Ion Exchanging Or Liquid-liquid Extracting Patents (Class 423/139)
  • Patent number: 10450631
    Abstract: This invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives from aqueous solutions, such as in particular the spent catalytic waters deriving from processes for the oxidative cleavage of vegetable oils. In particular this invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives which provides for the use of cation-exchange resins.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: October 22, 2019
    Assignee: NOVAMONT S.P.A.
    Inventors: Giampietro Borsotti, Francesca Digioia
  • Patent number: 10221466
    Abstract: The invention provides a method for extracting transition metals, the method comprising supplying a feedstream containing transition metal, mixing the feedstream with nitric acid for a time and at a concentration sufficient to form an aqueous phase containing the transition metal, combining the aqueous phase with organic extractant phase for a time and at a concentration sufficient to cause the transition metal to reside within the organic extractant phase, and combining the transition metal-containing organic extractant phase with an hydroxamic acid-containing aqueous phase at a concentration and for a time sufficient to cause the transition metal to reside in the hydroxamic acid-containing aqueous phase.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: March 5, 2019
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Artem V. Gelis, Michael Alexander Brown
  • Patent number: 10087501
    Abstract: This disclosure relates to a process for selectively extracting Fe(III) ions from an aqueous feedstock containing Fe(III) ions and non-ferric ions. The process comprises contacting the feedstock with an organic phase comprising a phosphonium salt or ammonium salt ionic liquid under liquid-liquid extraction conditions for a time sufficient to allow transfer of at least some of the Fe(III) ions from the feedstock to the organic phase to provide an Fe(III) ion laden organic phase and an Fe(III) depleted feedstock, and separating the Fe(III) ion laden organic phase from the Fe(III) depleted feedstock.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: October 2, 2018
    Assignees: University of South Australia, Shanxi Ruienze Technology Co., Ltd., Shanxi University
    Inventors: Fangqin Cheng, Li Cui, Jingfang Zhou, John Ralston, Fangbin Xue
  • Patent number: 10053750
    Abstract: The invention provides a process for the leaching of a laterite ore or concentrate for the recovery of value metals, at least one value metal being nickel. The laterite ore or concentrate is subjected to a leaching step with a lixiviant comprising hydrochloric acid to leach nickel from the laterite ore. Nickel is extracted with an oxime at a lower pH than other processes for extraction of nickel from solution, especially after separation of iron and cobalt values.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: August 21, 2018
    Assignee: PROCESS RESEARCH ORTECH INC.
    Inventors: Vaikuntam I. Lakshmanan, Ramamritham Sridhar, Md. Abdul Halim, Jonathan Chen, Robert J. DeLaat
  • Patent number: 9920397
    Abstract: A process for the removal of ferric iron as hematite from a nickel solution containing ferric and ferrous ions including the steps of: raising the temperature of the nickel solution to between 90° C. and the boiling point of the solution at atmospheric pressure; raising the pH of the nickel solution to be between 2 and 3; and adding a hematite seed to facilitate hematite precipitation, wherein ferric ions are precipitated as hematite in a predominantly crystalline form.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: March 20, 2018
    Assignee: CERRO MATOSO SA
    Inventors: Renato Antonio Loaiza Aguilar, Carolina Isabel Meneses Rodríguez, Ruben Rangel De Hoyos, Houyuan Liu
  • Patent number: 9506128
    Abstract: We propose a method for leaching nickel, cobalt and iron from a nickel laterite ore, characterized in that the nickel laterite ore is brought into contact with a solution of sulphuric acid and urea mixture. In this way, there is provided a method for efficient recovery of nickel and cobalt from nickel laterite ores where leaching in sulphuric acid/urea mixture can be completed in about less than 1 hour.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: November 29, 2016
    Inventor: Zekeriya Canbekte
  • Patent number: 9499879
    Abstract: Disclosed herein is a method for easily and efficiently removing manganese from an aqueous acidic solution of sulfuric acid containing cobalt and manganese at low cast to obtain a high-purity cobalt sulfate aqueous solution usable as a raw material for lithium ion secondary batteries. The high-purity cobalt sulfate aqueous solution is obtained by mixing an aqueous acidic solution of sulfuric acid containing cobalt and manganese (aqueous phase) with an acidic organic extractant (organic phase) while adjusting the pH of the aqueous acidic solution of sulfuric acid to a value in a range between 2 and 4 with a pH adjuster such as sodium hydroxide to extract manganese into the organic phase. The acidic organic extractant to be used is preferably diluted so that the concentration of di-2-ethylhexyl phosphate is 10 to 30 vol %.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: November 22, 2016
