Forming Insoluble Substance In Liquid Patents (Class 423/101)
  • Patent number: 10407753
    Abstract: A method of improving leach kinetics and recovery during atmospheric or above-atmospheric leaching of a metal sulfide is disclosed. A system for practicing the aforementioned method is also disclosed. Apparatus for practicing the aforementioned method is also disclosed. A new composition of matter which is formed by the aforementioned method, and which may be utilized in the system and apparatus is further disclosed. The new composition of matter may exhibit improved leach kinetics, and may have some utility in the semi-conductor arts, including uses within photovoltaic materials.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: September 10, 2019
    Assignee: FLSmidth A/S
    Inventors: David J. Chaiko, Sara (Sally) Rocks
  • Patent number: 10207248
    Abstract: A methyl iodide adsorber, comprising a zeolite containing at least one iodide-adsorbing metal or a compound thereof, wherein the zeolite is a hydrophobic zeolite. Also, a use of the adsorber and a method for the adsorption of methyl iodide.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: February 19, 2019
    Assignee: Areva GmbH
    Inventors: Katharina Donabauer, Arno Tissler, Mika Endler, Olaf Buttner
  • Patent number: 10129389
    Abstract: There is provided a method for capturing a line after an elapse of a predetermined time, in a case where the line has been disconnected caused by an occurrence of a specific event in which a heavy load signal is input to an input side connecting the line. The control method for controlling a communication apparatus configured to perform a data communication via a line, includes detecting a signal on the line, disconnecting the line based on a level of the detected signal, and capturing the line based on an elapse of a predetermined time after the line has been disconnected.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: November 13, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventor: Junji Iguchi
  • Patent number: 9751035
    Abstract: At the beginning of a dezincification plant used in a dezincification step in a hydrometallurgical method for nickel, a decrease throughout the dezincification plant is controlled to prevent a decrease in production volume and a cake layer is formed on a filter cloth provided to a filter device inside the dezincification plant. At the beginning of dezincification plant, a slurry containing a formed zinc sulfide is supplied to a filter for filtration and separation, an adjustment is performed in which the flow rate of the slurry is increased to reach a target flow rate in a time T2 which satisfies the following relational expression 3×T1?T2?5×T1, where T1 represents the time between starting a slurry supply and attaining the target flow rate in the case of transferring the slurry at the maximum liquid transfer capacity of a pump configured to transfer the slurry.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: September 5, 2017
    Assignee: SUMITOMO WIRING SYSTEMS, LIMITED
    Inventors: Hiroyuki Mitsui, Satoshi Matsubara, Osamu Nakai
  • Patent number: 9731978
    Abstract: The present invention relates to a method for preparing basic zinc chloride, comprising the following steps: A: preparing raw materials: preparing zinc chloride solution, ammonia water and an induction system; B: performing synthesis: adding the zinc chloride solution and the ammonia water into the induction system in a parallel flow manner, and controlling the temperature to be 60.0-90.0° C.; after the feeding is finished, continuing to react for 20.0-40.0 minutes; and C: performing filtration, washing and drying: after filtering and washing the synthesized basic zinc chloride, drying the basic zinc chloride for 4.0-8.0 hours at 80-105° C. to obtain the basic zinc chloride product. Compared with the prior art, the method for preparing basic zinc chloride has such advantages as simple process, low impurity content, easy-to-control product quality, and suitability for industrialization.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: August 15, 2017
    Assignee: DONGJIANG ENVIRONMENTAL CO., LTD.
    Inventors: Junqiang Zhu, Wenbin Xu, Yanjie Wang, Long Chen, Cheng Yuan, Zhijia Zeng, Bing Fan
  • Patent number: 8974753
    Abstract: A method of precipitating a zinc containing solid from an acidic solution containing dissolved zinc and magnesium comprising contacting the solution with a calcium containing neutralizing agent to raise the pH of the solution to 4.5 to 7.5 at a temperature of from 70 to 95° C. to thereby precipitate a solid zinc containing material and gypsum without causing substantial precipitation of magnesium, and separating the zinc containing material from the gypsum.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 10, 2015
    Assignee: Glencore Queensland Limited
    Inventor: Paul Benjamin Voigt
  • Patent number: 8961911
    Abstract: Zinc and lead are usually concomitantly present in Zn—Pb ores and tailings. A novel non-polluting hydrometallurgical process for selectively leaching and recovering zinc (Zn) from a composite lead (Pb) and zinc sulphide containing mineral, crushed untreated rock or unconsolidated mineral particles, mill tailings and/or agglomerated or unagglomerated sulphidic zinc containing waste material without necessitating smelting and refining operation has been developed. A combination of selected oxidant and alkali metal hydroxide has been found effective. A leachant consisting of e.g. a mixture of sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl) is employed to selectively dissolve zinc sulphide at high pH at standard temperature and pressure (STP). The kinetics of leaching along with the effect of varying concentration (preferably of sodium hydroxide and sodium hypochlorite) were systematically investigated. Feed ore containing diverse set of minerals e.g.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 24, 2015
    Assignee: Yava Technologies Inc.
