a phase having a crystal structure of AB2 type is not higher than 10% by volume including 0% by volume and the hydrogen absorbing alloy has a composition represented by general formula (1) given below:
    Type: Application
    Filed: June 27, 2002
    Publication date: May 22, 2003
    Inventors: Isao Sakai, Tatsuoki Kohno, Shirou Takeno, Takamichi Inaba, Hideki Yoshida, Masaaki Yamamoto, Hirotaka Hayashida, Shusuke Inada, Hiroshi Kitayama, Motoya Kanda, Fumiyuki Kawashima, Takao Sawa
  • Patent number: 6536487
    Abstract: Atomically engineered hydrogen storage alloys which include a spectrum of hydrogen bonding energies and multiple hydride phases which extends and enhances their storage capacity at high pressures and high pressure hydrogen storage units which contain a variable amount of these hydrogen storage alloys therein to enhance the storage capacity of the unit beyond that obtainable by conventional alloys or pressurized hydrogen gas alone.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: March 25, 2003
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa Young, Baoquan Huang
  • Publication number: 20030051778
    Abstract: A low temperature hydrogen storage alloy which is not pyrophoric upon exposure to ambient atmosphere, particularly even after hydrogen charge/discharge cycling.
    Type: Application
    Filed: October 10, 2002
    Publication date: March 20, 2003
    Inventors: Stanford R. Ovshinsky, Rosa T. Young, Baoquan Huang
  • Patent number: 6528441
    Abstract: A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form CnH2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: March 4, 2003
    Assignee: Westinghouse Savannah River Company, L.L.C.
    Inventors: Leung K Heung, George G. Wicks
  • Patent number: 6524745
    Abstract: An electrochemically stabilized Ca—Ni hydrogen storage alloy material for use as the active negative electrode material of an alkaline electrochemical cell. The alloy material includes at least one modifier element which stabilizes the alloy material from degradation during electrochemical cycling in an alkaline cell, by protecting calcium within the alloy and preventing dissolution of calcium into the alkaline electrolyte. The alloy has the formula (Ca1−x−yMxNi2y)Ni5−zQz, where M is at least one element selected from the group consisting of misch metal, rare earth metals, zirconium and mixtures of Zr with Ti or V, Q is at least one element selected form the group consisting of Si, Al, Ge, Sn, In, Cu, Zn, Co, and mixtures thereof, x ranges between about 0.02 and 0.2, y ranges between about 0.02 and 0.4, and z ranges from about 0.05 to about 1.00.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: February 25, 2003
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa T. Young
  • Patent number: 6517970
    Abstract: A low temperature hydrogen storage alloy which is not pyrophoric upon exposure to ambient atmosphere, particularly even after hydrogen charge/discharge cycling.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: February 11, 2003
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Rosa T. Young, Baoquan Huang
  • Patent number: 6517971
    Abstract: By using a thin film-formed positive electrode, and negative electrode and a film separator, the capacity density of the electrode plate can be improved and at the same time a nickel-hydrogen secondary battery with a higher capacity can be easily obtained; as a result a nickel-hydrogen secondary battery with a higher capacity density can be provided.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: February 11, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshitaka Dansui, Kenji Suzuki, Kohji Yuasa
  • Patent number: 6508866
    Abstract: Heat exchangers, hydrogen gas compressors, hydrogen gas storage devices, hydrogen gas purifiers and metal hydride air conditioners utilizing a flow of a hydrogen gas stream which is absorbed and desorbed by a metal hydride causes disproportionation and “poisoning” of the metal hydrides by introduction of impurities such as water vapor, oxygen and carbon monoxide. Use of a noble metal in powder form, when introduced in the metal hydride particles has been found to act as a catalyst and to delay absorption of the impurities in the metal hydride, and further permits the more efficient and longer use of such devices by inhibiting the undesirable disproportionation and poisoning. In another embodiment, a vent is provided in the initial stage of a hydrogen compressor to vent out the impurities before these result in decreasing efficiency of the devices due to disproportionation, poisoning and increased vapor pressure.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: January 21, 2003
    Assignee: Ergenics, Inc.
    Inventor: P. Mark Golben
  • Publication number: 20030003010
    Abstract: A hydrogen storage alloy having a body-centered cubic structure phase capable of storing and releasing hydrogen as its main phase, and a composition of the general composition formula: Ti(100-a-0.4b)Cr(a-0.6b)Mb, wherein M is at least one element of Mo and W; and 20≦a(at %)≦80 and 0≦b (at %)<5.
    Type: Application
    Filed: June 13, 2002
    Publication date: January 2, 2003
    Inventors: Masuo Okada, Takahiro Kuriiwa, Shinichi Yamashita, Tsutomu Chou