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yoshitomo Ozaki, Takayuki Nakai, Shinichi Heguri, Hideki Ohara
  • Patent number: 9169124
    Abstract: A crystallization system for producing sodium aluminum fluoride cryolite from hydrofluoric acid waste includes a crystallization reaction tank, a sodium aluminate tank, a high concentration hydrofluoric acid waste tank, a pH value/fluoride detecting section, a dehydrator, a low concentration hydrofluoric acid waste tank, and a control device. The crystallization reaction tank includes a dispersing plate and the control plate to control the flow rate and liquid form of the sodium aluminate and the hydrofluoric acid waste. The loop-like pH value/fluoride detecting section is in communication with the reaction tank to detect the pH value/fluoride concentration of the water sample which is the aqueous mixture of sodium aluminate and hydrofluoric acid waste. Therefore, the crystallization system is capable of controlling factors affecting the cryolite purity during the operation process, and consequently, the crystallization system can produce cryolite whose purity is good enough for recycling.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: October 27, 2015
    Assignee: RETECH ENVIRONMENTAL SOLUTIONS CO., LTD.
    Inventors: Neng-Chou Shang, Tsung-Lung Lu, Chao-Chien Chang
  • Patent number: 8986634
    Abstract: The present invention refers to a method being easy to recover metals including nickel and aluminum from waste aluminum catalysts, thereby entirely promoting the recovering rate. Said method comprises: preparing and roasting a waste aluminum catalyst with sodium salts, and then obtaining a first solution comprising vanadium and molybdenum, and a dreg comprising nickel and aluminum through leaching and filtrating; collecting and mixing the dreg with alkali powders to obtain a mixture of the dreg and alkali powders, roasting the mixture at 300 to 1000° C. with aluminum in the dreg reacting with hydroxyl generated from the roasting of mixture and further generating aluminum hydroxide, and then obtaining a second solution comprising aluminum and a concentrate having nickel through another leaching and filtrating; and recovering aluminum from the second solution and recovering nickel from the concentrate.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 24, 2015
    Inventor: Ping-Tao Wu
  • Patent number: 8986425
    Abstract: A method for recovering rare earth compounds, vanadium and nickel from waste vanadium-nickel catalysts, comprising steps of: acid leaching, by soaking waste vanadium-nickel catalysts into a sulfuric acid solution and obtaining a mixture containing alumina silica slag; sedimentation, by filtering out the alumina silica slag from the mixture to obtain a filtrate, and then adding a salt into the filtrate to precipitate rare earth double salts followed by isolating a sediment of rare earth double salts and a liquid solution via filtration; and extraction, by providing and adding an alkali into the sediment of rare earth double salts followed by further soaking the rare earth double salts in an acid solution to precipitate rare earth oxalate or rare earth carbonate, and adding an oxidizer into the liquid solution to adjust the pH value thereof and then extracting vanadium and nickel from the liquid solution via an ion-exchange resin.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: March 24, 2015
    Assignee: Hong Jing Environment Company
    Inventors: Yu-Lung Sun, Ming-Zhe Tsai, Yung-Hao Liu
  • Patent number: 8968698
    Abstract: Provided herein are processes for recovering molybdenum and/or other value metals (e.g., uranium) present in aqueous solutions from a large range of concentrations: from ppm to grams per liter via a solvent extraction process by extracting the molybdenum and/or other value metal from the aqueous solution by contacting it with an organic phase solution containing a phosphinic acid, stripping the molybdenum and/or other value metal from the organic phase solution by contacting it with an aqueous phase strip solution containing an inorganic compound and having a ?1.0 M concentration of free ammonia, and recovering the molybdenum and/or other value metal by separating it from the aqueous phase strip solution. When the molybdenum and/or other value metal are present only in low concentration, the processes can include an organic phase recycle step and/or an aqueous phase strip recycle step in order to concentrate the metal prior to recover.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: March 3, 2015
    Assignee: Cytec Technology Corp.
