Halogenating, Hydroxylating, Or Hydrating Patents (Class 423/147)
  • Patent number: 10081851
    Abstract: Provided is a method for recovering scandium, with which it is possible to easily and efficiently recover high-purity scandium from nickel oxide ores. This method for recovering scandium involves passing a solution containing scandium through an ion exchange resin, then subjecting the eluant eluted from the ion exchange resin to solvent extraction and separating the extraction residual liquid and the extraction agent after extraction, then performing an oxalation process on the extraction residual liquid to obtain a scandium oxalate precipitate, and roasting the precipitate to obtain scandium oxide, wherein the method is characterized in that an amine-based extraction agent is used as the extraction agent for solvent extraction.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 25, 2018
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Itsumi Matsuoka, Hidemasa Nagai, Keiji Kudo, Shin-ya Matsumoto, Tatsuya Higaki, Yoshitomo Ozaki, Hirofumi Shouji, Hiroshi Kobayashi
  • Patent number: 9950939
    Abstract: Flow and product waste water from fracturing can be cleaned and reused utilizing a precipitation methodology incorporating, in part, a super critical reactor 30. Initially, the waste water is treated to remove solids, destroy bacteria, and precipitate out certain salts, such as barium, strontium, calcium, magnesium and iron. The waste water then can be passed through a radioactive material adsorption unit 20 to remove radium, as well as other radioactive materials, and then introduced into the super critical reactor 30. The super critical reactor is designed to bring the waste water to super critical conditions at a central portion of the reactor. This causes any dissolve solids, in particular sodium chloride and the like, to precipitate out of solution in the center 42 of the reactor 30 thereby avoiding scale formation on the walls of the reactor. A catalyst can be utilized to promote the breakdown of carbon bonds and promote the water/gas shift reaction.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 24, 2018
    Assignee: Ohio University
    Inventor: Jason Patrick Trembly
  • Patent number: 9540708
    Abstract: A method for recovery of iron in the form of an iron oxide as useful product, such as hematite, from a leach solution obtained from leaching of a nickel laterite ore, is proposed which comprises an oxidation and a hydrolysis of a ferric sulphate and urea mix solution stemming from leaching of nickel laterite ores at a temperature of 60-100° C.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: January 10, 2017
    Inventor: Zekeriya Canbekte
  • Patent number: 8734739
    Abstract: A process for treating spent pickle liquor has the steps of mixing the spent pickle liquor with sulfuric acid, introducing oxygen into the mixture of spent pickle liquor and the sulfuric acid for a period of time, and producing diiron(II) tetrachlorosulfate from the oxygen-introduced mixture of sulfuric acid and spent pickle liquor. The spent pickle liquor and the sulfuric acid are introduced into a column. The oxygen is passed under pressure into the column. The intimate mixture of spent pickle liquor, sulfuric acid and oxygen are maintained under pressure for a period of time.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: May 27, 2014
    Inventor: Ronald L. Horne
  • Publication number: 20130266493
    Abstract: The invention relates to a method for separating nickel and other valuable metalsparticularly from material having low nickel content, which contains iron and magnesium in addition to nickel and other valuable metals. The material havinglow nickel content is subjected to pulpingand atmospheric leaching in acidic and oxidising conditions, in which the majority of the metals in themate-rialdissolve and the iron is partially precipitated. The precipitated iron is sepa-rated from the solution, after which nickel and the other dissolved valuable metalsare precipitated as sulphides.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 10, 2013
    Applicant: OUTOTEC OYJ
    Inventors: Jaakko Leppinen, Teppo Riihimäki, Mikko Ruonala
  • Patent number: 8241594
    Abstract: There are provided processes for extracting aluminum ions from aluminous ores. Such processes can be used with various types of aluminous ores such as aluminous ores comprising various types of metals such as Fe, K, Mg, Na, Ca, Mn, Ba, Zn, Li, Sr, V, Ni, Cr, Pb, Cu, Co, Sb, As, B, Sn, Be, Mo, or mixtures thereof.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 14, 2012
    Assignee: Orbite Aluminae Inc.
