Hydroxylating Or Hydrating Patents (Class 423/127)
  • Patent number: 5163973
    Abstract: In a process for precipitating alumina hydrate from a stream of Bayer process liquor, wherein the stream is first divided into a major portion and a minor portion, the minor portion fed to an agglomeration stage and seeded with fine seed to induce precipitation and formation of a slurry, and the major portion cooled and charged with coarse seed and directed to a growth stage to induce formation of alumina hydrate product, the steps of: separating solids from the minor portion after formation of the slurry; cooling, to a temperature of between about 45.degree. C. and about 60.degree. C., the liquid remaining after separating solids from the slurry formed in the agglomeration stage; adding an amount of coarse seed to the remaining liquid to generate a slurry of fresh hydrate nuclei; and recombining the slurry of fresh hydrate nuclei with the major portion of the stream.
    Type: Grant
    Filed: November 26, 1991
    Date of Patent: November 17, 1992
    Assignee: Alcan Internatinal Limited
    Inventor: Charles D. Ellis
  • Patent number: 5158577
    Abstract: An improved process for precipitating alumina from Bayer process liquors is disclosed. The process involves dividing an incoming pregnant liquor stream into a minor portion of about 10 to about 25% by volume of the total incoming pregnant liquor stream, and directing that stream into a series of small tanks where the minor stream is permitted to agglomerate. Fine aluminum hydroxide seed having a median particle size of between about 30 and about 60 microns is added to this stream. The slurry resulting from the agglomeration stage is then directed to a set of larger vessels in which the growth stage will take place. At this point, the remaining portion of the pregnant liquor is combined with the slurry resulting from the agglomeration stage. A coarse seed charge of about 150 to about 600 grams/liter of seed having a median particle size of between about 80 and about 100 microns is charged into the second set of vessels.
    Type: Grant
    Filed: March 6, 1991
    Date of Patent: October 27, 1992
    Assignee: Alcan International Limited
    Inventors: Bruan A. Hiscox, Charles D. Ellis, Jacques E. Larocque, Denis R. Audet
  • Patent number: 5141734
    Abstract: In a process utilizing steam, the method of producing at least a portion of said steam, including heating a water-containing, solid substance for generating steam and capturing the generated steam for said process. A suitable solid substance is Al(OH).sub.3 . New alumina products and uses therefor are obtained.
    Type: Grant
    Filed: April 24, 1990
    Date of Patent: August 25, 1992
    Assignee: Aluminum Company of America
    Inventors: Chanakya Misra, Steven W. Sucech
  • Patent number: 5127950
    Abstract: Process for the production of a short-prismatic aluminum hydroxide by decomposing a supersaturated sodium aluminate liquor. The product can be used as a pigment and filler in the paper industry, as a flame-retardant filler in plastics and as a white pigment in paints and enamels.
    Type: Grant
    Filed: September 11, 1990
    Date of Patent: July 7, 1992
    Assignee: Lonza Ltd.
    Inventors: Hans Bongartz, Georg Kirschbaum, Klaus Kramer
  • Patent number: 5122349
    Abstract: An improvement in the process for extracting alumina from gibbsitic bauxites, wherein the basic, known process comprises mixing the bauxites with a sodium hydroxide-sodium aluminate digestion liquor, digesting the bauxites at a temperature in the range of 100.degree.-180.degree. C., diluting the resulting slurry, separating the red mud therefrom, precipitating alumina hydrate by cooling and agitation of the sodium aluminate liquor, and calcining the alumina hydrate precipitate to obtain alumina, wherein the improvement is characterized by so controlling the process that, in the liquid phase of the slurry leaving the digestion reactor, the reactive hydroxide ion concentration is maintained below 6 g/l, and preferably between 0 and 2 g/l, where the reactive hydroxide ion concentration is defined by the following formula: ##EQU1## where: C.sub.Al.sbsb.2 O.sub.3,gi.sup.eq is the equilibrium solubility of Al.sub.2 O.sub.3 for gibbsite, in g/l.C.sub.Al.sbsb.2 O.sub.3 is the actual concentration of Al.sub.2 O.sub.
    Type: Grant
    Filed: May 29, 1990
    Date of Patent: June 16, 1992
    Assignee: Aluminiumipari Troszt
    Inventors: Gyorgy Banvolgyi, Jozsef Zoldi, Peter Siklosi, Tibor Ferenczi, T. Anna Csordas, Ivan Feher, Ildiko Tassy nee Varju, Istvan Sajo
  • Patent number: 5122348
    Abstract: A method is described for mixing a difficult to wet, finely divided powder, e.g. alumina dust, with an aqueous liquid, e.g. Bayer process spent liquor. In the method, the liquor is introduced into a cylindrical mixing zone having a conical bottom zone, the liquor being continuously introduced into the mixing zone as a high velocity stream tangentially immediately above the conical zone to thereby form a rapidly moving vortex within the mixing zone. The dust is caused to fall into the center of the vortex whereby the dust is rapidly engulfed by the liquor with little or no dusting. The thus formed slurry is continuously removed from the bottom of the conical zone and may be processed through a classification circuit, to be separated as fine seed and returned to the precipitation circuit where the fine particles are agglomerated and grown to larger particles of alumina by contact with Bayer process pregnant liquor.