    Inventors: Troy Allan Bednarski, Violina Antoneta Cocalia, Matthew Dean Soderstrom, Eduardo Alberto Kamenetzky, Andrew Michael Cameron, Douglas Harris
  • Patent number: 8945490
    Abstract: Provided are methods method of recovering metal from an aqueous solution, the method comprising contacting an aqueous solution containing at least two metals selected from molybdenum, cobalt, nickel, zinc and iron with an organic solvent and an oxime-containing reagent composition at a predetermined pH, the predetermined pH selected to provide a high first metal extraction and a low second metal extraction; and separating the first metal from the solution.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: February 3, 2015
    Assignee: BASF SE
    Inventors: Michael Virnig, Jack Bender, Nathan C. Emmerich
  • Publication number: 20150000466
    Abstract: A process for the production of a high grade nickel product including the steps of: a) providing at least one heap of a nickeliferous lateritic ore and leaching that heap with a suitable lixiviant, preferably sulfuric acid solution, to produce a nickel rich pregnant leach solution (PLS); b) subjecting the PLS to an impurity removal step to precipitate ferric iron, and preferably partially precipitate aluminium and chromium as hydroxides; and c) recovering a high grade nickel product from the PLS preferably by either nickel ion exchange, solvent extraction, electrowinning, conventional multi-stage neutralization, pyrohydrolysis or sulfidation.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 1, 2015
    Applicant: BHP BILLITON SSM DEVELOPMENT PTY LTD
    Inventors: Houyuan Liu, Omar Yesid Caceres Hernandez, Renato Antonio Loaiza Aguilar, Carolina Isabel Meneses Rodriguez, Ruben Rangel De Hoyos, Illich Alvarez Mercado
  • Patent number: 8916116
    Abstract: The invention provides a process for the leaching of a laterite ore, concentrate, tailings or waste rock for the recovery of value metals, at least one value metal being nickel. The laterite ore or concentrate is subjected to a leaching step with a lixiviant comprising hydrochloric acid to leach nickel from the laterite ore, followed by a liquid/solids separation step. The liquid obtained is subject to solvent extraction with a dialkyl ketone, to obtain a solution rich in iron and a raffinate. Separation of iron from cobalt and nickel is obtained.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: December 23, 2014
    Assignee: Process Research Ortech inc.
    Inventors: Vaikuntam I. Lakshmanan, Ramamritham Sridhar, Jonathan Chen, M. A. Halim, Robert DeLaat
  • Patent number: 8906220
    Abstract: Method for production of metallic cobalt from the raffinate from solvent extraction of nickel’.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: December 9, 2014
    Inventors: Vanessa Torres, Marcelo Augusto Castro Lopes da Costa, Omar Antunes Do Carmo, Salomão Solino Evelin
  • Publication number: 20140348731
    Abstract: Provided is a method for producing cobalt sulfate, wherein, on the occasion of separating an acidic solution containing calcium, magnesium and sodium as impurities from a cobalt chloride solution by solvent extraction, when a diluent is added to the extractant to be used to dilute the extractant by 10% to 30% by volume; in Step 1, the operational pH is maintained in the range of 4.0 to 5.0 and the liquid volume ratio of organic phase/liquid phase is maintained in the range of 5.0 to 7.0; in Step 2, the operational pH is maintained in the range of 4.0 to 4.5 and the liquid volume ratio of organic phase/liquid phase is maintained in the range of 5.0 to 10.0; and in Step 3, the pH is maintained in the range of 0.5 to 1.0.
    Type: Application
    Filed: December 6, 2012
    Publication date: November 27, 2014
    Applicant: Sumitomo Metal Mining Co., Ltd.