    Inventors: Richard Boudreault, Serge Alex, Fabienne Biasotto
  • Patent number: 8038979
    Abstract: Disclosed is a method of manufacturing a metal oxide nano powder comprising preparing a first dispersed solution by adding a nano-sized metal powder to water and dispersing the metal powder within the water, performing a hydration reaction of the first dispersed solution at a temperature of about 30 to about 70° C. to generate a precipitation, and filtering and drying the precipitation to prepare a metal oxide powder. Also, disclosed is a metal oxide nano powder manufactured by the method described above, and having any one of a bar-form, a cube-form, and a fiber-form.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 18, 2011
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Chang Kyu Rhee, Min Ku Lee, Young Rang Uhm, Jin Ju Park, Byung Sun Han, Hi Min Lee, Seung-Hee Woo
  • Patent number: 7998452
    Abstract: A method of preparation of spherical tricobalt tetraoxide, including at least oxidizing a bivalent cobalt salt in a wet environment and in the presence of a precipitant, a complexing agent, and an oxidant to yield spherical cobalt oxyhydroxide.cobalt hydroxide according to the following equation Co2++3OH?+O?CoOOH.Co(OH)2; oxidizing the spherical hydroxy cobalt oxyhydroxide.cobalt hydroxide to yield spherical tricobalt tetraoxide according to the following equation 6CoOOH.Co(OH)2+O?4Co3O4+9H2O; and roasting the spherical tricobalt tetraoxide at low or intermediate temperature to yield a black powder. The method is easily practiced and suitable for mass production, and the resultant spherical tricobalt tetraoxide has stable structure, reliable properties, and high activity.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 16, 2011
    Assignee: Ningbo Jinhe New Materials Co., Ltd.
    Inventor: Jinhua He
  • Patent number: 7910085
    Abstract: The process for production of iron oxyhydroxide particles according to the invention is characterized by comprising a step (A) in which a suspension containing iron(II) is prepared, and a step (B) in which fine bubbles with diameters of 0.05-500 ?m are generated in the suspension to form a reaction mixture, and the iron(II) in the reaction mixture is oxidized by the bubbles to produce iron oxyhydroxide particles.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 22, 2011
    Assignee: TDK Corporation
    Inventor: Mika Kawase
  • Patent number: 7871584
    Abstract: A process for the recovery of nickel and cobalt from nickel and cobalt containing ores, including the steps of first leaching a laterite ore and/or a partially oxidized sulfide ore with an acid solution to produce a pregnant leach solution containing at least dissolved nickel, cobalt and ferric ions, and subsequently leaching a sulfide ore or concentrate with the pregnant leach solution to produce a product liquor. Alternatively, the laterite ore and/or partially oxidized sulfide ore can be leached in a combined leach with the sulfide ore or concentrate. The ferric ion content in the pregnant leach solution or in the combined leach is sufficient to maintain the oxidation and reduction potential in the sulfide leach high enough to assist in leaching nickel from the sulfide ore or concentrate.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: January 18, 2011
    Assignee: BHP Billiton SSM Technology Pty. Ltd.
    Inventors: Houyuan Liu, Alexey Duarte, Wolf Meihack
  • Patent number: 7695707
    Abstract: A method for preparation of iodizing agent for the use in the formulation of iodized salt that offers excellent stability of iodine in iodized salt is developed and the unrefined salt iodized with this compound was tested for its stability in presence of moisture, temperature and metal salts at higher temperature. The hydrotalcite type layered compound was used to prepare such compound and part of carbonate was substituted with iodate anion. The iodizing agent exhibited excellent stability of iodine in iodized salt.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: April 13, 2010
    Assignee: Council of Scientific and Industrial Research
    Inventors: Pushpito Kumar Ghosh, Satish Hariray Mehta, Jatin Rameshchandra Chunawala, Mrunalben Vinodray Sheth, Mahesh Ramniklal Gandhi
  • Patent number: 7470647
    Abstract: Decomposition of methane to produce carbon monoxide-free hydrogen is accomplished using un-supported, nanometer sized, hydrogen reduced, nickel oxide particles made by a precipitation process. A nickel compound, such as NiCl2 or Ni(NO3) is dissolved in water and suitably precipitated as nickel hydroxide. The precipitate is separated, dried and calcined to form the NiO catalyst precursor particles.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: December 30, 2008
    Assignees: GM Global Technology Operations, Inc., Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Mei Cai, Yong Li, Wenjie Shen, Jerry Dale Rogers