    Type: Grant
    Filed: January 9, 1991
    Date of Patent: June 16, 1992
    Assignee: Alcan International Limited
    Inventors: Winston V. St. Elmo Spence, Peter B. Lukong
  • Patent number: 5102426
    Abstract: An improved process for precipitating alumina from Bayer process liquors is disclosed. The process involves dividing an incoming pregnant liquor stream into a minor portion of about 10 to about 25% of the total incoming pregnant liquor stream, and directing that stream into a series of small tanks where the minor stream is permitted to agglomerate. Fine aluminum hydroxide seed having a median particle size of between about 30 and about 60 microns is added to this stream. The slurry resulting from the agglomeration stage is then directed to a set of larger vessels in which the growth stage will take place. At this point, the remaining portion of the pregnant liquor is combined with the slurry resulting from the agglomeration stage. A coarse seed charge of about 150 to about 600 grams/liter of seed having a median particle size of between about 80 and about 100 microns is charged into the second set of vessels. This improved process helps to increase the yield of a strong coarse aluminum trihydroxide product.
    Type: Grant
    Filed: February 14, 1990
    Date of Patent: April 7, 1992
    Assignee: Alcan International Limited
    Inventors: Bryan A. Hiscox, Charles D. Ellis, Jacques E. Larocque, Denis R. Audet
  • Patent number: 5102512
    Abstract: A process for extracting and purifying the gallium contained in an industrial solution of sodium aluminate by fixing the gallium on a stationary phase constituted by porous polystyrene adsorbent resin which is impregnated with an extracting agent, optionally in the presence of a surface-active agent. After elution of the gallium in acid medium, the resultant gallium salt is purified and concentrated so as to be reduced directly to the state of high purity metallic gallium, by electrolysis.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: April 7, 1992
    Assignee: Aluminium Pechiney B.P.
    Inventor: Jean-Michel Lamerant
  • Patent number: 5091160
    Abstract: A method of eliminating the foam above a slurry of a corrosive liquid and solid matter where the foam is caused by a gas evolved by the reaction between the heated corrosive liquid and the solid matter comprising providing the heating energy by microwaves. This method has been found to be particularly useful in the sulphuric acid leaching of an ore concentrate in the production of beryllium hydroxide.
    Type: Grant
    Filed: November 5, 1990
    Date of Patent: February 25, 1992
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Energy
    Inventors: Peter D. Kondos, Kazi E. Haque, John C. MacDonald, Wesley F. Griffith, Daniel Laforest, Joe Iuliano
  • Patent number: 5082638
    Abstract: The invention relates to a process for recovering non-ferrous metal values such as nickel, cobalt, copper, zinc, manganese and magnesium from material containing said metals, by converting the non-ferrous metal values into sulphates by using melt and melt coating sulphation and recovering them as metal compounds by a process entity based on a melt and melt coating sulphation.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: January 21, 1992
    Inventors: Pekka J. Saikkonen, Jussi K. Rastas
  • Patent number: 5041269
    Abstract: In a Bayer process for production of aluminum, alumina trihydrate crystals are formed in the pregnant liquor and are flocculated using a combination of dextran and synthetic polymer, usually a homo- or copolymer of acrylic acid. The process is particularly advantageous where the liquor contains organic components such as humate and/or oxalate.
    Type: Grant
    Filed: April 10, 1990
    Date of Patent: August 20, 1991
    Assignee: Allied Colloids Ltd.
    Inventors: Gillian M. Moody, Christine A. Rushforth
  • Patent number: 5032379
    Abstract: Alumina having greater than 0.4 cc/g pore volume in the range 30 to 200 Angstroms pore diameter.A catalyst containing gamma alumina but essentially no eta alumina.The method of tailoring pore size distribution comprising bonding mixtures of particles of rehydration bondable alumina of different particle porosity.
    Type: Grant
    Filed: March 18, 1985
    Date of Patent: July 16, 1991
    Assignee: Aluminum Company of America
    Inventor: Lee A. Pedersen
  • Patent number: 5019360
    Abstract: A method for the processing of fly ash scrubber sludge or the like is provided. The method yields unique products, including a usable calcium silicate material and a high purity alumina material. The process involves a plurality of stages including a first magnetic separation in an acid leach. During the acid leach, valuable mineral components are converted into soluble sulfates. The leach residue, containing calcium materials, is extracted with ammonia solution to yield a desirable calcium silicate product. The leach liquor is treated in a preferred manner to precipitate relatively acid free aluminum sulfate. The aluminum sulfate is then converted into a desirable alumina product.
