Leaching, Washing, Or Dissolving Patents (Class 423/131)
  • Patent number: 5096678
    Abstract: A method and apparatus for treating mineral-bearing ores and, more particularly, for treating ores containing precious metals, base metals and the like values by providing a means to extract the metal or other values from a particulated ore by classifying the ore to separate values from the gangue, and by continuously chemically leaching the said values from the ore. In accordance with an embodiment of the invention, particulated ore is fluidized and intermittently moved through a tank to classify the ore particles into strata according to size, shape and density to beneficiate values, either heavier or lighter than the gangue, for recovery of concentrated values.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: March 17, 1992
    Inventor: Daniel A. Mackie
  • Patent number: 5091160
    Abstract: A method of eliminating the foam above a slurry of a corrosive liquid and solid matter where the foam is caused by a gas evolved by the reaction between the heated corrosive liquid and the solid matter comprising providing the heating energy by microwaves. This method has been found to be particularly useful in the sulphuric acid leaching of an ore concentrate in the production of beryllium hydroxide.
    Type: Grant
    Filed: November 5, 1990
    Date of Patent: February 25, 1992
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Energy
    Inventors: Peter D. Kondos, Kazi E. Haque, John C. MacDonald, Wesley F. Griffith, Daniel Laforest, Joe Iuliano
  • Patent number: 5080721
    Abstract: A system for cleaning solids contaminated with solvent-soluble contaminants. The system, which includes both process and apparatus, comprises the use of at least two successive cleaning zones, each of which includes a slurrying stage and a centrifuge separation stage, wherein the solids to be cleaned and the solvent used for cleaning flow in countercurrent relationship to each other between the successive zones.
    Type: Grant
    Filed: February 28, 1990
    Date of Patent: January 14, 1992
    Assignee: Conoco Inc.
    Inventors: David A. Flanigan, Robert E. Williams
  • Patent number: 5074911
    Abstract: A process for extracting metal values such as gallium and/or indium from aqueous solutions by contacting said solutions with a water immiscible organic solvent having dissolved therein a heterocyclic thione.
    Type: Grant
    Filed: June 26, 1990
    Date of Patent: December 24, 1991
    Assignees: Imperical Chemical Industries PLC, Nerco Inc.
    Inventors: Peter W. Austin, Peter M. Quan, Peter A. Tasker, Derek Thorp
  • Patent number: 5063033
    Abstract: The present invention provides a process for the production of crystalline boehmite of fine particle size and enhanced specific surface area. Coarse gibbsite particles, obtained from the Bayer Process, are lightly calcined and the non-boehmite-containing material is removed by dissolution in caustic aluminate liquors of appropriate composition.
    Type: Grant
    Filed: February 10, 1987
    Date of Patent: November 5, 1991
    Assignee: Vereinigte Aluminum-Werke Aktiengesellschaft
    Inventor: Neil Brown
  • Patent number: 5051243
    Abstract: This invention provides an improved process for increasing the specific gravity of red mud. The process comprises mixing red mud in an acidic solution, such as sulfur dioxide solution, having a pH of between about 1.5 and about 3.0 to form an insoluble red mud residue. The specific gravity of the red mud residue can also be increased by heating the residue in air to a temperature of 250.degree. C. to about 300.degree. C. This process enables recovery of a treated red mud derivative having an increased specific gravity in excess of 4.0, which makes the product particularly useful as a weighting agent for drilling fluid, and as the solid phase of slurries used to fill crevices and fissures exposed by drilling or excavation.
    Type: Grant
    Filed: December 7, 1989
    Date of Patent: September 24, 1991
    Assignee: Alcan International Limited
    Inventors: George D. Fulford, Anwer M. Khan
  • Patent number: 5030425
    Abstract: Disclosed is a process for leaching selected metal compounds (e.g. gallium arsenide) from integrated circuits containing those compounds. The method includes placing the integrated circuits into a culture medium containing bacteria. Bacteria capable of leaching the metal compounds from the integrated circuits leach the metals from the integrated circuits. The bacteria preferably used will be ATCC 53921 and mutations and recombinants thereof. The integrated circuits are generally crushed to between 20 and -400 mesh before placement into theThis invention was made with Government support under Contract No. F33615-87-C-5303 awarded by the United States Air Force. The Government has certain rights in this invention.
    Type: Grant
    Filed: June 27, 1989
    Date of Patent: July 9, 1991
    Assignee: Technical Research, Inc.
