Carbonating, Hydroxylating, Or Hydrating Patents (Class 423/144)
  • Patent number: 8815186
    Abstract: Nickel compositions for use in manufacturing nickel metal compositions, and specifically to methods of making basic nickel carbonates used to produce nickel metal compositions are disclosed. By varying the molar ratios of carbonates and bicarbonates to nickel salts, the methods provide basic nickel carbonates that produce superior nickel-containing solids that react more effectively with phosphorous-containing ligands. The phosphorous containing ligands can be both monodentate and bidentate phosphorous-containing ligands.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: August 26, 2014
    Assignee: INVISTA North America S.a.r.l.
    Inventor: John J. Ostermaier
  • Patent number: 8647600
    Abstract: Methods for preparing a composition containing amorphous iron oxide hydroxide. Methods for regeneration of the amorphous iron oxide hydroxide after it has been used as desulfurizer. Regenerable desulfurizer with high sulfur capacity containing amorphous iron oxide hydroxide, not less than 88% w/w, and organic binder not less than 7% w/w. The organic binder is sodium carboxymethylcellulose, sesbania powder, cellulose powder, or a mixture thereof. A method for preparing the desulfurizer. A method for regenerating the waste agent produced after the desulfurizer and the composition containing the desulfurizer are used as desulfurizer. This method allows the desulfurizer and the composition containing the desulfurizer to be regenerated and reused avoiding the need for landfill disposal and environmental pollution.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 11, 2014
    Assignee: Beijing Sanju Environmental Protection and New Material Co., Ltd.
    Inventors: Zhenyi Liu, Ke Lin, Qunyang Gao
  • Publication number: 20130294985
    Abstract: TiO2-supported catalysts include at least molybdenum or tungsten as active components for hydrotreating processes, in particular for the removal of sulfur and nitrogen compounds as well as metals out of crude oil fractions and for the hydrogenation of sulfur oxides.
    Type: Application
    Filed: December 19, 2011
    Publication date: November 7, 2013
    Applicant: Sachtleben Chemie GmbH
    Inventors: Raimond L. C. Bonné, Olga Gonsiorová, Markus Schulte
  • Publication number: 20120301375
    Abstract: A method of preparing basic metal carbonate selected from the group consisting of zinc carbonate, nickel carbonate, silver carbonate, cobalt carbonate, tin carbonate, lead carbonate, manganese carbonate, lithium carbonate, sodium carbonate, and potassium carbonate from metals comprising: contacting the metal with an aqueous solution comprising an amine, carbonic acid, and oxygen under conditions where the metal is converted into basic metal carbonate; and recovering the basic metal carbonate.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Inventors: Jeff Miller, Brian Miller, Andrew Bourdeau
  • Patent number: 8241594
    Abstract: There are provided processes for extracting aluminum ions from aluminous ores. Such processes can be used with various types of aluminous ores such as aluminous ores comprising various types of metals such as Fe, K, Mg, Na, Ca, Mn, Ba, Zn, Li, Sr, V, Ni, Cr, Pb, Cu, Co, Sb, As, B, Sn, Be, Mo, or mixtures thereof.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 14, 2012
    Assignee: Orbite Aluminae Inc.