    Inventor: Madhav Dahal
  • Patent number: 8920773
    Abstract: Various embodiments provide a process roasting a metal bearing material under oxidizing conditions to produce an oxidized metal bearing material, roasting the oxidized metal bearing material under reducing conditions to produce a roasted metal bearing material, leaching the roasted metal hearing material in a basic medium to yield a pregnant leach solution, conditioning the pregnant leach solution to thrill a preprocessed metal bearing material; and leaching the preprocessed metal bearing material in acid medium.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 30, 2014
    Assignee: Freeport Minerals Corporation
    Inventors: Joanna M. Robertson, Thomas R. Bolles, Wayne W. Hazen, Lawrence D. May, Jay C. Smith, David R. Baughman
  • Patent number: 8911696
    Abstract: High purity MnO and zinc oxide may be efficiently recovered from alkaline and/or carbon zinc batteries using a process involving the treatment of the crushed batteries with an alkali hydroxide to produce insoluble manganese oxides and an alkali zincate solution. Zinc oxide is obtained by reacting the zinc solution with carbon dioxide or an acid such as a mineral acid and furnacing. The manganese oxides are converted to MnO by furnacing under an inert atmosphere.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: December 16, 2014
    Assignee: Retriev Technologies Incorporated
    Inventors: W. Novis Smith, James Applegate
  • Patent number: 8900535
    Abstract: In an embodiment, the present invention relates to an apparatus and a process for producing a concentrated form of basic zinc sulphate from a, typically dilute, acidic zinc sulphate-bearing solution. The process embodiment comprises the steps of precipitating the zinc, preferably primarily as basic zinc sulphate, from the acidic zinc sulphate solution, preferably using calcium oxide, in such a way as to promote the formation of separate gypsum crystals and basic zinc sulphate particles, and upgrading the zinc content in the precipitates by separating the basic zinc sulphate from the gypsum using size separation techniques.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: December 2, 2014
    Assignee: Barrick Gold Corporation
    Inventor: Yeonuk Choi
  • Patent number: 8888892
    Abstract: A method for separating nickel, cobalt and a rare earth element from a material containing positive and negative electrode active materials of a nickel-metal hydride battery includes mixing a material containing positive and negative electrode active materials with a sulfuric acid solution and dissolving therein, and then separating a leachate from a residue; adding an alkali metal sulfate to the leachate to obtain a mixed precipitate of double sulfate of rare earth elements, and a rare-earth-element-free solution; and adding a sulfurizing agent to the rare-earth-element-free solution to separate a nickel and cobalt sulfide raw material and a residual solution.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: November 18, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Naoko Kikuta, Satoshi Asano, Masatoshi Takano
  • Publication number: 20140322108
    Abstract: A process for treating a mixed sulphidic material containing lead sulphide and at least one other metal sulphide. The process includes the steps of subjecting the mixed sulphidic material to selective oxidation such that lead sulphide in the material is oxidised to form an oxidised lead compound while substantial oxidation of the at least one other metal sulphide is avoided, and separating the oxidized lead compound from the at least one other metal sulphide. The oxidized lead compound may be separated by flotation wherein the oxidized lead compound reports to the tailings and the at least one other metal sulphide reports to the concentrate (froth).