    Inventors: Takayuki Nakai, Noriyuki Nagase, Shin-ichi Heguri
  • Publication number: 20140328737
    Abstract: The objective of the present invention is to selectively extract cobalt from an acidic solution containing a high concentration of manganese. This cobalt extraction method extracts cobalt from an acidic solution containing manganese and cobalt by subjecting the acidic solution to solvent extraction by means of a valuable metal extraction agent comprising an amide derivative represented by general formula (I). The valuable metal extraction agent is represented by the general formula. In the formula: R1 and R2 each represent the same or different alkyl group; R3 represents a hydrogen atom or an alkyl group; and R4 represents a hydrogen atom or any given group aside from an amino group bonded to the ? carbon as an amino acid. Preferably, the general formula has a glycine unit, a histidine unit, a lysine unit, an aspartic acid unit, or an N-methylglycine unit. Preferably, the pH of the acidic solution is 3.5-5.5 inclusive.
    Type: Application
    Filed: November 2, 2012
    Publication date: November 6, 2014
    Inventors: Masahiro Goto, Fukiko Kubota, Yuzo Baba
  • Publication number: 20140322109
    Abstract: Provided is a production method for obtaining high purity nickel sulfate having low levels of impurities, particularly low levels of magnesium and chloride, by adjusting the concentration of an extractant and the pH concentration at the time of treatment in a process of obtaining a nickel sulfate solution having a high nickel concentration by solvent extraction using an acidic organic extractant.
    Type: Application
    Filed: November 19, 2012
    Publication date: October 30, 2014
    Inventors: Takayuki Nakai, Tatsuya Higaki, Yoshitomo Ozaki
  • Publication number: 20140308182
    Abstract: A method for concentrating metal chlorides in and separating same from an iron(III) chloride-containing hydrochloric acid solution is described, wherein iron is precipitated from the solution as iron oxide, preferably haematite and filtered off in a filtration device, and the now further concentrated non-hydrolysable metal chlorides are removed from at least a part of the hydrochloric acid filtrate.
    Type: Application
    Filed: December 12, 2012
    Publication date: October 16, 2014
    Applicant: SMS SIEMAG PROCESS TECHNOLOGIES GMBH
    Inventors: Herbert Weissenbaeck, Dieter Vogl
  • Publication number: 20140294702
    Abstract: The invention provides a process for the leaching of a laterite ore or concentrate for the recovery of value metals, at least one value metal being nickel. The laterite ore or concentrate is subjected to a leaching step with a lixiviant comprising hydrochloric acid to leach nickel from the laterite ore. Nickel is extracted with an oxime at a lower pH than other processes for extraction of nickel from solution, especially after separation of iron and cobalt values.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Inventors: Vaikuntam I. Lakshmanan, Ramamritham Sridhar, Md. Abdul Halim, Jonathan Chen, Robert J. DeLaat
  • Publication number: 20140294703
    Abstract: Disclosed herein is a method for easily and efficiently removing manganese from an aqueous acidic solution of sulfuric acid containing cobalt and manganese at low cast to obtain a high-purity cobalt sulfate aqueous solution usable as a raw material for lithium ion secondary batteries. The high-purity cobalt sulfate aqueous solution is obtained by mixing an aqueous acidic solution of sulfuric acid containing cobalt and manganese (aqueous phase) with an acidic organic extractant (organic phase) while adjusting the pH of the aqueous acidic solution of sulfuric acid to a value in a range between 2 and 4 with a pH adjuster such as sodium hydroxide to extract manganese into the organic phase. The acidic organic extractant to be used is preferably diluted so that the concentration of di-2-ethylhexyl phosphate is 10 to 30 vol %.