    Inventors: Richard Boudreault, Serge Alex, Fabienne Biasotto
  • Patent number: 8038979
    Abstract: Disclosed is a method of manufacturing a metal oxide nano powder comprising preparing a first dispersed solution by adding a nano-sized metal powder to water and dispersing the metal powder within the water, performing a hydration reaction of the first dispersed solution at a temperature of about 30 to about 70° C. to generate a precipitation, and filtering and drying the precipitation to prepare a metal oxide powder. Also, disclosed is a metal oxide nano powder manufactured by the method described above, and having any one of a bar-form, a cube-form, and a fiber-form.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 18, 2011
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Chang Kyu Rhee, Min Ku Lee, Young Rang Uhm, Jin Ju Park, Byung Sun Han, Hi Min Lee, Seung-Hee Woo
  • Patent number: 8034158
    Abstract: There are provided a method of manufacturing an Fe/Ni-containing material having a low content of sulfur (S) from an Fe/Ni/SO4-containing liquid waste, a ferronickel mass using the Fe/Ni-containing material, and a method of manufacturing the ferronickel mass. The method of manufacturing an Fe/Ni-containing material from an Fe/Ni-containing liquid waste includes: removing SO4 from an Fe/Ni/SO4-containing liquid waste by adding an SO4 neutralizing agent to the liquid waste so that pH of the liquid waste can be maintained to a pH level of 0.5 to 2.5; precipitating Fe and Ni in the form of hydroxide [(Ni,Fe)(OH)] by adding NaOH to the SO4-free solution; washing the precipitate with water; and manufacturing an Ni/Fe-containing material by filtering and drying the washed Ni/Fe-containing sludge.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 11, 2011
    Assignee: Research Institute of Industrial Science & Technology
    Inventor: Jae Young Lee
  • Patent number: 7998452
    Abstract: A method of preparation of spherical tricobalt tetraoxide, including at least oxidizing a bivalent cobalt salt in a wet environment and in the presence of a precipitant, a complexing agent, and an oxidant to yield spherical cobalt oxyhydroxide.cobalt hydroxide according to the following equation Co2++3OH?+O?CoOOH.Co(OH)2; oxidizing the spherical hydroxy cobalt oxyhydroxide.cobalt hydroxide to yield spherical tricobalt tetraoxide according to the following equation 6CoOOH.Co(OH)2+O?4Co3O4+9H2O; and roasting the spherical tricobalt tetraoxide at low or intermediate temperature to yield a black powder. The method is easily practiced and suitable for mass production, and the resultant spherical tricobalt tetraoxide has stable structure, reliable properties, and high activity.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 16, 2011
    Assignee: Ningbo Jinhe New Materials Co., Ltd.
    Inventor: Jinhua He
  • Patent number: 7914756
    Abstract: A method of treating alkaline industrial by-products, such as red mud generated by Bayer process bauxite refining, is described. Embodiments of the method comprise treating the alkaline industrial by-products with salts of divalent and/or polyvalent cations, thereby lowering pH of the alkaline industrial by-products. The method involves replacement reactions in which relatively insoluble hydroxide salts form precipitates, thereby removing hydroxide ions from solution.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: March 29, 2011
    Inventors: Philip N. Baldwin, Jr., Norman K. Murray, Charles Richard Lee, Michael W. Farrall
  • Patent number: 7910085
    Abstract: The process for production of iron oxyhydroxide particles according to the invention is characterized by comprising a step (A) in which a suspension containing iron(II) is prepared, and a step (B) in which fine bubbles with diameters of 0.05-500 ?m are generated in the suspension to form a reaction mixture, and the iron(II) in the reaction mixture is oxidized by the bubbles to produce iron oxyhydroxide particles.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 22, 2011
    Assignee: TDK Corporation
    Inventor: Mika Kawase
  • Patent number: 7871584
    Abstract: A process for the recovery of nickel and cobalt from nickel and cobalt containing ores, including the steps of first leaching a laterite ore and/or a partially oxidized sulfide ore with an acid solution to produce a pregnant leach solution containing at least dissolved nickel, cobalt and ferric ions, and subsequently leaching a sulfide ore or concentrate with the pregnant leach solution to produce a product liquor. Alternatively, the laterite ore and/or partially oxidized sulfide ore can be leached in a combined leach with the sulfide ore or concentrate. The ferric ion content in the pregnant leach solution or in the combined leach is sufficient to maintain the oxidation and reduction potential in the sulfide leach high enough to assist in leaching nickel from the sulfide ore or concentrate.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: January 18, 2011
    Assignee: BHP Billiton SSM Technology Pty. Ltd.