    Type: Application
    Filed: August 8, 2012
    Publication date: October 30, 2014
    Inventors: Patrick Bowen, Michael Matthew Hourn
  • Publication number: 20140205519
    Abstract: A process for recovering zinc from a zinc containing material, the process including the steps of: leaching the zinc containing material with an alkaline lixiviant comprising an aqueous mixture of NH3 and NH4Cl, or ionic equivalent, having a NH4Cl concentration of between about 10 g/L and about 150 g/L H2O and a NH3 concentration of between 20 g/l H2O and 250 g/L H2O, to produce a zinc containing leachate; stripping ammonia from the leachate to produce a stripped liquor which includes a zinc containing precipitate, the stripped liquor having a NH3 concentration of between 7 and 30 g/L H2O; and recovering the zinc from the stripped liquor.
    Type: Application
    Filed: November 23, 2011
    Publication date: July 24, 2014
    Applicant: METALLIC WASTE SOLUTIONS PTY LTD
    Inventors: Raymond Walter Shaw, Neal Barr
  • Publication number: 20140120012
    Abstract: A method for selectively processing a polymetallic oxide solution containing a plurality of base metals comprising at least one of: Cu, Co, Ni, Zn associated with iron, comprising acid leaching the solution; recovering a filtered leachate; oxidizing the leachate; and adjusting the pH of the leachate in presence of a complexing agent; wherein the acidic solution is one of: i) a hydrochloric acid solution and ii) a sulfuric acid solution at a pH lower than about 1.5, and the complexing agent is one of: i) ammonium chloride and ii) ammonium sulfate, the step of adjusting the pH comprising raising the pH to a range between about 2.5 and about 3.5.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 1, 2014
    Applicant: Nichromet Extraction Inc.
    Inventors: Jean-Marc Lalancette, Bertrand Dubreuil, David Lemieux
  • Publication number: 20140121138
    Abstract: Zinc, nickel and iron can be recovered from spent brines and produced water using a method that includes admixing an aqueous fluid with hydrazine to form a hydrazine complex and then filtering or otherwise removing the hydrazine complex from the aqueous fluid. Once treated, the aqueous fluid can then be recycled or at be the subject to an easier disposal. The isolated metal hydrazine complex may be recycled or discarded.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 1, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Daniel P. Vollmer, Jonathan J. Brege, Paul H. Javora
  • Publication number: 20140105797
    Abstract: A method of precipitating a zinc containing solid from an acidic solution containing dissolved zinc and magnesium comprising contacting the solution with a calcium containing neutralising agent to raise the pH of the solution to 4.5 to 7.5 at a temperature of from 70 to 95° C. to thereby precipitate a solid zinc containing material and gypsum without causing substantial precipitation of magnesium, and separating the zinc containing material from the gypsum.
    Type: Application
    Filed: January 27, 2012
    Publication date: April 17, 2014
    Applicant: Glencore Queensland Limited
    Inventor: Paul Benjamin Voigt
  • Patent number: 8696931
    Abstract: A method of production of activated carbon for removal of mercury gas which provides activated carbon impregnated with both sulfur and iodine which gives a higher mercury gas adsorption performance compared with a conventional activated carbon adsorbent and also enables the prime cost of manufacture to be kept down, that is, a method of production provided with a sulfur impregnation step which adds sulfur to activated carbon and heats the mixture to obtain sulfur-impregnated activated carbon comprised of activated carbon to 100 parts by weight of which sulfur is impregnated in 5 to 20 parts by weight and, after the sulfur impregnation step, an iodine substance impregnation step which adds an aqueous solution containing iodine and an iodine salt to the sulfur-impregnated activated carbon.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Futamura Kagaku Kabushiki Kaisha
    Inventors: Hideto Mamiya, Sunao Inada
  • Patent number: 8647647
    Abstract: A topical formulation for application to exposed body tissue, the formulation comprising a silver(II) oxide and zinc oxide, intimately dispersed within a carrier medium.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: February 11, 2014
    Assignee: Aidance Skincare and Topical Solutions, LLC
    Inventor: Perry Antelman
  • Patent number: 8574517
    Abstract: Method of separating recoverable material from products containing mercury. The method including crushing products to form crushed material, mixing crushed material with a liquid which has an oxidizing agent which has been chosen from a group which sodium hypochlorite, hydrogen peroxide and chlorates, oxidizing at least a portion of metallic mercury in the products for forming mercury oxide under influence of oxidizing agent. The method further includes separating a sludge, which sludge having formed mercury oxide, from at least a portion of the liquid.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: November 5, 2013