  • Patent number: 7118719
    Abstract: The invention relates to a method for the hydrolytic precipitation of iron as jarosite from a sulphate-containing solution in connection with zinc recovery from zinc calcine. The recovey contains neutral leach, ferrite leach, zinc electrolysis and iron precipitation stages. The ferrite included in the calcine is leached with return acid of the electrolysis after which the iron present in ferrous form is neutralized and routed to an iron precipitation stage, where the iron is oxidised to the trivalent form using an oxygen-containing gas. Also present in the precipitation stage arc Na, K or NH4 ions and jarosite nuclei.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: October 10, 2006
    Assignee: Outokumpu Technology Oy
    Inventor: Sigmund Fugleberg
  • Patent number: 6524546
    Abstract: A new process for producing calcium chloride and other metal halides from the carbonates, bicarbonates, oxides of these metals. The process utilizes the discovery that hydrogen halides, when used in a true or conventional fluidizing medium in shallow beds of the aforementioned solids at moderately elevated temperatures in a continuous counter current process results in the conversion of the metal carbonates, bicarbonates, and oxides, into metal halides and carbon dioxide gas and/or water vapor. The process is carried out in a series of true or conventional fluidized beds preferable but not necessarily arranged in a vertical configuration so that the solids flow downward due to the fluidized process and the hydrogen halides flow counter currently in an upward direction producing metal halides at the bottom and pure carbon dioxide gas and/or water vapor at the top.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: February 25, 2003
    Inventors: William J. Rigby, Keith D. Cochran, Timothy G. Holt
  • Patent number: 6409979
    Abstract: A method for precipitating nickel and cobalt from an acid aqueous solution containing at least dissolved nickel, cobalt and manganese, comprising adding solid caustic calcined magnesium oxide or freshly slurried caustic calcined magnesium oxide to the solution in an amount sufficient to precipitate a substantial proportion of the nickel and cobalt in solution and to precipitate a minor proportion of the manganese in solution; maintaining the magnesium oxide in contact with the solution for a period of about 1 hour to about 9 hours to thereby achieve precipitation of a substantial proportion of the nickel and cobalt in solution and precipitation of a minor proportion of the manganese in solution; and separating solids precipitated in the prior step from the aqueous solution.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: June 25, 2002
    Assignee: Centaur Nickel Pty Limited
    Inventor: David Thomas White
  • Patent number: 6379637
    Abstract: The present invention provides an atmospheric acid leaching process for leaching nickel and cobalt from highly-serpentinized saprolitic fractions of nickel laterite deposits that are generally too low in nickel to support economical extraction of their nickel contents by pyrometallurgical processing except under special circumstances, and generally too high in magnesium to be suitable for processing by modern high pressure acid leaching processes employed for treating predominantly limonitic nickel laterites. The process involves leaching the highly-serpentinized saprolitic portion of the nickel laterite ore profile in strong sulphuric acid solutions at atmospheric pressure and temperatures between 80° C. and 100° C., essentially autogenously, to extract at least 90% of its contained nickel content and a large proportion of its cobalt content after leaching reaction times of about one hour or less.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 30, 2002
    Inventor: Walter Curlook
  • Publication number: 20020031463
    Abstract: A method for precipitating nickel and cobalt from an acid aqueous solution containing at least dissolved nickel, cobalt and manganese, the method including: adding solid caustic calcined magnesium oxide or freshly slurried caustic calcined magnesium oxide to the solution, the magnesium oxide being added in an amount sufficient to precipitate a substantial proportion of the nickel and cobalt in solution and to precipitate a minor proportion of the manganese in solution, maintaining the magnesium oxide in contact with the solution for a period of about 1 hour to about 9 hours to thereby achieve precipitation of a substantial proportion of the nickel and cobalt in solution and precipitation of a minor proportion of the manganese in solution; and separating solids precipitated in step (b) above from the aqueous solution. Preferably, about 80% to 100% of the Ni and Co in solution is precipitated and about 5% to 15% of the Mn in solution is precipitated. The precipitated material separates early from the solution.