    Inventors: Houyuan Liu, Alexey Duarte, Wolf Meihack
  • Patent number: 7470647
    Abstract: Decomposition of methane to produce carbon monoxide-free hydrogen is accomplished using un-supported, nanometer sized, hydrogen reduced, nickel oxide particles made by a precipitation process. A nickel compound, such as NiCl2 or Ni(NO3) is dissolved in water and suitably precipitated as nickel hydroxide. The precipitate is separated, dried and calcined to form the NiO catalyst precursor particles.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: December 30, 2008
    Assignees: GM Global Technology Operations, Inc., Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Mei Cai, Yong Li, Wenjie Shen, Jerry Dale Rogers
  • Patent number: 6835228
    Abstract: A process of recovering metals from waste lithium ion/Ni—H/Ni—Cd batteries, wherein the waste batteries are calcined and sieved to generate an ash containing metals and metal oxides. The process includes subjecting the ash to a first dissolution etching treatment, a first filtration treatment to obtain a filtrate containing Cd ions which are crystallized as cadmium sulfate, a second dissolution etching treatment for the filtered solid, and a second filtration treatment to obtain a second filtrate. Fe+3, Al+3 and rare earth metal ions in the second filtrate are precipitated as hydroxides by adding a base to the second filtrate. The remaining solution was extracted and counter-extracted to obtain aqueous solutions of Co and Ni ions, which were subjected separately to a electrolysis to deposit Co and Ni metals. Li ions in the residue solution from the electrolysis of Ni was precipitated as carbonate by adding a soluble carbonate salt.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: December 28, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Jiunn-Ren Lin, I-Long Chang, Yu-Lin Jiang, Jer-Yuan Shiu
  • Patent number: 6800260
    Abstract: Processes for treating iron containing waste streams are provided. According to these processes, metal-containing compounds, particularly iron oxides are produced. These methods may, for example, be used in the processing of the waste streams from the chlorination of titanium-bearing raw materials and involve the use of certain combinations of neutralization and precipitation steps.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: October 5, 2004
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Peter Carter, Christopher John Davis, Michael Robinson, Kirit Talati
  • Patent number: 6767529
    Abstract: This invention relates to a process for producing magnetite particles having a coercivity of 6.366 kA/m to 10.345 kA/m (=80 to 130 Oe) and an octahedral particle shape, comprising heating an alkaline component and an iron(II) component in the form of an aqueous solution to a temperature of 50° C. to 100° C., whereby the molar ratio of iron(II) component to one equivalent of alkaline component is 0.38 to 0.45, and treating the suspension with an oxidizing agent at a rate of oxidation of 20 to 50 mol. % Fe(II)/h until the iron compound has an Fe(III) content of more than 65 mol. %, and then again adding an Fe(II) component in the form of an aqueous solution at a molar ratio of Fe(II) to one equivalent of total alkaline component used is 0.47 to 0.49, and treating the suspension with an oxidizing agent, at a rate of oxidation is 20 to 50 mol. % Fe(II)/h until the iron compound has an Fe(III) content of more than 65 mol.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: July 27, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventor: Ulrich Meisen
  • Publication number: 20040089612
    Abstract: The invention concerns a method for treating and upgrading effluents containing at least a metallic sulphate, characterised in that it comprises steps which consist in: adding at least a base to the effluent to precipitate the metallic ions in the form of metallic hydroxides Mea(OH)e; separating the precipitated hydroxide calcium sulphate CaSO4; and separating the calcium sulphate CaSO4 precipitated during the preceding step. Said method enables to obtain calcium sulphate (white gypsum) substantially free of metals and therefore capable of being upgrade and metallic oxy-hydroxides likewise capable of being upgraded.
    Type: Application
    Filed: January 24, 2003
    Publication date: May 13, 2004
    Inventors: Francois Hyvrard, Pascal Muller
  • Patent number: 6576205
    Abstract: A process for decreasing the crystallinity of nickel hydroxide by generating and supplying large numbers of heteronuclei into the nickel hydroxide producing reaction system. Nickel sulfate and sodium hydroxide are initially forcefully and intimately combined to form a supersaturated solution of heteronuclei. These heteronuclei are introduced into a nickel powder containing slurry wherein nickel hydroxide having a crystallinity FWHM value of greater than about 0.5° is generated.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: June 10, 2003
    Assignee: INCO Limited
    Inventors: Juraj Babjak, Feng Zou, Stephen Joseph Baksa, Victor Alexander Ettel
  • Patent number: 6514311
    Abstract: A process of recovering metals from waste lithium ion batteries, wherein the waste batteries are calcined and sieved to generate an ash containing metals and metal oxides. The invented process includes subjecting the ash to a dissolution etching treatment, and a filtration treatment, and separately using a membrane electrolysis method to separate out metal copper and cobalt, wherein the acid generated on the cathode side in the electrolysis process can be recovered through a diffusion dialysis treatment. After electrolysis, the solution rich in lithium ion, after precipitating the metal impurities by adjusting the pH value, can be added with a carbonate ion to form a lithium carbonate.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: February 4, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Jiunn-Ren Lin, Chang Fan, I-Long Chang, Jer-Yuan Shiu