    Type: Application
    Filed: October 17, 2012
    Publication date: October 2, 2014
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yoshitomo Ozaki, Takayuki Nakai, Shinichi Heguri, Hideki Ohara
  • Publication number: 20140262816
    Abstract: Various embodiments provide a method comprising leaching a cobalt bearing material to form a slurry, filtering the slurry to yield solids and a cobalt bearing liquid phase, performing a solution extraction of the cobalt bearing liquid phase to yield a purified cobalt bearing liquid phase, precipitating cobalt gypsum by adding lime to a first portion of the purified cobalt bearing liquid phase, and recycling the cobalt gypsum to the leaching.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Nitin Goel, Ari Gabriel Partanen, Wayne W. Hazen, Phil Rooke
  • Publication number: 20140262817
    Abstract: Various embodiments provide a method comprising leaching a cobalt bearing material to form a slurry, filtering the slurry to yield solids and a cobalt bearing liquid phase, and forwarding the solids to a second leaching operation.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Nitin Goel, Ari Gabriel Partanen, Wayne W. Hazen, Phil Rooke
  • Patent number: 8828353
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: September 9, 2014
    Assignee: Freeport Minerals Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8758479
    Abstract: A process is described for the recovery of nickel and/or cobalt from laterite or partially oxidized lateritic ores having a substantial proportion of the iron present in the ferrous state. The process includes providing a laterite or partially oxidized laterite ore wherein a substantial proportion of the iron present in the ore is in the ferrous state; acid leaching the ore to provide a product leach solution containing at least ferrous iron, nickel and cobalt together with acid soluble impurities; and recovering the nickel and cobalt from the product leach solution with a selective ion exchange resin in an ion exchange process leaving the ferrous iron and other acid soluble impurities in the raffinate.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: June 24, 2014
    Assignee: BHP Billiton SSM Development Pty Ltd
    Inventors: Omar Yesid Caceres Hernandez, Harald Muller, Graham Reynolds, Houyuan Liu
  • Patent number: 8753590
    Abstract: A solid composition comprises: MnO2; and a compound represented by the general formula (I) wherein: R is a polymer; each Y is independently a hydrogen or a negative charge; Z is either hydrogen or is not present; each n is independently 1, 2, 3, 4, 5 or 6; wherein the MnO2 is bound to the compound of formula (I) so as to coat the surface thereof. Such a composition may be used for the separation of polyvalent metal species, such as Mo, from one or more accompanying impurities.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: June 17, 2014
    Assignee: Mallinckrodt LLC
    Inventor: Luis Antonio Miguel Marques Barbosa
  • Patent number: 8747787
    Abstract: Provided is a method for producing ferronickel from a nickel sulfide or a mixed sulfide containing nickel and cobalt, obtained by hydrometallurgy of nickel oxide ore or obtained from scraps or products in process. The method for producing a ferronickel raw material is to form the ferronickel raw material from a nickel sulfide or a mixed sulfide containing nickel sulfide and cobalt sulfide, wherein treatments are performed through the following steps: (1) redissolution step, (2) deferrization step, (3) solvent extraction step, (4) hydroxylation step, (5) roasting step, and (6) washing and calcining step.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: June 10, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroshi Kobayashi, Osamu Nakai, Keisuke Shibayama, Takayuki Nakai, Yoshitomo Ozaki, Norihisa Toki, Junichi Takahashi, Toshirou Tan
  • Patent number: 8747678
    Abstract: The invention provides hydrometallurgical processes by which dissolved nickel may be removed from water at ambient temperature and low system pressure.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 10, 2014
    Assignee: Bioteq Environmental Technologies Inc.