    Type: Application
    Filed: April 7, 2000
    Publication date: March 14, 2002
    Applicant: Centaur Nickel Pty Limited
    Inventor: DAVID THOMAS WHITE
  • Patent number: 6319483
    Abstract: It is possible to recover gallium and indium efficiently and at a low cost from solutions containing traces of gallium and indium. In particular, jarosite is produced by performing a specific treatment on a solution obtained by a two-stage neutralization treatment during the zinc leached residue treatment step of wet zinc refining, or on another solution containing traces of gallium and indium; the gallium and indium are separated and concentrated; an alkali is added to the jarosite; and the gallium is separated and concentrated by leaching. Calcium hydroxide or magnesium hydroxide is optionally added to the jarosite leached solution to perform purifying, sulfuric acid is added to the purified solution, neutralization is performed, basic gallium sulfate is precipitated, the precipitate is subjected to alkali leaching, and the gallium in the leached solution is electrolytically extracted, yielding metallic gallium.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: November 20, 2001
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Yoshito Kudo, Yukiko Maruyama
  • Patent number: 6274104
    Abstract: The invention relates to a method for recovering non-ferrous metals, particularly nickel, cobalt, copper, zinc, manganese and magnesium, from materials containing said metals by converting said non-ferrous metals into sulphates by means of melt and melt coating sulphation, i.e. by a thermal treatment under oxidizing conditions within a temperature range of 400 to 800° C., during which a reaction mixture is formed containing at least one said non-ferrous metal, iron(III)sulphate and alkali metal sulphate, and appropriate reaction conditions are selected to substantially prevent iron(III)sulphate from thermally decomposing to hematite, and finally, said non-ferrous metals are recovered as metallic compounds. In the method of the invention, a process is formed around the melt and melt coating sulphation, which comprises nine steps.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 14, 2001
    Inventors: Jussi Rastas, Pekka Saikkonen
  • Patent number: 6270738
    Abstract: The invention relates to a process for preparing a usable product, in particular a water treatment solution which contains ferric iron, from an impure ferric sulfate solution which contains as an impurity at least one other metal, the process comprising a first precipitation step in which a base is added to the said impure ferric sulfate solution in order to raise the pH to approx. 2-5, preferably approx. 3-4, whereupon ferric hydroxide precipitates; following the first precipitation step, a second precipitation step in which there are added to the solution an oxidant and a base to raise the pH to approx. 6-10, preferably approx. 8-9, whereupon the said impurity metal precipitates; and one or more separation steps to separate from the sulfate solution the solids precipitated in the first and the second precipitation steps; as well as possibly an additional step in which the said separated solids, or a portion thereof, are treated further in order to form a usable product.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: August 7, 2001
    Assignee: Kemira Chemicals OY
    Inventors: Simo Jokinen, Stefan Jäfverström, Timo Kenakkala
  • Patent number: 5639559
    Abstract: Process for the preparation of chlorite salts by the controlled reaction of chlorine dioxide with a reducing agent under reduced pressure to form chlorous acid. The chlorous acid is reacted with an aqueous solution of base to form the desired chlorite salt. The process is rapid, economical and is conducted in a generator which is significantly smaller than equipment currently used for production of chlorite salts.
    Type: Grant
    Filed: July 25, 1995
    Date of Patent: June 17, 1997
    Assignee: Rio Linda Chemical Company, Inc.
    Inventors: John Y. Mason, Dorm Matchim, Yan Wang
  • Patent number: 5558706
    Abstract: A corrosion inhibitor pigment composition is based a solid solution of (Ni.sup.2+ +Co.sup.2+)-bis-hydrogen cyanamide.
    Type: Grant
    Filed: December 15, 1995
    Date of Patent: September 24, 1996
    Assignee: Wayne Pigment Corp.
    Inventor: John Sinko
  • Patent number: 5487779
    Abstract: A method of preparing a (Me)bis-hydrogen cyanamide composition with enhanced corrosion preventive activity, wherein Me is a divalent metal selected from the group consisting of nickel and cobalt or mixtures thereof. The method includes precipitating Ni(OH).sub.2 or Co(OH).sub.2 or mixtures thereof, in situ in a liquid reaction medium, containing a soluble cobalt or nickel salt and sodium hydroxide and a stoichiometric excess of H.sub.2 NCN and immediately reacting the resultant precipitate with H.sub.2 NCN. Precipitation of coprecipitated pigment compositions including the aforementioned derivatives and zinc cyanamide is also disclosed.
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: January 30, 1996
    Assignee: Wayne Pigment Corp.