    Inventors: Gail L. A. Bowers-Irons, John R. Pease
  • Patent number: 5030426
    Abstract: Disclosed is a high temperature process (e.g.>60.degree. C.) for leaching selected metal compounds e.g. gallium or germanium from ore containing those compounds. The method includes placing the ore into a culture medium containing bacteria. Bacteria capable of leaching the metal compounds from the ore leach the metals from the ore. The bacteria preferably used will be bacteria ATCC 53921 and mutations and recombinants thereof. The ore is generally crushed to between 20 and -400 mesh before placement into the culture medium cThis invention was made with Government support under Contract No. F33615-87-C-5303 awarded by the United Stated Air Force. The Government has certain rights in this invention.
    Type: Grant
    Filed: August 31, 1989
    Date of Patent: July 9, 1991
    Assignee: Technical Research, Inc.
    Inventors: Gail L. A. Bowers-Irons, John R. Pease, Quynh K. Tran, Tracy Gibb, Robert J. Pryor, Sandra Haddad
  • Patent number: 5019360
    Abstract: A method for the processing of fly ash scrubber sludge or the like is provided. The method yields unique products, including a usable calcium silicate material and a high purity alumina material. The process involves a plurality of stages including a first magnetic separation in an acid leach. During the acid leach, valuable mineral components are converted into soluble sulfates. The leach residue, containing calcium materials, is extracted with ammonia solution to yield a desirable calcium silicate product. The leach liquor is treated in a preferred manner to precipitate relatively acid free aluminum sulfate. The aluminum sulfate is then converted into a desirable alumina product.
    Type: Grant
    Filed: June 8, 1990
    Date of Patent: May 28, 1991
    Assignee: Northern States Power Company
    Inventor: John M. Lehto
  • Patent number: 4994253
    Abstract: A process for the production of large boehmite crystal aggregates, useful for soft polishing applications is provided herein. A caustic aluminate liquor is contacted with an oxygen-containing gas at elevated temperatures and pressures in the presence of about 1-50 mg/L of copper ions. The liquor is oxidized until a molar ratio of Na.sub.2 O.sub.free to Al.sub.2 O.sub.3 of less than or equal to 1 is achieved, and the oxidized liquor is cooled under quiescent conditions of little or no agitation which causes the crystallization and precipitation or novel large boehmite particles.
    Type: Grant
    Filed: August 30, 1988
    Date of Patent: February 19, 1991
    Assignee: Vereinigte Aluminium-Werke AG
    Inventor: Neil Brown
  • Patent number: 4942023
    Abstract: A process using an extractant, that consists on the one hand of an active component being substituted 8-hydroxyquinoline and on the other hand of by-products of the manufacture of said extractant, said process being characterized in that the extractant contains at least 90 wt % of the active component.
    Type: Grant
    Filed: December 21, 1988
    Date of Patent: July 17, 1990
    Assignee: Metallurgie Hoboken-Overpelt
    Inventors: Achille J. De Schepper, Guy G. Haesebroek, Antoine L. Van Peteghem
  • Patent number: 4937210
    Abstract: There is disclosed a process for preparing a porous inorganic material. The process comprises preparing a cellular aluminosilicate material by foaming or spray drying an aqueous suspension of the material. The cellular material is calcined, leached with hydroxide to remove silica, dewatered and dried to leave a porous, cellular ceramic material.
    Type: Grant
    Filed: September 23, 1988
    Date of Patent: June 26, 1990
    Assignee: ECC International Limited
    Inventors: Thomas R. Jones, Caryl Gould, Alan J. Brown, Roger James
  • Patent number: 4915730
    Abstract: A process and apparatus for the recovery of metals such as silver from phosphate flue dust. The process includes the steps of blending chloride salt and the flue dust to produce a blended material, roasting the blended material in an oxygen bearing atmosphere to oxidize carbon in the blended material producing a gas and to react chloride salt with the metal in the blended material producing a water soluble metallic salt, dissolving the metallic salt in water to produce a solution, filtering the solution to remove solids, and precipitating metals from the filtered solution with the precipitate ready for conventional smelting. The preferred embodiment of the apparatus includes a flue dust hopper and mill and a salt hopper and mill for feeding the dust and salt to a radiant tube dryer and a radiant tube asher for blending and roasting the materials, and a spray chamber at the outlet of the asher for separating solids and gases, where certain of the solids go into solution.