    Inventors: Michael Bratty, Rick Lawrence, David Kratochvil
  • Publication number: 20140124698
    Abstract: The present invention relates to a method for preparing magnetite nanoparticles from low-grade iron ore using solvent extraction and magnetite nanoparticles prepared by the same. According to the method for magnetite nanoparticles from low-grade iron ore of the present invention, it is possible to prepare high-purity magnetite nanoparticles having a purity of 99% or higher by solvent extraction using low-grade iron ore as a starting material, and thus it is possible to reduce the processing cost and the amount of energy used, thus supplying a high-efficiency magnetite nanoparticle adsorbent, which can be industrially applied to wastewater treatment or desalination plant, in large quantities at low cost. In particular, it is possible to effectively treat livestock wastewater, heavy metal wastewater, oil discharged into rivers, etc. at low cost, thus significantly contributing to the prevention of environmental pollution.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 8, 2014
    Applicant: Korea Institute of Geoscience and Mineral Resources
    Inventor: Korea Institute of Geoscience and Mineral Resour
  • Patent number: 8658114
    Abstract: A method for extracting cobalt from copper raffinate. First, a supply of raffinate containing at least cobalt, copper, ferric iron and nickel, is provided. The raffinate is pretreated by one or all of raising the raffinate pH level; removing solids; and, reducing ferric iron to ferrous iron. Substantially all copper is removed using first ion exchange resin selective for copper. A second ion exchange resin selective for both cobalt and nickel is used to remove the cobalt and nickel. Cobalt and nickel are separately eluted from the second ion exchange resin.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: February 25, 2014
    Assignee: Asarco LLC
    Inventors: Neil Nebeker, Matthew L. Rodgers, Charles R. Marston
  • Patent number: 8628739
    Abstract: The present invention refers to a direct purification process of a nickel laterite leaching effluent including adjusting a pH of a leaching solution, employing an ion exchange resin to adsorb nickel and copper selectively over ferric or ferrous iron, and recovering nickel.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: January 14, 2014
    Assignee: Vale
    Inventors: Tiago Valentim Berni, Antonio Clareti Pereira
  • Patent number: 8580213
    Abstract: A method for recovering nickel from sulfuric acid aqueous solution, for recovering nickel in an effectively utilizable form as a raw material of nickel industry material, by separating efficiently impurity elements of iron, aluminum, manganese, etc., from the sulfuric acid aqueous solution containing nickel and cobalt, and the impurity elements, iron, aluminum, manganese, etc.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroshi Kobayashi, Hirofumi Shoji, Norihisa Toki, Keiji Kudo, Tatsuya Higaki
  • Patent number: 8563622
    Abstract: The present application relates to novel monodisperse, gel-type or macroporous picolylamine resins which are based on at least one monovinylaromatic compound and at least one polyvinylaromatic compound and/or a (meth)acrylic compound and contain tertiary nitrogen atoms in structures of the general formula (I) as functional group, where R1 is an optionally substituted radical from the group consisting of picolyl, methylquinoline and methylpiperidine, R2 is a radical —(CH2)q—COOR3, R3 is a radical from the group consisting of H, Na and K, m is an integer from 1 to 4, n and p are each, independently of one another, a number in the range from 0.1 to 1.9 and the sum of n and p is 2, q is an integer from 1 to 5 and M is the polymer matrix, a process for preparing them and their uses, in particular the use in hydrometallurgy and electroplating.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 22, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Michael Schelhaas, Reinhold Klipper, Duilio Rossoni
  • Patent number: 8562922
    Abstract: The present application relates to novel gel-type or macroporous picolylamine resins which are based on at least one monovinylaromatic compound and at least one polyvinylaromatic compound and/or a (meth)acrylic compound and contain tertiary nitrogen atoms in structures of the general formula (I) as functional group, where R1 is an optionally substituted radical from the group consisting of picolyl, methylquinoline and methylpiperidine, R2 is —CH2—S—CH2COOR3 or —CH2—S—C1-C4-alkyl or —CH2—S—CH2CH(NH2)COOR3 or —CH2—S—CH2—CH(OH)—CH2(OH) or or derivatives thereof or —C?S(NH2), R3 is a radical from the group consisting of H, Na and K, m is an integer from 1 to 4, n and p are each, independently of one another, a number in the range from 0.1 to 1.9 and the sum of n and p is 2 and M is the polymer matrix, a process for preparing them and their uses, in particular the use in hydrometallurgy and electroplating.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 22, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Reinhold Klipper, Michael Schelhaas, Duilio Rossoni
  • Patent number: 8529850
    Abstract: Provided are methods using a ketoxime in metal extraction. One aspect of the invention relates to a method for the recovery of metal from a metal-containing aqueous solution at an elevated temperature using a ketoxime. Another aspect relates to a method of separating iron/copper using a specific ketoxime. Aldoximes may also be added to the reagent compositions used in these methods.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: September 10, 2013