    Inventor: John Sinko
  • Patent number: 5324500
    Abstract: A method for treating residues of barium sulfide or strontium sulfide leaching with waste sulfuric acid and hydrochloric acid, which method significantly decreases the amount of residual material which must be disposed of.
    Type: Grant
    Filed: September 9, 1992
    Date of Patent: June 28, 1994
    Assignee: Solvay Barium Strontium GmbH
    Inventors: Paul Jaeger, Heinz-Hermann Riechers, Karl Koehler, Martin Wulff
  • Patent number: 5271910
    Abstract: A process of treating metal chloride wastes produced by chlorination of titanium ore comprises the steps of:(a) leaching said metal chloride wastes in a hydrochloric acid (HCl)-containing solution to obtain a solution containing solids and dissolved metals,(b) separating said dissolved metals from said solids present in the solution obtained in step (a) to obtain a liquid and a residue,(c) selectively precipitating the metals as their hydroxides by adding a neutralizing agent to the liquid obtained in step (b),(d) separating the precipitate of metal hydroxides obtained in step (c) from the liquid to obtain a residue, and(e) dewatering the residue obtained in step (d).
    Type: Grant
    Filed: March 13, 1990
    Date of Patent: December 21, 1993
    Assignee: Shell Internationale Research Maatschappij B.V.
    Inventors: Andries P. van der Meer, Gerrit van der Lee
  • Patent number: 5171549
    Abstract: An improved halogenator process and system is provided which significantly and economically decreases the level of impurities in the processing of various refractory metals and their halides and particularly hafnium tetrachloride which is condensed from gases produced by the chlorination of Zircon.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: December 15, 1992
    Assignee: Teledyne Wah Chang Albany
    Inventors: Ronald E. Walsh, Jr., Peter W. Krag, Roy E. Blackstone, Duane L. Hug
  • Patent number: 5074910
    Abstract: The present invention is a process to recover precious metals from sulfide ores. It involves chlorinating a mixture of an ore concentrate and salt to form a liquid melt. The salt preferably contains potassium chloride. This chlorination is carried out at a temperature between 300.degree. and 600.degree. C. while stirring. The process converts precious metals in the elemental and sulfide forms into precious metal chlorides which are recovered by subsequent processing steps.
    Type: Grant
    Filed: February 28, 1990
    Date of Patent: December 24, 1991
    Assignee: Chevron Research and Technology Company
    Inventor: Michael Dubrovsky
  • Patent number: 4872909
    Abstract: A method of processing manganese ore by adding the ore to an aqueous solution of acid and H.sub.2 O.sub.2 to form a leach pulp. The leach pulp is agitated for a predetermined time period at predetermined temperatures. The leach pulp is then separated into a solid fraction and a liquid fraction containing solubilized metals. The solubilized metals are then recovered from the liquid fraction.
    Type: Grant
    Filed: August 8, 1988
    Date of Patent: October 10, 1989
    Assignee: The United States of America, as Represented by the Secretary of the Interior
    Inventors: James P. Allen, Richard R. Corwin
  • Patent number: 4718995
    Abstract: A process is disclosed for recovering scandium from a tungsten bearing material containing tungsten, iron manganese and scandium. The process involves digesting the material in an aqueous solution selected from the group consisting of a saturated solution of sulfur dioxide and a sulfuric acid solution containing an additional reducing agent at a sufficient temperature for a sufficient time to form a digestion solution containing the major portion of the scandium, iron, and manganese, and a digestion solid containing the major portion of the tungsten which is separated from the digestion solution. The major portion of the scandium is extracted from the digestion solution with an organic consisting essentially of an extracting agent which is essentially a mixture of alkyl primary amines which are present in an amount sufficient to extract the major portion of the scandium without extracting appreciable amounts of iron and manganese, and the balance an essentially aromatic solvent.
    Type: Grant
    Filed: September 5, 1986
    Date of Patent: January 12, 1988
    Assignee: GTE Products Corporation
    Inventors: Clarence D. Vanderpool, Martin B. MacInnis, Judith A. Ladd
  • Patent number: 4671945
    Abstract: This is a method for the complete leaching of the valuable metals in a metal sulphide material which contains copper, zinc, lead, silver and iron by the use of a solution which essentially contains cupric chloride/sulphates. After the valuable metals have been recovered, the solution is regenerated whereby ferrous chloride and cuprous chloride/sulphate is oxidized to a ferric hydroxide solid and a cupric chloride solution respectively. The regenerated solution is split into two part-solutions and returned to the process.One part-solution goes to a metathesis stage where the fresh metal sulphide material is added in large excess with respect to the part-solutions's content of copper. The result is that only the valuable metals like zinc, lead and silver are leached while copper and iron remain in the residue.The other part-solution goes to a leach stage where the residue from the metathesis stage is added.