    Type: Grant
    Filed: June 8, 1990
    Date of Patent: May 28, 1991
    Assignee: Northern States Power Company
    Inventor: John M. Lehto
  • Patent number: 4994253
    Abstract: A process for the production of large boehmite crystal aggregates, useful for soft polishing applications is provided herein. A caustic aluminate liquor is contacted with an oxygen-containing gas at elevated temperatures and pressures in the presence of about 1-50 mg/L of copper ions. The liquor is oxidized until a molar ratio of Na.sub.2 O.sub.free to Al.sub.2 O.sub.3 of less than or equal to 1 is achieved, and the oxidized liquor is cooled under quiescent conditions of little or no agitation which causes the crystallization and precipitation or novel large boehmite particles.
    Type: Grant
    Filed: August 30, 1988
    Date of Patent: February 19, 1991
    Assignee: Vereinigte Aluminium-Werke AG
    Inventor: Neil Brown
  • Patent number: 4954168
    Abstract: A method is provided for treating sludge containing substantial amounts of chromium, aluminum and iron and residuals of other elements. The method comprises forming a slurry of the sludge in water at a temperature ranging from ambient to 150.degree. F. with the specific gravity of the slurry ranging from about 1.05 to 1.25, and adding a mineral acid to the slurry to provide a pH ranging from about 0.1-3 to dissolve selectively the aluminum and the chromium and leave a solids residue containing gangue material comprising an oxidized iron compound, calcium sulfate, calcium fluoride, calcium silicate among other solids. The pH of the solution is controlled at range of about 2 to 3.5 to precipitate undesirable elements, including iron, without substantially adversely affecting the dissolved chromium and aluminum.
    Type: Grant
    Filed: May 15, 1989
    Date of Patent: September 4, 1990
    Assignee: AMAX Inc.
    Inventors: Ranko Crnojevich, Edward I. Wiewiorowski, Andrew B. Case
  • Patent number: 4952539
    Abstract: A method is disclosed for manufacturing transparent aluminum oxide ceramic articles by sintering dry-pressed acid-containing aluminum oxide monohydrate in vacuo or in hydrogen. The method includes obtaining the acid-containing aluminum oxide monohydrate by peptisization of aluminum alkoxide with a mixture of water and acid vapor, with the acid bound to the formed monohydrate by electrostatic force. Such attachment allows ease in separation of the monohydrate crystals in water due to the polarizing effect of the acid. Subsequently, the acid-containing aluminum oxide monohydrate is gelled and dried, with the product, having an acid content of from 12 to 25%, being suitable for forming transparent ceramic articles without requiring calcination.
    Type: Grant
    Filed: January 23, 1989
    Date of Patent: August 28, 1990
    Assignee: Vereinigte Aluminium-Werke Aktiengesellschaft
    Inventors: Jorg F. Greber, Heidemarie Melas
  • Patent number: 4902494
    Abstract: A process for preparing hydrated alumina consisting essentially of spherical particles having a narrow granulometric distribution (polydispersion index dw/dn.ltoreq.2) starting from aqueous solution of aluminum sulphate, the molar ratio SO.sub.4.sup.= /Al.sup.3+ being greater than 1, by homogeneous precipitation in the presence of cationic polyelectrolytes, which are soluble under the reaction conditions and have a mean molecular weight higher than one million and an ionicity, deriving from the cationic groups present in the polyelectrolyte, of at least 3 milliequivalents/gram.
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: February 20, 1990
    Assignee: Montedison S.p.A.
    Inventors: Franco Montino, Giuseppe Spoto
  • Patent number: 4900537
    Abstract: A process is disclosed for the control of the particle form of aluminum hydroxide crystals precipitated from an alkali metal aluminate solution which comprises either the use of certain monohydric and polyhydric alcohols or controlling the caustic concentration of the sodium aluminate solution or a combination whereby particles shapes may be produced principally comprising acicular form or principally comprising lamellar form, depending upon the caustic concentration of the alkali metal hydroxide and the vol. % of the alcohol.
    Type: Grant
    Filed: December 11, 1986
    Date of Patent: February 13, 1990
    Assignee: Biotage, Inc.
    Inventor: Richard B. Wilhelmy
  • Patent number: 4865825
    Abstract: A process and an apparatus for the continuous decoposition of a supersaturated sodium aluminate liquor forming a suspension in the presence of aluminium trihydroxide seed characterised by:(a) bringing into contact in a non-agitated grading decomposer a feed flow formed by the suspension and a recycling flow which is taken off in the underflow zone of the decomposer,(b) simultaneously drawing off a production flow in the same underflow zone,(c) extraction of an overflow flow at the overflow of the grading decomposer, and(d) suitable regulation in dependence on the flow rate of the feed flow, the flow rate of the recycling flow, the speed of discharge flow of the suspension in the underflow zone and the speed of rise of the suspension in the overflow zone.