    Assignee: Midas Investments Limited
    Inventor: Per Christoffersson
  • Patent number: 8524177
    Abstract: A process for separating zinc from a feedstock containing a mixture of metals and metal compounds. The process includes leaching a zinc-containing feedstock with a concentrated basic solution, optionally diluting the slurry with an amount of water sufficient to reduce the viscosity of the slurry thereby facilitating separation of a pregnant liquor containing dissolved zinc from insoluble materials, separating the insoluble materials from the pregnant liquor, and precipitating zinc oxide from the pregnant liquor by adding an anti-solvent to the pregnant liquor. The described process also provides for recycling of the basic solution and the anti-solvent.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 3, 2013
    Assignee: Canadus Chemical LLC
    Inventors: Michel Laurin, Stephen C. Paspek
  • Publication number: 20130216456
    Abstract: Zinc and lead are usually concomitantly present in Zn—Pb ores and tailings. A novel non-polluting hydrometallurgical process for selectively leaching and recovering zinc (Zn) from a composite lead (Pb) and zinc sulphide containing mineral, crushed untreated rock or unconsolidated mineral particles, mill tailings and/or agglomerated or unagglomerated sulphidic zinc containing waste material without necessitating smelting and refining operation has been developed. A combination of selected oxidant and alkali metal hydroxide has been found effective. A leachant consisting of e.g. a mixture of sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl) is employed to selectively dissolve zinc sulphide at high pH at standard temperature and pressure (STP). The kinetics of leaching along with the effect of varying concentration (preferably of sodium hydroxide and sodium hypochlorite) were systematically investigated. Feed ore containing diverse set of minerals e.g.
    Type: Application
    Filed: September 30, 2011
    Publication date: August 22, 2013
    Applicant: YAVA TECHNOLOGIES INC.
    Inventor: Madhav Dahal
  • Publication number: 20130064743
    Abstract: A process for separating zinc from a feedstock containing a mixture of metals and metal compounds. The process includes leaching a zinc-containing feedstock with a concentrated basic solution, optionally diluting the slurry with an amount of water sufficient to reduce the viscosity of the slurry thereby facilitating separation of a pregnant liquor containing dissolved zinc from insoluble materials, separating the insoluble materials from the pregnant liquor, and precipitating zinc oxide from the pregnant liquor by adding an anti-solvent to the pregnant liquor. The described process also provides for recycling of the basic solution and the anti-solvent.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: Canadus Chemical LLC
    Inventors: Michel Laurin, Stephen C. Paspek
  • Patent number: 8343447
    Abstract: A hydrometallurgical process for a nickel oxide ore comprising obtaining an aqueous solution of crude nickel sulfate by high pressure acid leaching of a nickel oxide ore; obtaining a zinc free final solution by sulfurization of the solution; obtaining a waste solution; and scrubbing hydrogen sulfide gas from an exhaust gas. The process is characterized by at least one of the following operations: Adjusting the total volume (m3) of a sulfurization reactor to a ratio of 0.2-0.9 (m3/kg/h) relative to the input mass (kg/h) of the nickel to be introduced to the reactor; and/or subjecting the waste solution and the exhaust gas to countercurrent contact, then introducing the exhaust gas back to the scrubber and charging the waste solution from the scrubber into the sulfurization reactor.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: January 1, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Keisuke Shibayama, Yoshitomo Ozaki, Osamu Nakai
  • Publication number: 20120251390
    Abstract: A method for recovering a metal, capable of recovering a metal easily without requiring the use of an organic medium, is provided. A first complex between a first chelating agent and a metal present in a sample is formed in a first mixture prepared by mixing the first chelating agent and the sample. Then, the first complex is recovered from the first mixture, and a second complex between the metal derived from the first complex and a second chelating agent is formed in a second mixture prepared by mixing the first complex and an aqueous solution of the second chelating agent. The aqueous solution is under the pH conditions where the first chelating agent can be insoluble in the aqueous solution. Then, a liquid fraction containing the second complex is recovered from the second mixture. Thus, the metal can be recovered.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 4, 2012
    Applicant: ARKRAY, INC.