  • Patent number: 6337132
    Abstract: The present invention provides a lithium nickel-layered rock salt-type oxide particle powder, a lithium cobalt-layered rock salt-type oxide particle powder or a particle powder of a solid solution of these layered rock salt-type oxides, wherein the surface of the particle is rendered hydrophobic by coating it with a coupling agent having both a hydrophobic group and a hydrophilic group. The layered rock salt-type oxide particle powder is free of an adverse effect caused by adsorbed water because of less amount of water adsorbed on the surface of the particle powder, high in electrochemical charging and discharging capacities, low in cycle deterioration, so that it is especially useful as a positive electrode active material in a lithium battery.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: January 8, 2002
    Assignee: Toda Kogyo Corporation
    Inventors: Akihisa Kajiyama, Tatsuya Nakamura
  • Patent number: 6261526
    Abstract: A process for the recovery of nickel from a nickel containing ore in which the ore, particularly a laterite ore, is initially leached with an aqueous acid solution, after which the nickel is precipitated as nickel hydroxide by adding a hydroxide to the aqueous acid leach solution containing the nickel, followed by a re-leaching of the nickel with an aqueous ammoniacal solution and recovery of the nickel by a solvent extraction of the nickel from the aqueous ammoniacal solution with an organic phase of a water insoluble oxime extractant comprising a ketoxime containing less than 10% phenols dissolved in a water-immiscible hydrocarbon solvent and the nickel recovered by electrowinning the nickel from the aqueous acid stripping solution employed to strip the nickel from the organic phase.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: July 17, 2001
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, George Wolfe
  • Patent number: 5861131
    Abstract: The present invention provides a process for producing nickel hydroxide particles characterized by forming nickel hydroxide particles by continuously supplying an aqueous solution containing a nickel salt and an aqueous solution of an amino acid or salt thereof to a reactor at the same time and supplying an aqueous solution of an alkali metal hydroxide to the reactor so as to maintain the pH of the mixture in the reactor at a constant value.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: January 19, 1999
    Assignee: Seido Chemical Industry Co., Ltd.
    Inventor: Shinjiro Wakao
  • Patent number: 5599436
    Abstract: The present invention relates to a process for the preparation of manganese(III)-containing nickel(II) hydroxide powders, more than 50 mole % of the manganese being present in the trivalent oxidation state, by co-precipitation of nickel(II) and manganese salt solutions with alkali liquors.
    Type: Grant
    Filed: October 25, 1995
    Date of Patent: February 4, 1997
    Assignee: H. C. Starck GmbH & Co. KG
    Inventor: Peter Axmann
  • Patent number: 5534234
    Abstract: Methods of recovering manganese in the form of manganese carbonate from ores containing manganese and iron while also removing substantially all of the iron contained in the sulfurous acid leach solution are disclosed.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: July 9, 1996
    Inventors: Lorin D. Reddin, Malcolm T. Hepworth, Rachid Ben-Slimane, Glenn D. Welch
  • Patent number: 5487779
    Abstract: A method of preparing a (Me)bis-hydrogen cyanamide composition with enhanced corrosion preventive activity, wherein Me is a divalent metal selected from the group consisting of nickel and cobalt or mixtures thereof. The method includes precipitating Ni(OH).sub.2 or Co(OH).sub.2 or mixtures thereof, in situ in a liquid reaction medium, containing a soluble cobalt or nickel salt and sodium hydroxide and a stoichiometric excess of H.sub.2 NCN and immediately reacting the resultant precipitate with H.sub.2 NCN. Precipitation of coprecipitated pigment compositions including the aforementioned derivatives and zinc cyanamide is also disclosed.
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: January 30, 1996
    Assignee: Wayne Pigment Corp.
    Inventor: John Sinko
  • Patent number: 5443619
    Abstract: A process for extracting iron, copper, and nickel from a solution containing iron, copper, nickel, and at least one contaminent selected from the group comprising magnesium, aluminum, calcium and sodium, wherein each of said solutes is present at its respective chloride. In the process, calcium oxide or calcium hydroxide are added as a precipitating agent in incremental steps to cause incremental increases in the pH of the solution. At each increasing pH, one of the aforesaid metals will precipitate as the corresponding metal hydroxide while leaving the remaining metals in solution. The metal hydroxide precipitate is separated from the remaining solution prior to the subsequent addition of the precipitating agent.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: August 22, 1995
    Assignee: North American Palladium Ltd.