    Type: Grant
    Filed: August 28, 1987
    Date of Patent: September 12, 1989
    Assignee: Aluminium Pechiney
    Inventors: Eric Chantriaux, Henri Grobelny
  • Patent number: 4849190
    Abstract: Process for the production of hydrated aluminae through the precipitation of aluminum hydroxide in a reactor by the reaction of an aluminum compound soluble in a polar solvent with a precipitating agent, also solubilized in the polar solvent, in constant conditions of pH, temperature, concentration and agitation; concentration of the suspension of precipitated aluminum hydroxide; crystallization in an alkaline pH, essentially constant; separation of the crystallized aluminum hydroxide, for later washing and drying. The product obtained is homogeneous and with excellent characteristics for utilization in the manufacturing of catalysts and catalytic supports. The process can be applied, advantageously, in the treatment of the acid waste from processes which utilize Friedel-Crafts type reactions, obtaining, in addition to the hydrated alumina, a liquid effluent with low metal contents.
    Type: Grant
    Filed: May 4, 1987
    Date of Patent: July 18, 1989
    Assignee: Petroflex, Industria E Comercio S.A.
    Inventors: Antonio L. R. de Castro Morshbacker, Dante F. F. Filho, Joaquim M. F. Filho, Marcus C. da Fonseca, Ricardo T. de Mello
  • Patent number: 4847064
    Abstract: A process for making alpha alumina particles wherein a Bayer process caustic aluminate solution is treated with both alumina hydrate seed material and alpha alumina promoter particles to precipitate alumina hydrate particles. The precipitated particles are separated from the solution and then dried and calcined to produced alpha alumina particles. Addition of promoter particles in the precipitation step lowers the calcination temperture necessary to produce alpha alumina and results in smaller sized crystallites in the product.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: July 11, 1989
    Assignee: Aluminum Company of America
    Inventor: Alan Pearson
  • Patent number: 4793979
    Abstract: The present invention is depicting a chemical separation of phorphorus ore. Phosphorus ore, especially calcareous and clacareous-sillicious phosphorus ore can be effectively converted into several products through chemical separation, which consists of two stages, namely ore pulp reaction and solution regeneration. In the first stage, phosphorus ore is disolved by mixed ammonium salts solvent, but the valence minerals, such as fluoride apatite and quartz don't take part in the reaction and retain their solid state. Thus phosphorus concentrate can be obtained through the separation, the by-products such as the filtrate and gases can be utilized in the solution regeneration. After ammoniation, sulfurization, carbonization and alkalization of the filtrate, the Ca.sup.2+, Mg.sup.2+, Fe.sup.3+, Al.sup.2+, M.sup.2+ ions in it will gradually come out and turn into products, the regenerated solution obtained can be used again and again, thus forming a complete enclosed circulation process.
    Type: Grant
    Filed: March 20, 1986
    Date of Patent: December 27, 1988
    Assignees: Shaaxi Chemical and Fertilizer Industry Company, Kemira Company of Finland
    Inventor: Lu Wenxing
  • Patent number: 4786482
    Abstract: A process for producing aluminum hydroxide product having an improved level of whiteness is disclosed. In the process, a caustic solution having dissolved aluminum hydroxide is subjected to purification to remove color producing humate material. Purification includes passing the caustic solution through a semi-permeable membrane. The solution purified of humate material is treated to precipitate aluminum hydroxide therefrom.
    Type: Grant
    Filed: June 19, 1987
    Date of Patent: November 22, 1988
    Assignee: Aluminum Company of America
    Inventors: Paul J. The, Chanakya Misra
  • Patent number: 4770869
    Abstract: In a process utilizing steam, the method of producing at least a portion of said steam, including heating a water-containing, solid substance for generating steam and capturing the generated steam for said process. A suitable solid substance is Al(OH).sub.3. New alumina products are obtained.
    Type: Grant
    Filed: November 7, 1983
    Date of Patent: September 13, 1988
    Assignee: Aluminum Company of America
    Inventors: Chanakya Misra, Steven W. Sucech
  • Patent number: 4729881
    Abstract: Beryllium is efficiently recovered from silicate ores in a hydrometallurgical, single solvent, process which avoids the complexities, high costs and hazards ofpyrolytic, fluorination and acid leach methods, by contacting the ore in a closed reactor at elevated temperature and autogenous pressure with a concentrated caustic solution and lime or lime hydrate to form a slurry containing dissolved beryllium, reducing the pressure to about one atmosphere and the temperature to below the boiling point of the caustic solution, separating by-product solids to leave a pregnant leach liquor, diluting and digesting the leach liquor to precipitate the beryllium and to leave a caustic mother liquor, and separating the beryllium. The caustic mother liquor can be recycled to the ore contacting step in a closed loop version of the process.