    Type: Grant
    Filed: July 13, 1989
    Date of Patent: April 10, 1990
    Inventors: Allan Elias, Hans W. Rasmussen
  • Patent number: 4865823
    Abstract: A method for recovering gallium, which comprises a capturing step of contacting an aqueous solution containing gallium to a chelating agent containing a water-insoluble substituted quinolinol as the active ingredient, to let the chelating agent capture gallium, and an eluting step of contacting an eluting solution composed of an aqueous solution of an acid or strong base containing said substituted quinolinol, to the chelating agent from the capturing step, to elute gallium therefrom.
    Type: Grant
    Filed: August 3, 1988
    Date of Patent: September 12, 1989
    Assignees: Mitsubishi Chemical Industries Limited, Nippon Light Metal Company, Ltd.
    Inventors: Yukinori Minagawa, Minoru Tanaka, Kunihiko Yamaguchi, Kazumasa Arai, Gouichi Muramatsu
  • Patent number: 4865824
    Abstract: A process is described for recovering gallium from a basic aqueous sodium aluminate solution by means of liquid-liquid extraction, in which process the aqueous sodium aluminate solution to be extracted is brought into contact with a water-insoluble extraction solution, comprising essentially a water-insoluble substituted hydroxyquinoline and a selected water-insoluble aldoxime as extractant, and a water-insoluble organic solvent for the extractant, the organic phase is separated off from the aqueous phase after bringing the two solutions into contact, and the gallium is recovered from the organic phase.
    Type: Grant
    Filed: June 8, 1988
    Date of Patent: September 12, 1989
    Assignee: Hoechst Aktiengesellschaft
    Inventor: Peter Pfuller
  • Patent number: 4861371
    Abstract: A nickel-containing ore is leached with sulfuric acid to dissolve nickel and associated metallic values into the sulfuric acid to form a leachate, the sulfuric acid further containing a source of the monovalent cations sodium, potassium or ammonium to suppress solubilization of aluminum ions in the ore. The leaching process is conducted at elevated temperatures of from about 200.degree. C. to about 300.degree. C., and at elevated pressures. In such leaching process, the monovalent cations are present in the leaching liquid prior to the initiation of leaching, to achieve an aluminum content of the leachate of less than about 0.5 grams per liter.
    Type: Grant
    Filed: December 28, 1988
    Date of Patent: August 29, 1989
    Assignee: California Nickel Co.
    Inventor: Harris Lowenhaupt
  • Patent number: 4855114
    Abstract: Disclosed is a process for recovering gallium values contained in a basic aqueous solution by liquid/liquid extraction thereof. The liquid/liquid extraction process comprises contacting the basic aqueous solution with a water-immiscible, organic phase comprising a substituted hydroxyquinoline dissolved in an organic solvent therefor whereby gallium is extracted into the organic phase. Thereafter, the organic phase is separated from the basic aqueous phase and the gallium recovered from the separated organic phase. The improvement in process of the present invention comprises the organic phase further comprising dissolved therein an organic dioxime compound.
    Type: Grant
    Filed: September 30, 1988
    Date of Patent: August 8, 1989
    Assignee: Sherex Chemical Company, Inc.
    Inventor: David L. Gefvert
  • Patent number: 4826790
    Abstract: A particulate porous material suitable for use as a high surface area column packing material comprises particles substantially all of which are not smaller than 5 micrometers and not larger than 1 millimeter in diameter, and each particle is in the form of a substantially cellular body and consists predominantly of an open, three-dimensional matrix of crystals of mullite which define between them interconnecting pores having a width in the range of from 5 nanometers to about 2 micrometers. The particles can be coated with a reactive layer. There is also disclosed a process for producing the particulate porous material wherein a particulate product comprising particles substantially all of which are between 5 micrometers and 1 millimeter in diameter and consisting predominantly of a mixture of mullite crystals and silica is treated with a concentrated aqueous solution of an alkali metal hydroxide at a temperature of at least 50.degree. C.
    Type: Grant
    Filed: August 8, 1988
    Date of Patent: May 2, 1989
    Assignee: ECC International Limited
    Inventors: Thomas R. Jones, Caryl Gould
  • Patent number: 4816122
    Abstract: Fluoride-containing wastes, arising in the aluminium industry, particularly spent cell linings from reduction cells, are digested with caustic soda for conversion of sodium cryolite to NaF.By use of very strong caustic soda NaF may be left in the solid residues after removal of the residual liquor and recovered from such residues by water leaching.As an alternative weaker caustic soda may be used in the digestion stage and subsequently be crystallised out from the residual liquor, after separation from the solid residues, by evaporating and/or cooling the liquor. The precipitated NaF is then conventiently redissolved in water.The NaF solution prepared by either route is then preferably subjected to electrodialysis to recover a solution of HF from it. Such HF is conveniently converted to AlF.sub.3 by reaction with alumina.