    Inventors: C. Dale McDoulett, Jr., George W. Reschke
  • Patent number: 5431892
    Abstract: A process for recovering valuable metals from a waste catalyst based on an alumina carrier includes (a) roasting the waste catalyst at a temperature range of to 1, C. to obtain a roasted product; (b) preparing a reduction dissolution by dissolving the roasted product with sulfuric acid in the presence of a metal as a dissolution catalyst; (c) separating a large part of the aluminum from the reduction dissolution solution and recovering aluminum as ammonium aluminum sulfate from the solution, optionally after subjecting the reduction dissolution solution to a treatment of removing iron; (d) extracting molybdenum as a molybdate by solvent extraction from the solution after separating and recovering aluminum from the solution; (e) extracting vanadium as a vanadate by solvent extraction from the solution obtained as a residue after extracting molybdenum; and (f) recovering nickel and cobalt each as a hydroxide from the extraction residue after recovering vanadium.
    Type: Grant
    Filed: June 29, 1994
    Date of Patent: July 11, 1995
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Keiji Toyabe, Kenji Kirishima, Haruo Shibayama, Hideo Hanawa
  • Patent number: 5266297
    Abstract: A liquid oxidizing system has a closed circuit in which a liquid containing matter to be oxidized is circulated. The circuit is provided with an ejector for forming a jet stream of the liquid into which oxygen, or both oxygen and an oxidizing catalyst are supplied. The oxygen (and the catalyst) rapidly contacts the matter to be oxidized in the jet stream and oxidizes it. The system is not only applicable to the treatment of waste water, such as from factories, but also useful for making a product by oxidizing a liquid, e.g. iron polysulfate which is a good coagulant.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: November 30, 1993
    Assignee: Sugita Wire Mfg. Co., Ltd.
    Inventor: Shigemi Kodama
  • Patent number: 5211933
    Abstract: Methods are described for the low temperature preparation of the spinel LiMn.sub.2 O.sub.4 and layered LiCoO.sub.2 phases which are intercalable compounds of interest for use in lithium secondary batteries. These phases can be prepared in bulk or thick film form at temperatures less than C. using acetate precursors.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: May 18, 1993
    Assignee: Bell Communications Research, Inc.
    Inventors: Philippe Barboux, Frough K. Shokoohi, Jean-Marie Tarascon
  • Patent number: 5202294
    Abstract: A process and apparatus for the regeneration of spent FCC catalyst in a single vessel are disclosed. In one embodiment, catalyst is at least partially regenerated in a primary stage comprising a fast or turbulent fluidized bed. The flue gas is discharged up, with some and preferably most of the catalyst discharged laterally, through windows, into a second fluidized bed, preferably disposed as an annulus about the first. In another embodiment a cyclone separator is closely coupled to, but spaced from, the primary regeneration stage, to rapidly separate catalyst from first stage flue gas, and minimize thermal stress.
    Type: Grant
    Filed: November 25, 1991
    Date of Patent: April 13, 1993
    Assignee: Mobil Oil Corporation
    Inventor: Michael F. Raterman
  • Patent number: 5130107
    Abstract: Cobalt is recovered from the oil/water mixed reaction product of oxonation by increasing the carbon dioxide level in the reaction product and adjusting the temperature to enhance the carbon dioxide level in the oil water phase to promote the formation of cobalt carbonate which is allowed to settle and may be removed and/or recycled increasing cobalt utilization and reducing environmental problems.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: July 14, 1992
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Nicolaas A. De Munck, Mattheus D. Olijve, Raf Caers, Arie Van Vliet, Jean A. A. Hanin, Eddy Van Driessche
  • Patent number: 5102633
    Abstract: A method for reducing impurity levels of calcium, magnesium and/or silicon in hexammine cobalt halide compounds involves the addition of ferric ions and, optionally, soluble fluorides to an aqueous hexammine cobalt (III) chloride solution having a pH of at least 9. Insoluble compounds of magnesium fluoride, calcium fluoride, and/or ferric hydroxide and silicon coprecipitates are removed from the solution by filtration.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: April 7, 1992
    Assignee: GTE Products Corporation
    Inventors: Eric F. Husted, Michael J. Miller, Shellie K. Northrop, David T. Smith
  • Patent number: 5017536
    Abstract: A method of introducing oxygen-containing gas into a fluidized bed of cracking catalyst particles through a plurality of nozzles which are arranged in the underside portion of the catalyst bed. One aspect of the invention comprises positioning at least one of a plurality of nozzles, used in the fluidized bed, substantially vertically downward. Another aspect of the invention comprises installing at least one nozzle with a length greater than the diameter of a header pipe which supplies the plurality of nozzles. In yet other aspects of the invention comprises installing at least one of the nozzles with a beveled tip, and installing at least one nozzle with a baffle on its tip.