    Type: Grant
    Filed: December 16, 1986
    Date of Patent: March 8, 1988
    Assignee: FMC Corporation
    Inventor: William C. Copenhafer
  • Patent number: 4676959
    Abstract: A process for producing aluminum hydroxide product having an improved level of whiteness is disclosed. In the process, a caustic solution having dissolved aluminum hydroxide is subjected to purification to remove color producing humate material. Purification includes passing the caustic solution through a semi-permeable membrane. The solution purified of humate material is treated to precipitate aluminum hydroxide therefrom.
    Type: Grant
    Filed: February 3, 1986
    Date of Patent: June 30, 1987
    Assignee: Aluminum Company of America
    Inventors: Paul J. The, Chanakya Misra
  • Patent number: 4670231
    Abstract: The invention is drawn to a continuous process for the recovery of alumina from ores by mixing with an alkali bisulfate, calcining below 450.degree. C. to form the corresponding double salt, washing with water, and separating the insoluble residue from the solubilized aluminum, precipitating impure aluminum, resolubilizing aluminum with sodium hydroxide to form soluble sodium aluminate and separating it from the insoluble impurities, treating the resulting solution to form aluminum precipitate, separating the aluminum and calcining it to form alumina.
    Type: Grant
    Filed: April 4, 1986
    Date of Patent: June 2, 1987
    Assignee: Maria-Emilia Garcia-Clavel
    Inventors: Maria-Emilia Garcia-Clavel, Maria-Jesus Martinez-Lope, Maria-Teresa Casais-Alvarez
  • Patent number: 4670229
    Abstract: Metal values and alumina are recovered from spent, usually oily, catalysts by oxygen pressure leaching with sodium hydroxide and/or sodium aluminate to dissolve molybdenum, vanadium and/or tungsten and provide a solid, filterable residue containing alumina and cobalt and/or nickel, the residue is digested with sodium hydroxide to give a sodium aluminate solution and a residue enriched in nickel and/or cobalt, alumina is recovered from the sodium aluminate solution as a solid and the remaining supernatant solution is recycled to the oxygen pressure leaching step wherein the alumina content of the aluminate solution is precipitated and a bleed for metals in the aluminate solution is provided.
    Type: Grant
    Filed: May 9, 1986
    Date of Patent: June 2, 1987
    Assignee: Amax Inc.
    Inventors: Edward I. Wiewiorowski, Luther R. Tinnin, Ranko Crnojevich
  • Patent number: 4666687
    Abstract: The invention concerns a method and apparatus for decomposing a sodium aluminate liquor supersaturated with alumina, obtained from alkaline action on bauxite by the Bayer process, decomposition being initiated by introduction of alumina trihydrate seed to trigger the decomposition, thereby forming a suspension. In this process the suspension is fed in at the top of a non-agitated reactor described as a "decomposer", and removed from the bottom of the decomposer; the speed at which the suspension moves downwardly is regulated at 1.5 to 10 meters per hour. The apparatus comprises a cylindrical-conical reactor which is fitted with an arrangement for feeding in the suspension at the top, and with an arrangement for taking out the suspension at the bottom. In one embodiment of the apparatus the suspension is taken from the base of the decomposer through an internal tube, with air injected into the bottom of it, is raised to the level of the top of the decomposer and is then sent downstream.
    Type: Grant
    Filed: February 20, 1986
    Date of Patent: May 19, 1987
    Assignee: Aluminium Pechiney
    Inventors: Eric Chantriaux, Henri Gobelny, Yves Perret
  • Patent number: 4666575
    Abstract: Scrap containing gallium and arsenic is treated with chlorine gas to form a crude gallium and arsenic chloride mixture. Arsenic chloride and impurities having a lower boiling point than that of arsenic chloride are removed from the mixture by vaporization so that crude gallium chloride may be obtained. The crude gallium chloride is purified by distillation. The purified gallium chloride is electrolyzed to yield metallic gallium. If the scrap has a molar gallium/arsenic ratio exceeding 1, arsenic chloride or metallic arsenic or both are added to the scrap before it if treated with chlorine gas.
    Type: Grant
    Filed: July 16, 1986
    Date of Patent: May 19, 1987
    Assignee: Sumitomo Metal Mining Company Limited
    Inventor: Shigeki Kubo
  • Patent number: 4666685
    Abstract: Spent hydrodesulfurization catalysts containing alumina, at least one metal from the group consisting of molybdenum, tungsten and vanadium and at least one metal from the group consisting of nickel and cobalt, sulfur, and, usually, residual oil are oxygen pressure leached at a temperature of at least about 400.degree. F. with a base from the group consisting of sodium hydroxide and sodium aluminte in at least stoichimetric amount to yield a solution having a pH between about 7 and 9 containing dissolved molybdenum, vanadium and any tungsten which may be recovered and a readily filterable residue containing aluminum, nickel and cobalt which may be worked up to recover the valuable constituents, with overall processing being accomplished in an environmentally acceptable manner.
    Type: Grant
    Filed: May 9, 1986
    Date of Patent: May 19, 1987
    Assignee: Amax Inc.