    Type: Grant
    Filed: September 13, 1985
    Date of Patent: March 28, 1989
    Assignee: Alcan International Limited
    Inventor: Gordon Lever
  • Patent number: 4798708
    Abstract: A process is disclosed for recovering metals from chromium bearing material comprising one or more or the metals of cobalt, nickel, molybdenum, tungsten, iron, tin, aluminum. The process comprises atomizing the material to produce a flowable powder which is then fused in an oxidizing atmosphere with sufficient alkali metal hydroxide at a temperature sufficient to form a nonmagnetic fused material in which the chromium, tungsten and molybdenum are present as water soluble salts. The resulting fused material is then slurried with a sufficient amount of water to dissolve the water soluble compounds. The pH is adjusted to from about 9.2 to about 9.6 with an acid to allow insolubles to form which contain any cobalt, and nickel and the major portion of any iron, tin and aluminum followed by separating the insolubles from the resulting first liquor.
    Type: Grant
    Filed: February 16, 1988
    Date of Patent: January 17, 1989
    Assignee: GTE Products Corporation
    Inventors: Judith A. Ladd, Michael J. Miller
  • Patent number: 4732606
    Abstract: A method of recovering a metallic aluminum from an aluminum-containing slag of an aluminum smelting process. In this method, the slag is crushed a number of times with each crushing product being separated by a screening off removing the metallic aluminum before the next crushing stage. Water-soluble components are then removed from the slag by leaching and the leaching solution is evaporated to enable recovery of these components.
    Type: Grant
    Filed: November 17, 1986
    Date of Patent: March 22, 1988
    Assignees: Metallgesellschaft Aktiengesellschaft, Uraphos Chemie GmbH
    Inventors: Klaus Kobele, Gerhard Gotz, Manfred Beckmann, Ernst Rode, Friedrich Berger
  • Patent number: 4729881
    Abstract: Beryllium is efficiently recovered from silicate ores in a hydrometallurgical, single solvent, process which avoids the complexities, high costs and hazards ofpyrolytic, fluorination and acid leach methods, by contacting the ore in a closed reactor at elevated temperature and autogenous pressure with a concentrated caustic solution and lime or lime hydrate to form a slurry containing dissolved beryllium, reducing the pressure to about one atmosphere and the temperature to below the boiling point of the caustic solution, separating by-product solids to leave a pregnant leach liquor, diluting and digesting the leach liquor to precipitate the beryllium and to leave a caustic mother liquor, and separating the beryllium. The caustic mother liquor can be recycled to the ore contacting step in a closed loop version of the process.
    Type: Grant
    Filed: December 16, 1986
    Date of Patent: March 8, 1988
    Assignee: FMC Corporation
    Inventor: William C. Copenhafer
  • Patent number: 4717550
    Abstract: The iron content of Bayer process streams is reduced by contacting said stream with a tertiary hydroxyl-containing polyamine.
    Type: Grant
    Filed: October 9, 1986
    Date of Patent: January 5, 1988
    Assignee: American Cyanamid Company
    Inventors: Donald P. Spitzer, David W. Lipp, Alan S. Rothenberg, Hans P. Panzer
  • Patent number: 4670229
    Abstract: Metal values and alumina are recovered from spent, usually oily, catalysts by oxygen pressure leaching with sodium hydroxide and/or sodium aluminate to dissolve molybdenum, vanadium and/or tungsten and provide a solid, filterable residue containing alumina and cobalt and/or nickel, the residue is digested with sodium hydroxide to give a sodium aluminate solution and a residue enriched in nickel and/or cobalt, alumina is recovered from the sodium aluminate solution as a solid and the remaining supernatant solution is recycled to the oxygen pressure leaching step wherein the alumina content of the aluminate solution is precipitated and a bleed for metals in the aluminate solution is provided.
    Type: Grant
    Filed: May 9, 1986
    Date of Patent: June 2, 1987
    Assignee: Amax Inc.
    Inventors: Edward I. Wiewiorowski, Luther R. Tinnin, Ranko Crnojevich
  • Patent number: 4668487
    Abstract: A process for production of alkali metal phosphates from material containing calcium, iron and aluminium phosphates, for example naturally occurring phosphate rocks, involves calcining the material with alkali metal carbonates to produce alkali metal phosphates, which are then leached from the calcined product under conditions that yield relatively concentrated solutions.