    Inventor: Yuka Shimomura
  • Publication number: 20120251417
    Abstract: A method for recovering a metal, capable of recovering a metal easily without requiring the use of an organic medium, is provided. A complex between a chelating agent and a metal present in a sample is formed in a mixture prepared by mixing the chelating agent and the sample under pH conditions where the chelating agent can be insoluble in an aqueous medium. Then, the complex is recovered from the mixture, and further, the metal is recovered by dissolving the recovered complex in an aqueous medium under pH conditions that are different from the pH conditions where the chelating agent can be insoluble in an aqueous medium. By this method, a metal can be recovered easily without requiring the use of the use of an organic medium.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 4, 2012
    Applicant: ARKRAY, INC.
    Inventors: Yuka Shimomura, Mayumi Yamada
  • Patent number: 8252256
    Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or EtOHic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE), while an irregular spherical morphology, mixed with some chunky particles forzinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.02 ZnO nanoparticles wt %. Increasing the loading wt % of ZnOE from 0.01 to 0.07 led to an increase in the photocatalytic degradation efficiency from 67% to 90% after 45 minutes and a doubling of the first-order rate constant (k).
    Type: Grant
    Filed: January 1, 2012
    Date of Patent: August 28, 2012
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. Al-Othman
  • Publication number: 20120201729
    Abstract: Method of separating recoverable material from products containing mercury. The method including crushing products to form crushed material, mixing crushed material with a liquid which has an oxidizing agent which has been chosen from a group which sodium hypochlorite, hydrogen peroxide and chlorates, oxidizing at least a portion of metallic mercury in the products for forming mercury oxide under influence of oxidizing agent. The method further includes separating a sludge, which sludge having formed mercury oxide, from at least a portion of the liquid.
    Type: Application
    Filed: October 19, 2010
    Publication date: August 9, 2012
    Applicant: MIDAS INVESTMENTS LIMITED
    Inventor: Per Christoffersson
  • Patent number: 8216544
    Abstract: A ZnO varistor powder can be obtained with high operating voltage and excellent current-voltage nonlinear resistance characteristics. In the ZnO varistor powder, the main ingredient is zinc oxide (ZnO); and at least bismuth (Bi), cobalt (Co), manganese (Mn), antimony (Sb), nickel (Ni), and aluminum (Al), calculated as Bi2O3, CO2O3, MnO, Sb2O3, NiO, and Al3+, are contained as accessory ingredients in amounts of 0.3 to 1.5 mol % Bi2O3, 0.3 to 2.0 mol % Co2O3, 0.3 to 3 mol % MnO, 0.5 to 4 mol % Sb2O3, 0.5 to 4 mol % NiO, and 0.0005 to 0.02 mol % Al3+. ZnO content is greater than or equal to 90 mol %; the bulk density is greater than or equal to 2.5 g/cc; the powder is a spherical powder in which the 50% particle diameter in the particle size distribution is 20 ?m to 120 ?m.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: July 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyasu Ando, Yasunori Kasuga
  • Patent number: 8211389
    Abstract: Uses for a composition comprising a polymer derived from at least two monomers: acrylic-x and an alkylamine, wherein said polymer is modified to contain a functional group capable of scavenging one or more compositions containing one or more metals are disclosed. These polymers have many uses in various mediums, including wastewater systems.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 3, 2012
    Assignee: Nalco Company
    Inventors: Paul J. Zinn, Jitendra T. Shah, William J. Andrews
  • Publication number: 20110274598
    Abstract: Disclosed is a process for removing metals from waste, particularly electronic waste (or “e-waste”). The process generally includes the steps of dissolving at least some of the metals from the waste with nitric acid reagent and then causing at least some of the metals to precipitate as metal oxides and/or metal nitrates. NOx gases produced as by-product by the nitric acid dissolution of metallic components in the electronic waste are reused, in particular for generating permanganate when one of the metallic components comprises manganese.