    Inventor: Edward I. Wiewiorowski
  • Patent number: 4661328
    Abstract: A process is disclosed for purifying gibbsitic alumina-rich ore of high silica content including admixing the ore with an aqueous digestion solution high in silica concentration. In one aspect the digestion is performed with high alumina and soda concentration at low temperature, e.g., such as by atmospheric digestion.
    Type: Grant
    Filed: September 10, 1986
    Date of Patent: April 28, 1987
    Assignee: Aluminum Company of America
    Inventor: Donald K. Grubbs
  • Patent number: 4650653
    Abstract: Process for the low-temperature treatment according to the Bayer cycle of gibbsite-bearing bauxite of low reative silica content, involving desilication of the said bauxite before leaching, by a liquor of low caustic soda concentration and characterized in that this sodium liquor consists of one or more washing waters originating from the Bayer cycle, mixed or otherwise with leaching liquor, wherein the weighted reactive silica content is preferably lower than 5% of the alumina content of the bauxite and the concentration of the sodium liquor used for desilication ranges from 50 to 120 g/liter of Na.sub.2 O caustic.
    Type: Grant
    Filed: April 30, 1986
    Date of Patent: March 17, 1987
    Assignee: Aluminium Pechiney
    Inventors: Jean Lepetit, Jacques Mordini
  • Patent number: 4618480
    Abstract: A novel process for the recovery of alumina and potassium sulfate from alunite is provided comprising leaching the alunite with potassium hydroxide to which no sodium materials have been added, said leach solution being saturated with potassium sulfate. Aluminum values are solubilized into the leachate, and potassium and sulfur values are rendered soluble, but remain in the residue. The leachate is desilicated if necessary, preferably with lime, and aluminum trihydroxide is precipitated therefrom, followed by calcining to alumina product. The residue is leached to solubilize potassium sulfate in a secondary leach and the potassium sulfate product crystallized therefrom. Potassium hydroxide is regenerated from a portion of the potassium sulfate secondary leachate by several methods.Novel procedures for regenerating alkali metal hydroxides from the corresponding sulfates are also provided including routes involving formates and carbonates as intermediates and pyrohydrolysis.
    Type: Grant
    Filed: August 15, 1984
    Date of Patent: October 21, 1986
    Assignee: Resource Technology Associates
    Inventors: Wayne W. Hazen, David L. Thompson, James E. Reynolds, Nicholas J. Lombardo, Paul B. Queneau, John P. Hager
  • Patent number: 4617179
    Abstract: The invention concerns a process for the precipitation of aluminium hydroxide by seeding in two phases, which is intended to produce at a high level of productivity alumina with large grains, referred to as `sandy coarse`, by precipitation in a succession of tanks in cascade relationship of a supersaturated solution of sodium aluminate coming from alkaline attack on bauxite in accordance with the BAYER process. The process comprises three stages:in the first agglomeration stage, the supersaturated aluminate liquor is introduce into the tank, with an equivalent amount of terms of Na.sub.2 O of between 110 and 175 g/liter, at a temperature of between 65.degree. and 80.degree. C.
    Type: Grant
    Filed: November 19, 1985
    Date of Patent: October 14, 1986
    Assignee: Aluminium Pechiney
    Inventor: Maurice Veyrier
  • Patent number: 4614641
    Abstract: Disclosed is a process for producing purified alumina from high-silica bauxite including separating alumina-rich ore containing high-silica content into a coarse fraction and a fines fraction; digesting the fines fraction in a sodium aluminate solution at low temperatures; digesting the coarse fraction in a sodium aluminate solution at higher temperatures under pressure; and precipitating out alumina from the digest solutions after the combined liquors are desilicated during clarification.
    Type: Grant
    Filed: June 19, 1985
    Date of Patent: September 30, 1986
    Assignee: Aluminum Company of America
    Inventor: Donald K. Grubbs
  • Patent number: 4614642
    Abstract: A method of decomposing a super-saturated solution of alkali metal aluminate Ld from the Bayer process, by introducing primer Sa and forming a suspension with a high content of dry material, of at least 700 g/l of alkali metal aluminate solution to be decomposed, is characterized in that, for the purpose of obtaining Al(OH).sub.3 with a large, even particle size, a zone (Zs) for separating particularly fine solid particles of Al(OH).sub.3 is formed in decomposition zone (B) comprising a cascade of n stages of the Bayer process, the separating zone being fed with at least part L(n-3)1 of the flow of suspension Ln-3 circulating in said zone (B), from which a fraction LS.sub.1 is extracted, containing at least 5% of the total number of fine particles with a maximum diameter of 40 microns present in the flow Ln-3, while the residual suspension LS.sub.2 emerging from the separating zone Zs is recycled to zone (B), then the fraction Ls.sub.