    Type: Grant
    Filed: October 16, 1985
    Date of Patent: May 26, 1987
    Inventor: Griffith Thomas
  • Patent number: 4666685
    Abstract: Spent hydrodesulfurization catalysts containing alumina, at least one metal from the group consisting of molybdenum, tungsten and vanadium and at least one metal from the group consisting of nickel and cobalt, sulfur, and, usually, residual oil are oxygen pressure leached at a temperature of at least about 400.degree. F. with a base from the group consisting of sodium hydroxide and sodium aluminte in at least stoichimetric amount to yield a solution having a pH between about 7 and 9 containing dissolved molybdenum, vanadium and any tungsten which may be recovered and a readily filterable residue containing aluminum, nickel and cobalt which may be worked up to recover the valuable constituents, with overall processing being accomplished in an environmentally acceptable manner.
    Type: Grant
    Filed: May 9, 1986
    Date of Patent: May 19, 1987
    Assignee: Amax Inc.
    Inventor: Edward I. Wiewiorowski
  • Patent number: 4649031
    Abstract: The invention relates to a method for recovering rare metals from the combustion residues of various coals, in particular brown coals. The recovery is performed by digestion, more particularly by aqueous and/or dilute alkaline and/or dilute acidic digestion, where two or three of these steps can be combined in any desired order or they may be carried out separately. During digestion the concentration of the solution is monitored and the subsequent digestion steps are terminated at a desired concentration. The solid and liquid phase are then separated and the rare metals are isolated from the liquid phase while the solid phase, optionally after neutralization and/or washing can be utilized for example as a source of energy.
    Type: Grant
    Filed: November 9, 1981
    Date of Patent: March 10, 1987
    Assignee: Tatabanyai Szenbanyak
    Inventors: Bela Matyas, Pal Gerber, Andras Solymos, Ferenc Kaszanitzky, Gyorgy Panto, Janos Leffler
  • Patent number: 4647439
    Abstract: A process for the continuous production of alumina by means of the Bayer process by alkaline attack in reactors on bauxites which primarily consist of aluminum monohydrates and contain silica in a free state or combined in the form of aluminum silicate, the essential aim of which is to delay scaling of the reactors by deposits of sodium silico-aluminate on the reactor walls. The process comprises the following steps: (1) the bauxite is put into suspension by crushing in a sodic liquor (aqueous solution of caustic soda); (2) the suspension is raised to a temperature of from 90.degree. to 108.degree. C. and held at that temperature for a period of time sufficient to convert at least 75% of the aluminum silicate contained in the bauxite into insoluble sodium silico-aluminate; (3) The suspension is then subjected to steam heating by passing through a tube-type heat exchanger under pressure at a temperature which is at least equal to 160.degree. C. and preferably is from 160.degree. to 230.degree. C.
    Type: Grant
    Filed: May 19, 1986
    Date of Patent: March 3, 1987
    Assignee: Aluminium Pechiney
    Inventor: Jean Lepetit
  • Patent number: 4617410
    Abstract: Cisplatin is purified via an adduct with dimethylformamide. The purified cisplatin is useful as a medicine.
    Type: Grant
    Filed: February 13, 1984
    Date of Patent: October 14, 1986
    Assignee: Degussa Aktiengesellschaft
    Inventors: Bernhard Lippert, Gabriele Raudaschl
  • Patent number: 4614641
    Abstract: Disclosed is a process for producing purified alumina from high-silica bauxite including separating alumina-rich ore containing high-silica content into a coarse fraction and a fines fraction; digesting the fines fraction in a sodium aluminate solution at low temperatures; digesting the coarse fraction in a sodium aluminate solution at higher temperatures under pressure; and precipitating out alumina from the digest solutions after the combined liquors are desilicated during clarification.
    Type: Grant
    Filed: June 19, 1985
    Date of Patent: September 30, 1986
    Assignee: Aluminum Company of America
    Inventor: Donald K. Grubbs
  • Patent number: 4614543
    Abstract: A process is disclosed for the hydrometallurgical treatment of finely divided iron-containing steel plant dusts containing zinc, lead and such other metal values as calcium, manganese, silicon, magnesium, aluminum, cadmium, copper, and the like. The process is carried out by forming an aqueous slurry of the flue dust with a mixed lixiviant comprising HCl and H.sub.2 SO.sub.4, the amount of sulfate ion concentration being in excess of the chloride ion concentration and in stoichiometric excess of that required to sulfate substantially all of the lead and calcium present. The amount of chloride ion present as HCl should be sufficient to maintain the pH at about 1 to 4. The leaching is conducted at a temperature ranging from ambient to below the boiling point for a time at least sufficient to effect dissolution of at least zinc and other metal values and form a residue containing iron oxide, calcium sulfate and lead sulfate.