    Type: Application
    Filed: April 14, 2009
    Publication date: November 10, 2011
    Inventor: James R. Akridge
  • Patent number: 8043584
    Abstract: Cd-112 isotope is recycled from a Cd-112 chemical separated solution or a remainder of an electroplating solution having a Cd-112 target. The present invention recycles Cd-112 isotope with a low cost, a high purity and a high recycle rate. The recycled Cd-112 isotope can be easily stored. And, the Cd-112 isotope can be used as an imaging agent in nuclear medicine.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: October 25, 2011
    Assignee: Atomic Energy Council - Institute of Nuclear Energy Research
    Inventors: Wuu-Jyh Lin, Song-Un Tang
  • Patent number: 7998441
    Abstract: A method for selective removal of cadmium from a feed solution also containing other metals such as nickel (Ni) and/or cobalt (Co), utilizing a thiourea based ion exchange resin, and a method for eluting cadmium adsorbed on the thiourea based resin.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 16, 2011
    Assignee: CVRD Inco Limited
    Inventors: Indje Ognianov Mihaylov, Douglas Albert Hope
  • Patent number: 7964165
    Abstract: The separation method for zinc sulfide, in the hydrometallurgical process by a High Pressure Acid Leach for nickel oxide ore comprising leaching and solid/liquid separation step, neutralization step, zinc removal step, and nickel recovery step, which can inhibit clogging of a filter cloth and reduce a frequency of washing operation and replacement operation of a filter cloth by improving filtration performance of zinc sulfide, and inhibit decrease of nickel recovery ratio, in the zinc removal step in which zinc sulfide is formed by adding a sulfurizing agent to the neutralization final liquid containing zinc as well as nickel and cobalt and zinc sulfide is separated to obtain a mother liquid for nickel recovery containing nickel and cobalt. The separation method for zinc sulfide of the present invention is characterized in that in the above-described neutralization step, the leach residue is added to the leach liquor, and pH of the neutralization final liquid is adjusted so as to fall to the range from 3.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: June 21, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Osamu Nakai, Yoshitomo Ozaki, Keisuke Shibayama, Takao Ooishi, Satoshi Matsumoto
  • Publication number: 20110123418
    Abstract: A process for the recovery of a metal sulfide from a metal ion containing solution, including the steps of: a) providing a slurry containing seed panicles of said metal sulfide; h) adding a sulfide ion containing solution to said slurry to form an activated seed slurry; c) mixing said activated seed slurry with said metal ion containing solution to thereby form a metal sulfide precipitate; and d) recovering said metal sulfide precipitate.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 26, 2011
    Applicant: BHP BILLITON SSM DEVELOPMENT PTY LTD
    Inventor: Eric Girvan Roche
  • Patent number: 7939037
    Abstract: Method for producing hydrometallurgical zinc oxide powder having characteristics equivalent to that derived from a French process, comprising formation of an aqueous pulp from a starting zinc oxide having particles of nodular structure, wet milling of this aqueous pulp, separation in this milled pulp between a liquid phase and a solid phase containing the zinc oxide, and drying of said solid phase, coupled with a mechanical deagglomeration of the particles during drying, to obtain a dry zinc oxide powder with particles of nodular structure having a particle size distribution where the particles have an average size (d50) between 0.02 and 20 ?m.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: May 10, 2011
    Assignee: Zincox Resources PLC
    Inventors: Kevin Clais, Duncan Turner, Philippe Leblanc, Antoine Masse
  • Patent number: 7862796
    Abstract: A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi
  • Patent number: 7850943
    Abstract: A semiconductor nanocrystal, wherein the semiconductor nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: December 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi
  • Patent number: 7759509
    Abstract: The invention relates to a highly reactive zinc form, to a method for the production thereof, and to the use of said highly reactive zinc form in synthetic chemistry.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Chemetall GmbH
    Inventors: Sebastian Lang, Alexander Murso, Ulrich Wietelmann
  • Patent number: 7666372
    Abstract: The present invention is a method of recovering valuable metals from a quantity of furnace dust consisting the following steps. A first leaching step wherein the furnace dust is leached at atmospheric pressure in a first leaching solution to produce a first leach liquor and a first leach residue, the first leaching solution consisting of an aqueous mineral acid solution. The first leach liquor is then separated from the first leach residue. A second leaching step is then performed wherein the first leach residue is atmospherically leached in a second leaching solution to form a second leach liquor and a second leach residue, the second leaching solution comprising a solution of aqueous HCl with a reductant. The second leach liquor is then separated from the second leach residue.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 23, 2010
    Inventors: George Puvvada, Douglas Bartholomew
  • Publication number: 20100034716
    Abstract: The separation method for zinc sulfide, in the hydrometallurgical process by a High Pressure Acid Leach for nickel oxide ore comprising leaching and solid/liquid separation step, neutralization step, zinc removal step, and nickel recovery step, which can inhibit clogging of a filter cloth and reduce a frequency of washing operation and replacement operation of a filter cloth by improving filtration performance of zinc sulfide, and inhibit decrease of nickel recovery ratio, in the zinc removal step in which zinc sulfide is formed by adding a sulfurizing agent to the neutralization final liquid containing zinc as well as nickel and cobalt and zinc sulfide is separated to obtain a mother liquid for nickel recovery containing nickel and cobalt. The separation method for zinc sulfide of the present invention is characterized in that in the above-described neutralization step, the leach residue is added to the leach liquor, and pH of the neutralization final liquid is adjusted so as to fall to the range from 3.