    Type: Grant
    Filed: April 2, 1990
    Date of Patent: May 21, 1991
    Assignee: Phillips Petroleum Company
    Inventor: Frank W. Skraba
  • Patent number: 4943418
    Abstract: In a method of preparing high-purity manganese compounds, wherein the method comprises adding a member selected from ferromanganese and metallic manganeses to an aqueous electrolyte-containing solution, dissolving said member while stirring and maintaining a pH of 2 to 9, and then removing insolubles by filtration and recovering solubles by precipitation, heavy metal elements as well as non-metllic elements, such as P, Si, etc. can be removed efficiently, and high-purity manganese compounds of stable quality can be prepared.
    Type: Grant
    Filed: May 30, 1989
    Date of Patent: July 24, 1990
    Assignee: Japan Metals & Chemicals Co., Ltd.
    Inventors: Koichi Kambe, Kiyoshi Matsuura, Tatsuo Seino, Yoshiyuki Kimura, Hiroshi Kemmochi, Koichi Yoshioka, Hideaki Hohnoki
  • Patent number: 4793979
    Abstract: The present invention is depicting a chemical separation of phorphorus ore. Phosphorus ore, especially calcareous and clacareous-sillicious phosphorus ore can be effectively converted into several products through chemical separation, which consists of two stages, namely ore pulp reaction and solution regeneration. In the first stage, phosphorus ore is disolved by mixed ammonium salts solvent, but the valence minerals, such as fluoride apatite and quartz don't take part in the reaction and retain their solid state. Thus phosphorus concentrate can be obtained through the separation, the by-products such as the filtrate and gases can be utilized in the solution regeneration. After ammoniation, sulfurization, carbonization and alkalization of the filtrate, the Ca.sup.2+, Mg.sup.2+, Fe.sup.3+, Al.sup.2+, M.sup.2+ ions in it will gradually come out and turn into products, the regenerated solution obtained can be used again and again, thus forming a complete enclosed circulation process.
    Type: Grant
    Filed: March 20, 1986
    Date of Patent: December 27, 1988
    Assignees: Shaaxi Chemical and Fertilizer Industry Company, Kemira Company of Finland
    Inventor: Lu Wenxing
  • Patent number: 4778590
    Abstract: A process is disclosed for the removal of metals contaminants, particularly calcium, from hydrocarbonaceous feedstocks. The process comprises mixing the feedstock with an aqueous solution of a metals sequestering agent, particularly amino-carboxylic acids, their salts, or mixtures thereof, more particularly EDTA, and separating the aqueous solution containing the metals from the demetalated feedstock.
    Type: Grant
    Filed: August 28, 1986
    Date of Patent: October 18, 1988
    Assignee: Chevron Research Company
    Inventors: John G. Reynolds, Thomas F. Finger
  • Patent number: 4764284
    Abstract: Process for removing Sr and heavy metals from water in particular from waste water by throughly mixing it with a solution of an alkali metal carbonate and/or hydrogen carbonate in a reactor containing a fluidized bed of suitable bed material. The obtained heavy metal carbonate crystals crystallize onto said bed material and the obtained heavy metal carbonate crystals in granular form are removed from the reactor from time to time.The heavy metals which may be removed are Ni, Zn, Cu, Fe, Ag, Pb, Cd or Hg.
    Type: Grant
    Filed: May 8, 1986
    Date of Patent: August 16, 1988
    Assignee: DHV Raadgevend Ingenieursbureau B.V.
    Inventor: Cornelis W. Jansen
  • Patent number: 4657752
    Abstract: A process for the production of ferrous carbonate is provided wherein a mixture of an alkali metal bicarbonate and a ferrous compound such as a ferrous salt in solution is heated to a temperature in the range of about C. to about C. for a sufficient time to allow a precipitate to form. A molar ratio of alkali metal bicarbonate to ferrous compound is at least 2:1, such a ratio giving an extremely pure precipitate of ferrous carbonate.