    Type: Grant
    Filed: January 31, 1985
    Date of Patent: September 30, 1986
    Assignee: AMAX Inc.
    Inventors: Willem P. C. Duyvesteyn, Mahesh C. Jha
  • Patent number: 4610721
    Abstract: A process is provided for selectively recovering zinc from steel plant dust containing substantial amounts of iron. The process comprises atmospherically leaching the steel plant dust in a first stage wherein an amount of steel plant dust is mixed with an amount of acidic zinc sulfate solution to leach zinc therefrom, the leaching of the dust being such that the solution is controlled to a terminal pH ranging from about 2 to 3.5 and preferably from about 2.5 to 3.5, thereby limiting iron dissolution. The mixture is then subjected to a crude liquid/solid separation step whereby a thickened pulp is produced containing zinc and iron values and a separated liquid containing low iron and substantial amounts of zinc, the solution being sent to zinc recovery.
    Type: Grant
    Filed: January 31, 1985
    Date of Patent: September 9, 1986
    Assignee: AMAX Inc.
    Inventors: Willem P. C. Duyvesteyn, Mahesh C. Jha
  • Patent number: 4609535
    Abstract: A process for production of alkali metal phosphates from material containing iron and aluminium phosphates comprises leaching the said material with alkali metal carbonate solution to produce a leachate containing dissolved phosphates, and recovering alkali metal phosphates from the leachate. In a preferred embodiment, the carbonate leach is followed by further leaching wth alkali metal hydroxide to effect further dissolution of phosphates from the material, before recovering alkali metal phosphates from the leachate.
    Type: Grant
    Filed: August 1, 1984
    Date of Patent: September 2, 1986
    Inventor: Griffith Thomas
  • Patent number: 4601997
    Abstract: Clay, preferably kaolin, is calcined through its exotherm, but without substantial mullite formation (e.g., 1 hour at 1000.degree. C.). The calcined clay is leached with an alkaline aqueous solution to remove (i.e., leach) silica. The severity of leaching, i.e., amount of silica removed, determines whether the final product will comprise mullite plus excess Al.sub.2 O.sub.3. If the molar Al.sub.2 O.sub.3 /SiO.sub.2 ratio is <3/2 the final product will contain mullite plus excess SiO.sub.2 and if the Al.sub.2 O.sub.3 /SiO.sub.2 ratio is >3/2, the final product will contain excess Al.sub.2 O.sub.3. The leached clay is washed, preferably under acid conditions at about pH 3-5, to remove excess alkali ions; and then dried. The washed clay is then calcined at conditions to produce mullite (e.g., 3 hours at 1250.degree. F.). Materials made in this manner exhibit high pore volume despite the final high temperature heat treatment.
    Type: Grant
    Filed: December 14, 1984
    Date of Patent: July 22, 1986
    Assignee: Engelhard Corporation
    Inventor: Barry K. Speronello
  • Patent number: 4587004
    Abstract: Disclosed is a process for beneficiating oil-shale wherein the oil-shale is treated in a first stage with an aqueous ammonium salt solution and in a second stage and optionally a third stage in the presence of a solution containing ammonium ions/ammonia, or both. The pH of the first stage is from about 5 to 9, and the pH of the second and third stages are from about 0.5 to 5 or about 9 to 12 with the proviso that the pH of the second and third stage is not in the same range.
    Type: Grant
    Filed: December 27, 1984
    Date of Patent: May 6, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Michael Siskin, Glen Brons
  • Patent number: 4587005
    Abstract: Disclosed is a process for removing mineral matter from Rundle oil-shale by contacting the oil-shale with (a) an ammonium salt solution and (b) an organic solvent, at a temperature from about 0.degree. C. to about 300.degree. C. for a time which is sufficient to substantially separate at least about 80 wt. % of the carbonate mineral matter from the oil-shale.
    Type: Grant
    Filed: December 27, 1984
    Date of Patent: May 6, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Michael Siskin, Glen Brons
  • Patent number: 4584088
    Abstract: A method for producing a kerogen concentrate from oil shale comprises treating shale with a first aqueous caustic treating solution to produce a shale product of substantially transformed mineral content, and then treating the shale product with an aqueous acid solution to produce a first kerogen concentrate. The acid solution extracts minerals from the shale product to make a low ash content first kerogen concentrate. A spent acid solution containing the extracted minerals can be treated to recover minerals therefrom. The first kerogen concentrate is then treated with a second aqueous caustic treating solution to produce a second kerogen concentrate of lower ash content. The first and second aqueous caustic treating solutions are preferably the same.