    Type: Grant
    Filed: June 6, 1985
    Date of Patent: September 30, 1986
    Assignee: Aluminum Pechiney
    Inventors: Benoit Cristol, Jacques Mordini
  • Patent number: 4613361
    Abstract: A process for pretreatment at high temperature by means of an aqueous pretreatment solution, of crushed ores containing at least one usable metal element, whose gangue contains argillaceous compounds which, in the attack operation for making use of the ore, are capable of forming a stable plastic suspension in the presence of water, which makes it virtually impossible subsequently to separate the liquid and solid phases by virtue of its character being such that it cannot be subjected to filtration and/or settlement, which is characterized in that, to cause stabilization of the argillaceous gangue before the operation of subjecting the ore to attack and to produce easy separation of the liquid and solid phases after the attack operation, the ore, the granulometry of which is at most equal to the liberation sieve mesh size of the metal or metals to be put to use, and before being subjected to the attack operation for making use of the ore, is brought into contact with an aqueous pretreatment solution containin
    Type: Grant
    Filed: November 28, 1984
    Date of Patent: September 23, 1986
    Assignee: Uranium Pechiney
    Inventors: Jean-Michel Lamerant, Francois Pallez, Pierre-Bernard Personnet
  • Patent number: 4595581
    Abstract: Substantially pure boehmite is produced by heating an aqueous sodium aluminate solution to a temperature of about 115.degree.-145.degree. C., preferably about 120.degree.-130.degree. C., treating the heated solution with alumina seed material and separating a boehmite precipitate from the solution. A particularly preferred seed material is boehmite gel.
    Type: Grant
    Filed: June 5, 1985
    Date of Patent: June 17, 1986
    Assignee: Aluminum Company of America
    Inventors: Chanakya Misra, Thinnalur J. Sivakumar
  • Patent number: 4582697
    Abstract: A process for the production of aluminum trihydroxide having controlled median diameter of 2 to 100 microns, with a unimodal distribution and minimum deviation, by decomposing a hot supersaturated sodium aluminate solution in the presence of seed aluminum trihydroxide, separating the resultant solid and liquid phases and recovering the solid phase constituted by precipitated aluminum trihydroxide. The process comprises grinding aluminum trihydroxide until the aluminum trihydroxide has a specific BET surface area of at least 1 m.sup.2 /g, introducing the ground aluminum trihydroxide into a hot fraction of the supersaturated sodium aluminate solution to precipitate trihydroxide seed and then decomposing the remaining fraction of the supersaturated sodium alimuniate solution in the presence of the seed. This decomposition leads to the precipitation of aluminum trihydroxide having the required median diameter.
    Type: Grant
    Filed: June 13, 1984
    Date of Patent: April 15, 1986
    Assignee: Aluminum Pechiney
    Inventors: Benoit Cristol, Jacques Mordini
  • Patent number: 4581207
    Abstract: A process for the purification of spent liquor from an alumina precipitation stage is disclosed wherein the spent liquor is first contacted with 50 volume % or less ethanol to form a sodium oxalate precipitate and the, after removal of the sodium oxalate precipitate is contacted with over 50 volume % of ethanol extraction fluid to separate the mixture into a first layer comprising the ethanol and at least a portion of the caustic from the spent liquor and a second layer which comprises the remainder of the spent liquor. The spent liquor may then be subjected to a further precipitation to recover further alumina. The spent liquor remaining may be further treated in subsequent extraction steps to concentrate and dispose of undesirable impurities remaining.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: April 8, 1986
    Assignee: Aluminum Company of America
    Inventors: J. Finley Bush, Paul J. The
  • Patent number: 4574074
    Abstract: A process for the production of aluminum trihydroxide having a controlled median diameter of less than 4 microns, with a unimodal distribution and minimum deviation. The process comprises grinding aluminum trihydroxide until the aluminum trihydroxide has a specific BET surface area of at least 8 m.sup.2 /g, adding the ground aluminum trihydroxide to a sodium aluminate solution, and then decomposing the solution to precipitate aluminum trihydroxide having the required median diameter.
    Type: Grant
    Filed: June 13, 1984
    Date of Patent: March 4, 1986
    Assignee: Aluminum Pechiney
    Inventors: Benoit Cristol, Jacques Mordini
  • Patent number: 4574001
    Abstract: Disclosed is a process for producing finely divided dispersions of metal oxides and/or metal hydroxides. A supersaturated sodium aluminate liquor containing dissolved aluminum hydroxide is seeded with particles of at least one metal oxide and/or metal hydroxide. The liquor is subjected to predetermined crystallization conditions to form a crystallized solid. The crystallized solid is then separated from the liquor and dried.