    Type: Grant
    Filed: April 16, 1985
    Date of Patent: April 14, 1987
    Assignee: Phillips Petroleum Company
    Inventor: William G. Lyon
  • Patent number: 4631140
    Abstract: Ferrimagnetic particles which are useful as magnetic material for magnetic recording media and consist of a core of a magnetic material exhibiting multiaxial anisotropy and a coating which surrounds the core and is composed of a magnetic material possessing uniaxial anisotropy, and a process for their preparation.
    Type: Grant
    Filed: October 15, 1985
    Date of Patent: December 23, 1986
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Steck, Helmut Jakusch
  • Patent number: 4588572
    Abstract: A cobalt carbonate slurry and method for making same is described. The method comprises steps of reacting a water-soluble cobalt (II) salt with a water-soluble carbonate in aqueous solution in an inert atmosphere to form the desired cobalt carbonate and a water-soluble salt as a by-product; filtering the resultant cobalt carbonate; washing the resultant wet filter cake and preparing an aqueous slurry of cobalt carbonate from the wet filter cake. Preferably, the slurry is made to a pumpable viscosity. Additives may be used for specific applications to retard settling. Slurries prepared from the wet filter cake are superior to those prepared from the dry powder form because they are more uniform and stable for longer periods of time and resuspend more readily.
    Type: Grant
    Filed: October 12, 1984
    Date of Patent: May 13, 1986
    Assignee: Mooney Chemicals, Inc.
    Inventors: Michael P. Vincler, Thomas E. Meigs
  • Patent number: 4563213
    Abstract: A process is disclosed for extracting cobalt values from an aqueous solution containing cobalt and other metal values and stripping the resulting organic solution with an aqueous ammoniacal solution.
    Type: Grant
    Filed: August 2, 1984
    Date of Patent: January 7, 1986
    Assignee: Chevron Research Company
    Inventor: Gale L. Hubred
  • Patent number: 4419246
    Abstract: Heavy metal ions bonded to complexing agent can be precipitated from waste streams with a combination of a magnesium ion, calcium hydroxide and peroxygen compound.
    Type: Grant
    Filed: September 30, 1982
    Date of Patent: December 6, 1983
    Assignee: E. I. Du Pont de Nemours & Co.
    Inventor: Madhusudan D. Jayawant
  • Patent number: 4401630
    Abstract: The metal content of nickel-cobalt mixed sulfide slurries is recovered by atmospheric oxidation leaching, thereafter removing dissolved copper by metathesis with further mixed sulfide feed, treating the filtrate after liquid-solids separation with ammonia to selectively precipitate cobalt, separating the cobalt precipitate and working up the resulting filtrate to recover nickel.
    Type: Grant
    Filed: August 31, 1981
    Date of Patent: August 30, 1983
    Assignee: INCO Ltd.
    Inventors: Victor A. Ettell, Juraj Babjak
  • Patent number: 4394357
    Abstract: The invention relates to the preferential precipitation of cobalt from aqueous acidic sulphate solutions of nickel and cobalt.The separation is carried out by introducing at least a stoichiometric amount of Caro's Acid containing no more than a small amount of hydrogen peroxide into the nickel/cobalt solution progressively over a period of at least an hour, while maintaining the solution of a pH from 3.1 or 3.5 up to 4.7 by addition of an alkali metal hydroxide carbonate or bicarbonate, or at 4.3 to 4.7 with the corresponding ammonium compound, and, thereafter separating the precipitate from the aqueous cobalt depleted solution.
    Type: Grant
    Filed: November 16, 1981
    Date of Patent: July 19, 1983
    Assignee: Interox Chemicals Ltd.
    Inventors: Diana M. Mounsey, David B. Mobbs
  • Patent number: 4329320
    Abstract: A method of condensing a gaseous mixture of ammonia carbon dioxide gas and water vapor to produce an ammonium carbonate solution with minimum formation of ammonium carbamate includes passing the gaseous mixture into a condenser and cooling the condensing surface to cause the gaseous mixture to condense to form ammonium carbonate solution at a temperature at which formation of solid ammonium carbamate may occur. An aqueous liquid is discharged onto the condensing surface of the condenser, the liquid having an ammonia concentration below about 260 grams per liter to maintain the concentration of ammonia and carbon dioxide on the condensing surface below a concentration at which ammonium carbamate tends to form.