    Assignee: Cognis IP Management GmbH
    Inventors: Michael Virnig, Jack Bender, Nathan C. Emmerich
  • Publication number: 20130213820
    Abstract: The present disclosure relates to a process and system for recovery of one or more metal values using solution extraction techniques and to a system for metal value recovery. In an exemplary embodiment, the solution extraction system comprises a first solution extraction circuit and a second solution extraction circuit. A first metal-bearing solution is provided to the first and second circuit, and a second metal-bearing solution is provided to the first circuit. The first circuit produces a first rich electrolyte solution, which can be forwarded to primary metal value recovery, and a low-grade raffinate, which is forwarded to secondary metal value recovery. The second circuit produces a second rich electrolyte solution, which is also forwarded to primary metal value recovery. The first and second solution extraction circuits have independent organic phases and each circuit can operate independently of the other circuit.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 22, 2013
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventor: FREEPORT-MCMORAN CORPORATION
  • Patent number: 8475748
    Abstract: Reagent compositions, methods for their manufacture and methods of their use are described. In particular, provided are reagent compositions comprising an aldoxime and ketoxime with an alkyl substituent. Also provided are methods of metal recovery using these reagent compositions.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: July 2, 2013
    Assignee: Cognis IP Management GmbH
    Inventors: Michael Virnig, Jack Bender, Nathan C. Emmerich
  • Publication number: 20130149219
    Abstract: The invention provides a process for the leaching of a laterite ore, concentrate, tailings or waste rock for the recovery of value metals, at least one value metal being nickel. The laterite ore or concentrate is subjected to a leaching step with a lixiviant comprising hydrochloric acid to leach nickel from the laterite ore, followed by a liquid/solids separation step. The liquid obtained is subject to solvent extraction with a dialkyl ketone, to obtain a solution rich in iron and a raffinate. Separation of iron from cobalt and nickel is obtained.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 13, 2013
    Inventors: Vaikuntam I. Lakshmanan, Ramamritham Sridhar, Jonathan Chen, M. A. Halim, Robert DeLaat
  • Patent number: 8435466
    Abstract: Provided are methods using ketoximes and/or aldoximes, including 3-methyl-5-alkylsalicylaldoxime and/or 3-methyl-5-alkyl-2-hydroxyacetophenone oxime, in reagent compositions for metal extraction/isolation. One such method is of extracting a metal from an aqueous ammoniacal solution. Metals that can be extracted include nickel, zinc and copper.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: May 7, 2013
    Assignee: BASF Corporation
    Inventors: Michael Virnig, Jack Bender, Nathan C. Emmerich
  • Patent number: 8399529
    Abstract: For processing of noble metal-containing, moist recycling materials with an unknown noble metal content (hereinafter called “batch”), a moisture-binding agent is added for homogenisation and the batch is mixed with comminution of optionally pre-sent agglomerates to form a free-flowing and homogenous powder. Optionally, the following takes place subsequently for analysis: A at least one representative, volume-reduced sample is taken first of all, B the sample is dried, C the sample is optionally divided further and D the sample is analyzed and the noble metal content of the batch is calculated on the basis of the data a previously known or pre-calculated quantity of the moisture-binding agent being added before sampling (step A).
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: March 19, 2013
    Assignee: W.C. Heraeus GmbH
    Inventors: Christian Mock, Horst Meyer, Matthias Grehl, Jochen Schleβmann, Martin Stettner
  • Patent number: 8372360
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: February 12, 2013
    Assignee: Freeport-McMoran Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8372361
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: February 12, 2013
    Assignee: Freeport-McMoran Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8366917
    Abstract: A method of recovering minerals from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be contacted with an agent sufficient to remove minerals therefrom. The agent is typically a solution containing a solvent, leachant, chelating agent and the like via which minerals can be removed having value, toxic minerals, radioactive minerals and the like.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: February 5, 2013
    Assignee: Red Leaf Resources, Inc
    Inventors: Todd Dana, James W. Patten
  • Patent number: 8361191
    Abstract: In various aspects, the invention provides processes that use relatively low levels of acid to leach lean nickel ores, including processes that provide relatively high levels of extraction of nickel and cobalt from nickel laterite ores, in conjunction with relatively low levels of iron extraction.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: January 29, 2013
    Assignee: Search Minerals, Inc.