    Type: Grant
    Filed: March 7, 1984
    Date of Patent: March 4, 1986
    Assignee: Vereinigte Aluminiumwerke Aktiengesellschaft
    Inventors: Klaus Bielfeldt, Dieter J. Braun
  • Patent number: 4568527
    Abstract: Finely divided alumina, recovered from the dust recovery systems of alumina hydrate calcination facilities, is employed as seed for the precipitation of alumina hydrate from pregnant Bayer process liquors. The finely divided alumina dust can either be used as seed in as-is condition, or, if desired, agglomerated to coarse and strong particles prior to use as seed. Agglomeration is accomplished by combining the dust in a predetermined weight ratio with alumina trihydrate seed under controlled conditions. The process allows the utilization of an otherwise undesirable and unacceptable by-product of alumina hydrate calcination.
    Type: Grant
    Filed: November 6, 1984
    Date of Patent: February 4, 1986
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Joseph L. Anjier, Richard G. Breuer, Harold L. Butler
  • Patent number: 4567026
    Abstract: A method is disclosed for the recovery of iron, aluminum and titanium from coal ash. The method comprises magnetically extracting magnetite from the ash, leaching the ash with a solution of a mineral acid, precipitating and removing titanium and iron hydroxides from the leach solution by adding thereto a solution of a strong base, and precipitating and removing aluminum hydroxide by contacting the remaining solution with carbon dioxide or aluminum hydroxide seeding.
    Type: Grant
    Filed: October 24, 1984
    Date of Patent: January 28, 1986
    Assignee: InterNorth, Inc.
    Inventor: Bohdan Lisowyj
  • Patent number: 4537751
    Abstract: Particulate alumina-base catalysts are treated to recycle the alumina by a two-step process: the first step involving conversion of the alumina to aluminum sulfate by reaction with gaseous sulfur trioxide, and the second step involving conversion of the aluminum sulfate to an aluminum hydroxide compound by reaction with an aqueous hydroxide. Both reactions are topochemical, and the aluminum hydroxide compound is prepared in particulate form.
    Type: Grant
    Filed: March 28, 1984
    Date of Patent: August 27, 1985
    Assignee: Chevron Research Company
    Inventor: Paul J. Marcantonio
  • Patent number: 4519989
    Abstract: A process for removing organic contaminants from a mineral ore such as bauxite. The ore is washed with an aqueous solution containing caustic soda, sodium carbonate or mixtures thereof in an amount up to about 80 g/l total alkali content (expressed as sodium carbonate equivalent). The ore is preferably washed at a temperature of about 95.degree. C. for about 5 hours with a solution containing about 20 g/l total alkali content. In a preferred embodiment, the ore is separated from a rinse solution containing degradation products of organic contaminants, and the washed ore is then dissolved in a caustic solution to produce Bayer process liquor. This process provides a means to reduce the organic carbon concentration in Bayer process liquor, with resultant increase in productivity of the Bayer process.
    Type: Grant
    Filed: February 22, 1983
    Date of Patent: May 28, 1985
    Assignee: Aluminum Company of America
    Inventors: Alan Pearson, Paul J. The
  • Patent number: 4512959
    Abstract: Process for recovering coarsely crystalline alumina hydrate from bauxite according to the Bayer process wherein, in the presence of fine seed crystals, agglomerates are initially formed in a supersaturated sodium aluminate solution at 80.degree. to 65.degree. C. The agglomerates are then conducted through a first cascade of crystallizers and, after cooling to 55.degree. to 45.degree. C., through a second crystalizer cascade. A crystal suspension is extracted from the last crystallizer of the second crystallizer cascade and fractionated into fine seed crystals and coarse product crystals.
    Type: Grant
    Filed: June 21, 1983
    Date of Patent: April 23, 1985
    Assignee: Alcoa Chemie GmbH
    Inventors: Horst Pohland, Arthur J. Tielens
  • Patent number: 4512809
    Abstract: Aluminous siliceous starting materials are mixed and ground with correction materials to produce a raw mixture comprising oxides of aluminium, silicon, calcium and alkali metal having certain mole ratios, preheating the raw mixture by suspending the raw mixture in a hot gas, and sintering the preheated material to clinker.
    Type: Grant
    Filed: January 25, 1984
    Date of Patent: April 23, 1985
    Assignee: Industrias Penoles S.A. de C.V.
    Inventors: Hans C. A. Nielsen, Roberto Schroeder
  • Patent number: 4511542
    Abstract: An improved precipitation system is provided for the Bayer process production of alumina hydrate. In order to produce coarse and strong alumina hydrate at high yield, supersaturated Bayer process sodium aluminate liquor is seeded with a relatively small seed charge in a first precipitator at a relatively low temperature and the produced slurry is transferred to a second precipitator where without additional seeding, the solids content of the slurry is allowed to increase to about 250-700 g/l by accumulating solids in the line until the desired solids content is reached. After a suitable residence time, a coarse, strong product hydrate can be recovered in yields of or exceeding 80 g/l based on the alumina (Al.sub.2 O.sub.3) content of the supersaturated sodium aluminate liquor subjected to precipitation.
    Type: Grant
    Filed: May 24, 1984
    Date of Patent: April 16, 1985
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Joseph L. Anjier, Morris L. Roberson, William E. Atchison