    Type: Grant
    Filed: July 12, 1984
    Date of Patent: April 22, 1986
    Assignee: Standard Oil Company (Indiana)
    Inventors: John D. McCollum, William F. Wolff
  • Patent number: 4557907
    Abstract: A process for hydrothermally disintegrating wastes or residues having a high content of calcined aluminum oxides by reacting said wastes or residues with an aqueous sodium hydroxide solution having a concentration of sodium hydroxide of from about 20 to about 50% by weight at a temperature in the range of from about 180.degree. to about 250.degree. C. under a saturated steam pressure corresponding to said temperature. The sodium aluminate solution obtained is separated off and optionally filtered.
    Type: Grant
    Filed: May 27, 1983
    Date of Patent: December 10, 1985
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Peter Christophliemk, Jurgen von Laufenberg, Rudolf Novotny, Siegfried Staller, Friedrich W. Diekotter
  • Patent number: 4548795
    Abstract: A leaching process employing acidic chloride solutions, whereby the iron content of aluminous materials such as lower grade iron-containing bauxite ores is reduced, enabling the obtention of valuable products such as metallurgical grade alumina and refractory grade bauxite, previously obtainable only from higher grade low-iron aluminous materials.
    Type: Grant
    Filed: May 10, 1984
    Date of Patent: October 22, 1985
    Assignee: Comalco Aluminum Limited
    Inventors: William H. Andrews, David J. Milne, Ronald W. Moyle, James P. Peters
  • Patent number: 4548794
    Abstract: According to the present invention, processes are provided for recovery of nickel, cobalt and like metal values from laterite ores wherein the ores are separated into high and low magnesium containing fractions, the low magnesium fraction is leached with sulfuric acid at elevated temperatures and pressure to solubilize the metal values. The pregnant liquor resulting from the high pressure which also contains solubilized Fe, Al and acid is then contacted with a low magnesium fraction of the ore in a low pressure leach under conditions such that at least some of the acid is neutralized and substantially all of the solubilized Fe and Al is removed as hematite and alunite precipitate.In one embodiment, the pregnant liquor from the high pressure leach and the high magnesium fraction are contacted at atmospheric pressure and a temperature of about 80.degree. C. prior to low pressure leaching. In other embodiments, various process streams are separated by size and otherwise, and recycled to within the processes.
    Type: Grant
    Filed: July 22, 1983
    Date of Patent: October 22, 1985
    Assignee: California Nickel Corporation
    Inventors: E. Harris Lowenhaupt, John E. Litz, Dennis L. Howe
  • Patent number: 4541994
    Abstract: According to the present invention, Ni- and Co-rich, low Mg fines may be advantageously separated from the coarse fractions of lateritic ores by atmospheric or low pressure leaching. In particular, the process of the present invention comprises contacting a lateritic ore or ore fraction at temperatures from about 20.degree. C. to about 200.degree. C. and pressures from about atmospheric to about 200 psig with an aqueous acid solution to form a leach liquor, a leach residue and a fines fraction. The fines fraction which can be separated from the residue with the leach liquor by conventional means such as cycloning is found to be richer in Ni and Co and lower than the remainder of the residue.
    Type: Grant
    Filed: July 22, 1983
    Date of Patent: September 17, 1985
    Assignee: California Nickel Corporation
    Inventors: E. Harris Lowenhaupt, John E. Litz, Dennis L. Howe
  • Patent number: 4539119
    Abstract: Waste-containing (contaminated) waters are treated for reuse and disposal with acceptable environmental improvements by adding a sulfate salt of aluminum and/or iron alkalized to form a waste-cohering hydroxide floc in one or more treatment plants, recovering the flocs and wastes by contacting with sulfur oxides to redissolve the aluminum and/or iron for reuse, in which case low cost sulfur containing fuels are utilized to provide heat and sulfur for recovering over one-half of the sulfur dioxide for reuse and reducing the lime required to neutralize the acidity.