    Type: Application
    Filed: July 23, 2009
    Publication date: February 11, 2010
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Osamu Nakai, Yoshitomo Ozaki, Keisuke Shibayama, Takao Ooishi, Satoshi Matsumoto
  • Patent number: 7658905
    Abstract: A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: February 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi
  • Patent number: 7563429
    Abstract: A process for reclaiming spent selenium filter mass containing an inert material. The spent mass is treated with a hydrogen peroxide solution for leaching out selenium content from unspent active substance present in the filter mass to form selenious acid. The filter mass is treated with aqua regia solution to dissolve mercury selenide present in the mass. The aqua regia solution is separated from the mass and isolated. Suitably, the filter mass, which now contains inert carrier material, is transferred with the isolated selenious acid, to production of new selenium filter mass. After partial neutralization of the aqua regia solution, mercury is precipitated out for disposal. Before this, elemental selenium can be separated from the aqua regia solution by adjusting the pH level and used advantageously for production of new filter mass. Thusly, reclaimed selenium content and inert carrier material can be advantageously used for production of new selenium filters.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 21, 2009
    Assignee: Outotec Oyj
    Inventor: Yngve Lundgren
  • Patent number: 7560087
    Abstract: Process for the stabilization of mercury metal by reaction of the mercury metal with sulphur in the solid state, in which the mercury and the sulphur are brought into contact, at an Hg/S molar ratio of 1/1 to 1/3, in a reactor integral with a hollow pipe in fluid communication with the interior space of the said reactor, the said hollow pipe comprising a first end connected to the wall of the said reactor and a second end distant from the said reactor; the said hollow pipe and the said reactor being hermetically sealed, the said hollow pipe being provided with rotating means external to the said pipe and to the said reactor for rotating the said reactor and the said pipe around the axis of the said pipe, and the said hollow pipe being provided, at its end distant from the reactor, with means for introducing the sulphur and the mercury inside the reactor and discharging the reaction products.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: July 14, 2009
    Assignees: STMI Societe des Techniques en Milieu Ionisant, Universite Paris sud (Paris XI), Centre National de la Recherche Scientifique
    Inventors: Christelle Riviere-Huc, Vincent Huc, Emilie Bosse
  • Patent number: 7537741
    Abstract: A method for treating a polymetallic sulfide ore containing gold and/or silver, and further containing base metals selected from the group consisting of iron, aluminum, chromium, titanium, copper, zinc, lead, nickel, cobalt, mercury, tin, and mixtures thereof, is disclosed. The method comprises the steps of grinding the polymetallic sulfide ore to produce granules, oxidizing the granules to produce oxidized granules, and chloride leaching the granules using a brine solution including dissolved halogens, as well as chloride and bromide salts.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: May 26, 2009
    Assignee: Nichromet Extraction Inc.