    Inventors: David Dreisinger, James Clucas
  • Patent number: 8357226
    Abstract: A method is provided for separating the impurities zinc, iron, calcium, copper and/or manganese from an aqueous solution that contains cobalt and nickel. The solution is brought into a mixing contact with an extraction solution, which is pre-loaded with cobalt and nickel ions, whereby the cobalt and nickel in the extraction solution are replaced with the impurity metals, and the aqueous solution is cleaned from impurities after this phase. This purified aqueous solution, raffinate, can be used to pre-charge the extraction solution so that a minor part of the raffinate is contacted with a pre-neutralized extraction solution, whereby the cobalt and nickel replace the alkali metal, alkali earth metal or ammonium ion that is used in the pre-neutralization.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Norilsk Nickel Finland OY
    Inventors: Esa Lindell, Rauno Luoma, Arja Oja
  • Patent number: 8343446
    Abstract: The oxine ligands 5-chloro-8-hydroxyquiniline and 5-sulfoxyl-8-hydroxyquinoline are covalently bound, using, for example, the Mannich reaction, to a silica gel polyamine composite made from a silanized amorphous silica xerogel and polyallylamine. The resulting modified composites, termed CB-1 (X?Cl) and SB-1 (X?SO3H), respectively, show a clear selectivity for trivalent over divalent ions and selectivity for gallium over aluminum. The compounds of the invention can be applied for the sequestration of metals, such as heavy metals, from contaminated mine tailing leachates.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: January 1, 2013
    Assignee: The University of Montana
    Inventors: Edward Rosenberg, Paul Miranda, Yuen Onn Wong
  • Patent number: 8329124
    Abstract: Solvent extraction compositions having an orthohydroxyaryloxime extractant, an anti-degradation agent, and a water-immiscible organic solvent, processes for extracting a metal from an aqueous acidic solution using same, and methods of reducing degradation of such compositions are provided herein.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: December 11, 2012
    Assignee: Cytec Technology Corp.
    Inventors: John Campbell, Susan Owens, Matthew Soderstrom, Troy Bednarski, Gustavo Marin
  • Patent number: 8323481
    Abstract: A method of sequestering carbon dioxide emissions during recovery of hydrocarbons from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be heated sufficient to remove hydrocarbons therefrom. During heating, the hydrocarbonaceous material is substantially stationary as the constructed infrastructure is a fixed structure. Additionally, during heating, any carbon dioxide that is produced can be sequestered. Removed hydrocarbons can be collected for further processing, use in the process, and/or use as recovered.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: December 4, 2012
    Assignee: Red Leaf Resources, Inc.
    Inventors: Todd Dana, James W. Patten
  • Patent number: 8318113
    Abstract: A solid composition comprises: —MnO2; and—a compound represented by the general formula (I) wherein: R is a polymer; each Y is independently a hydrogen or a negative charge; Z is either hydrogen or is not present; each n is independently 1, 2, 3, 4, 5 or 6; wherein the MnO2 is bound to the compound of formula (I) so as to coat the surface thereof. Such a composition may be used for the separation of polyvalent metal species, such as Mo, from one or more accompanying impurities.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 27, 2012
    Assignee: Mallinckrodt LLC
    Inventor: Luis Antonio Miguel Marques Barbosa
  • Patent number: 8298510
    Abstract: The addition of a compatible metal salt crystal to the organic solution entering the mixer(s) in the solvent extraction stage(s) and/or the stripping stage(s), or to the emulsion mixture of the organic solution and the aqueous solution in the mixer(s), or to the mixture of the organic solution and the aqueous solution in a settler tank(s) following the mixer(s) in the solvent extraction and/or stripping stage(s) following the leaching of metal values from the ore containing that/those value(s) into an aqueous solution, and prior to the further refining of those values in processes, such as electrowinning, during mining operations for those metal values in order to improve the phase separation of the organic phase and the aqueous phase, and to promote the removal of contaminants from the organic phase.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: October 30, 2012
    Assignee: BASF Corporation
    Inventors: Eladio Rojas, Hans C. Hein