    Type: Grant
    Filed: July 26, 1983
    Date of Patent: September 3, 1985
    Inventor: Everett D. Cann
  • Patent number: 4499062
    Abstract: A process for the hydrothermal fusion of aluminum silicate and alkali aluminum silicates with aqueous sodium hydroxide solution under pressure and at elevated temperatures in the presence of soluble silicates, in which an aqueous solution containing from about 20 to about 50% by weight of NaOH is mixed with aluminum silicates and/or alkali aluminum silicates, and with a hydrothermally fusible silicate component, wherein the ratio by weight of SiO.sub.2 to Al.sub.2 O.sub.3 in the mixture amounts to at least 30:1 and the ratio by weight of SiO.sub.2 to Na.sub.2 O amounts to at least 1.5:1, and the mixtures are reacted at temperatures of from about 180.degree. to about 250.degree. C. and under the saturated steam pressures corresponding to those temperatures. The resulting sodium silicate solution, which contains the dissolved aluminum, is then separated off.
    Type: Grant
    Filed: May 27, 1983
    Date of Patent: February 12, 1985
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Peter Christophliemk, Rudolf Novotny, Jurgen von Laufenberg, Josef Sadlowsky
  • Patent number: 4497778
    Abstract: A process of extracting metals from a material containing at least 10% by weight of pyrite and selected from the group consisting of ores containing sulphide, concentrates of such ores and mixtures of such ores and/or concentrates by microbial leaching which comprises roasting the material before the microbial leaching to convert part of the pyrite to pyrrhotite and thus remove part of the sulphur which is present as pyrite without the formation of any significant amount of metal oxide, the conversion corresponding to removal of at least 10% but not more than 50% of the sulphur present in the pyrite, and only thereafter leaching the thus roasted ore by treatment with bacteria, to extract the metals. The process is characterized by its improved efficiency in metal extraction.
    Type: Grant
    Filed: February 7, 1984
    Date of Patent: February 5, 1985
    Assignee: University College Cardiff Consultants Limited
    Inventor: Frederick D. Pooley
  • Patent number: 4491514
    Abstract: Disclosed is a process for removing mineral matter from oil-shale which method comprises contacting the oil-shale with (a) an ammonium salt solution, and (b) a nonionic surfactant at a temperature from about 0.degree. C. to about 300.degree. C. for a time which is sufficient to substantially separate at least about 80 wt. % of the carbonate mineral matter of the oil-shale.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: January 1, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventors: Michael Siskin, Glen B. Brons
  • Patent number: 4491513
    Abstract: Disclosed is a process for removing mineral matter from oil-shale by contacting the oil-shale with (a) an ammonium salt solution and (b) an organic solvent, at a temperature from about 0.degree. C. to about 300.degree. C. for a time which is sufficient to substantially separate at least about 80 wt. % of the carbonate mineral matter from the oil-shale.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: January 1, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventors: Michael Siskin, Glen B. Brons
  • Patent number: 4490238
    Abstract: Disclosed is a process for beneficiating oil-shale wherein the oil-shale is treated with an aqueous ammonium salt solution at a temperature from about 0.degree. C. to about 300.degree. C.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: December 25, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventor: Michael Siskin
  • Patent number: 4483830
    Abstract: A process for recovery of alumina and soda from materials containing sodium aluminosilicates, such as red mud and desilication products, comprises treating said materials with lime at elevated temperature and pressure. In a preferred embodiment of the invention, hydrothermal treatment of red mud with lime is integrated into a Bayer process to improve the overall efficiency of that process.
    Type: Grant
    Filed: September 3, 1982
    Date of Patent: November 20, 1984
    Assignee: Comalco Limited
    Inventors: Pearson J. Cresswell, David J. Milne
  • Patent number: 4483934
    Abstract: Raw bentonite is beneficiated by treating a substantially iron oxide-free bentonite, as an aqueous suspension, with an alkali at a temperature of at least 60.degree. C.; washing the alkali treated bentonite at least once with water; and then subjecting a suspension of the alkali-treated and washed bentonite to shearing, attrition and impact forces in a homogenizer of the type wherein the suspension is forced in the form of a film through a thin, hard-surfaced gap under a pressure of at least 1.7 MPa, and at high velocity. The suspension of bentonite thus obtained can then be dried to a product which has a good white color and is more resistent to bacteriological growth.
    Type: Grant
    Filed: May 10, 1983
    Date of Patent: November 20, 1984
    Assignee: English Clays Lovering Pochin & Co., Ltd.
    Inventors: Howard Goodman, Ian S. Bleakley
  • Patent number: 4477422
    Abstract: The low shear, slurry viscosity of a kaolinitic clay that is contaminated with one or more forms of expanding clay is reduced by mixing the clay with a source of cationic potassium and then heating the potassium-treated clay to a temperature of at least about 100.degree. C.
    Type: Grant
    Filed: December 20, 1982
    Date of Patent: October 16, 1984
    Inventor: Michael W. Ginn