    Inventor: Jean-Marc Lalancette
  • Patent number: 7481865
    Abstract: The invention relates to a method for the removal of mercury from gas containing sulphur dioxide and oxygen and from the sulphuric acid vapour contained in the gas. According to the method, the gas is washed with a water solution that contains selenium ions, whereby metallic selenium is formed in the presence of oxygen, which precipitates the mercury in the gas and vapour either as a selenide or in a chlorine-containing environment, as a dichloride of mercury and selenium. Gas washing occurs at a low temperature, below 50° C.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: January 27, 2009
    Assignee: Outotec Oyj
    Inventors: Heljä Peltola, Pekka Taskinen, Heikki Takala, Jens Nyberg, Harri Natunen, Jorma Panula
  • Patent number: 7468168
    Abstract: A method for preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths. The method comprises the steps of (a) mixing a cadmium precursor and a dispersant in a solvent that weakly coordinates to the cadmium precursor, and heating the mixture to obtain a cadmium precursor solution, (b) dissolving a sulfur precursor in a solvent that weakly coordinates to the sulfur precursor to obtain a sulfur precursor solution, and (c) feeding the sulfur precursor solution to the heated cadmium precursor solution maintained at a high temperature to prepare cadmium sulfide crystals, and growing the cadmium sulfide crystals. Further, cadmium sulfide nanocrystals prepared by the method. The cadmium sulfide nanocrystals have uniform size and shape and can emit light close to white light simultaneously at different wavelengths upon excitation. Due to these characteristics, the cadmium sulfide nanocrystals can be applied to white light-emitting diode devices.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 23, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi
  • Patent number: 7465334
    Abstract: A process for the recovery of zinc metal from a zinc mineral includes the steps of leaching the zinc mineral in a solution including a halide species formed from two or more different halides, to leach the zinc into the solution. The zinc-bearing solution is then electrolyzed to yield zinc metal and to generate the halide species. The electrolyzed solution including the halide species is then returned to the leaching step. A portion of the electrolyzed solution can be removed as a bleed stream from a cathode compartment of an electrolytic cell of the electrolysis process and processed to remove manganese as manganese dioxide precipitate by adding thereto limestone, and the halide species from an anode compartment of the electrolysis process. In this regard, the pH and Eh of the solution can regulated in a manner that favors the formation of the manganese dioxide precipitate over the formation of a precipitate of zinc.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: December 16, 2008
    Assignee: INTEC Ltd.
    Inventors: John Moyes, Frank Houllis
  • Publication number: 20080145289
    Abstract: The present invention is a method of recovering valuable metals from a quantity of furnace dust consisting the following steps. A first leaching step wherein the furnace dust is leached at atmospheric pressure in a first leaching solution to produce a first leach liquor and a first leach residue, the first leaching solution consisting of an aqueous mineral acid solution. The first leach liquor is then separated from the first leach residue. A second leaching step is then performed wherein the first leach residue is atmospherically leached in a second leaching solution to form a second leach liquor and a second leach residue, the second leaching solution comprising a solution of aqueous HCl with a reductant. The second leach liquor is then separated from the second leach residue.
    Type: Application
    Filed: May 3, 2006
    Publication date: June 19, 2008
    Inventors: George Puvvada, Douglas Bartholomew
  • Patent number: 7387767
    Abstract: A process for recovering nickel and cobalt values from nickel- and cobalt-containing laterite ores as an enriched mixed nickel and cobalt sulphide intermediate and for producing nickel and cobalt metal from the nickel and cobalt sulphide intermediate. The laterite ore is leached as a slurry in a pressure acid leach containing an excess of aqueous sulphuric acid at high pressure and temperature, excess free acid in the leach slurry is partially neutralized to a range of 5 to 10 g/L residual free H2SO4 and washed to yield a nickel- and cobalt-containing product liquor, the product liquor is subjected to a reductant to reduce any Cr(VI) in solution to Cr(III), the reduced product liquor is neutralized to precipitate ferric iron and silicon at a pH of about 3.5 to 4.0, and the neutralized and reduced product liquor is contacted with hydrogen sulphide gas to precipitate nickel and cobalt sulphides.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: June 17, 2008
    Assignee: Dynatec Corporation
    Inventors: Finlay Campbell, Michael Collins, Ian Masters, Lyle Trytten
  • Patent number: 7238331
    Abstract: The present invention discloses a process for producing nano-powders and powders of nano-particle loose aggregate, which includes: (a) providing at least two reactant solutions A and B capable of rapidly reacting to form deposits; (b) supplying the at least two reactant solutions A and B at least at the reaction temperature into a mixing and reaction precipitator respectively, in which mixing reaction and precipitation are continuously carried out in sequence, the mixing and reaction precipitator being selected from at least one of a tubular ejection mixing reactor, a tubular static mixing reactor and an atomization mixing reactor; and (c) treating the deposit-containing slurry continuously discharged from the mixing reaction precipitator.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: July 3, 2007
    Assignee: Anshan University of Science and Technology
    Inventors: Yingyan Zhou, Shoushan Gao, Kaiming Wang, Chuangeng Wen, Xiaoqi Li