    Type: Grant
    Filed: December 22, 1977
    Date of Patent: May 11, 1982
    Assignee: Sherritt Gordon Mines Limited
    Inventors: Charles Vydra, Bhupendra M. Parekh
  • Patent number: 4329169
    Abstract: Fine particle size cobalt metal powder is prepared absent tailings by heating an aqueous solution of soluble cobaltic ammine halide to a temperature of at least about 120 degrees centigrade for a sufficient period of time to decompose said cobaltic ammine halide and form a cobalt containing precipitate. The precipitate is separated from the solution and reduced in a reducing atmosphere to produce fine metal cobalt powder.
    Type: Grant
    Filed: August 18, 1980
    Date of Patent: May 11, 1982
    Assignee: GTE Products Corporation
    Inventors: Richard G. W. Gingerich, Richard A. Scheithauer
  • Patent number: 4209489
    Abstract: Apparatus for treating spent hydrochloric acid from a galvanizing pickling bath wherein the spent acid is neutralized with ammonium hydroxide and aerated to form a solution of ammonium chloride with suspended iron oxides and hydroxides. The ammonium chloride solution, freed of the magnetite, is usable as a recycle material in the galvanizing process.
    Type: Grant
    Filed: November 20, 1978
    Date of Patent: June 24, 1980
    Inventor: Frederick O. Jaye, Jr.
  • Patent number: 4176160
    Abstract: Process for purifying an iron containing zinc sulfate solution which comprises precipitating iron from said solution as a slurry in at least one of the following forms at a pH which is maintained lower than 4: basic sulfate, jarosite or goethite; filtering said slurry on a planar horizontal filter and forming a cake on said planar filter; washing the cake directly on the planar filter with water supplied onto the cake without forming a newslurry with washing water and thus freeing the cake from water soluble zinc and copper compounds promptly before hydrolysis thereof insolubilizes said compounds as basic sulfates, whereby the solid residue in the cake does not contain substantially more insoluble zinc content than it contained in the slurry being fed to the filtration.
    Type: Grant
    Filed: March 6, 1978
    Date of Patent: November 27, 1979
    Assignee: Societe de Prayon
    Inventor: Engelhard Pavonet
  • Patent number: 4150092
    Abstract: The present invention provides a method for recovering vanadium from ferruginous chloride solutions by liquid-liquid extraction (or liquid ion exchange). Such chloride solutions are obtained in the extraction of vanadium from vanadiferous residues arising from the chlorination of titaniferous ores and in the extraction of vanadium from vanadiferous minerals. These solutions contain chlorides of vanadium, aluminum, iron, manganese and chromium. The method comprises adding sulfate ions to the chloride solution and recovering the vanadium by liquid-liquid extraction. By adjusting the sulfate-additive in relation to the concentrations of vanadium, iron and chloride in the solution vanadium can be exhausted substantially free from iron.
    Type: Grant
    Filed: October 21, 1977
    Date of Patent: April 17, 1979
    Assignee: Engelhard Minerals & Chemicals Corporation
    Inventor: Frank Pitts
  • Patent number: 4146572
    Abstract: This invention provides a two-stage leaching procedure for manganese nodules for obtaining directly from a second leaching stage a substantially pure stream of copper free of other metal values, the other metal values, including manganese, nickel and cobalt, having been previously extracted in an earlier leaching stage. Both leaching operations are carried out utilizing an ammoniacal aqueous solution on a reduced manganese nodule.
    Type: Grant
    Filed: October 18, 1976
    Date of Patent: March 27, 1979
    Assignee: Deepsea Ventures, Inc.
    Inventors: Paul H. Cardwell, William S. Kane
  • Patent number: 4126663
    Abstract: A process for the recovery of vanadium from acid sulfate solutions such as those derived by sulfuric acid leaching of industrial residues such as spent hydrodesulfurization catalysts, fly ash and furnace bottom ash in which magnesium oxide, hydroxide or carbonate is used as the neutralizing agent.
    Type: Grant
    Filed: October 17, 1977
    Date of Patent: November 21, 1978
    Assignee: Engelhard Minerals & Chemicals Corporation
    Inventor: Frank Pitts