    Type: Grant
    Filed: October 29, 1985
    Date of Patent: June 9, 1987
    Inventors: Thomas Thomassen, Carl O. Kostol
  • Patent number: 4670229
    Abstract: Metal values and alumina are recovered from spent, usually oily, catalysts by oxygen pressure leaching with sodium hydroxide and/or sodium aluminate to dissolve molybdenum, vanadium and/or tungsten and provide a solid, filterable residue containing alumina and cobalt and/or nickel, the residue is digested with sodium hydroxide to give a sodium aluminate solution and a residue enriched in nickel and/or cobalt, alumina is recovered from the sodium aluminate solution as a solid and the remaining supernatant solution is recycled to the oxygen pressure leaching step wherein the alumina content of the aluminate solution is precipitated and a bleed for metals in the aluminate solution is provided.
    Type: Grant
    Filed: May 9, 1986
    Date of Patent: June 2, 1987
    Assignee: Amax Inc.
    Inventors: Edward I. Wiewiorowski, Luther R. Tinnin, Ranko Crnojevich
  • Patent number: 4666685
    Abstract: Spent hydrodesulfurization catalysts containing alumina, at least one metal from the group consisting of molybdenum, tungsten and vanadium and at least one metal from the group consisting of nickel and cobalt, sulfur, and, usually, residual oil are oxygen pressure leached at a temperature of at least about 400.degree. F. with a base from the group consisting of sodium hydroxide and sodium aluminte in at least stoichimetric amount to yield a solution having a pH between about 7 and 9 containing dissolved molybdenum, vanadium and any tungsten which may be recovered and a readily filterable residue containing aluminum, nickel and cobalt which may be worked up to recover the valuable constituents, with overall processing being accomplished in an environmentally acceptable manner.
    Type: Grant
    Filed: May 9, 1986
    Date of Patent: May 19, 1987
    Assignee: Amax Inc.
    Inventor: Edward I. Wiewiorowski
  • Patent number: 4626280
    Abstract: A process is disclosed for recovering tungsten, iron, and manganese from tungsten bearing material. The process involves digesting the material in a sulfur dioxide solution at a sufficient temperature for a sufficient time to form a digestion solution containing the major portion of the scandium, iron, and manganese, and a digestion solid containing the major portion of the tungsten which is separated from the digestion solution. The major portion of the scandium is extracted from the digestion solution with an organic consisting essentially of an extracting agent which is essentially a mixture of alkyl primary amines which are present in an amount sufficient to extract the major portion of the scandium without extracting appreciable amounts of iron and manganese, and the balance an essentially aromatic solvent. After separation of the scandium containing organic from the raffinate, the organic is stripped of the scandium with hydrochloric acid which is then separated from the stripped organic.
    Type: Grant
    Filed: January 24, 1986
    Date of Patent: December 2, 1986
    Assignee: GTE Products Corporation
    Inventors: Clarence D. Vanderpool, Martin B. MacInnis, Judith A. Ladd
  • Patent number: 4610722
    Abstract: A process is provided for hydrometallurgical processing of steel plant dusts containing cadmium, lead, zinc, and iron values, along with impurities such as chloride and fluoride salts of sodium, potassium, magnesium, etc. The first step in the process involves leaching the dust in a mixed sulfate-chloride medium that dissolves most of the zinc and cadmium. Any iron and aluminum dissolved in this step is precipitated by oxidation and neutralization. Zinc is recovered from the resulting solution by solvent extraction which provides a raffinate which is recycled to the leaching step with a bleed stream also provided for recovery of cadmium and removal of other impurities from the circuit. The lead sulfate residue from the leaching step is leached with caustic soda, and zinc dust is used to cement the lead out from the caustic solution, which then joins the main solution for zinc recovery.
    Type: Grant
    Filed: January 31, 1985
    Date of Patent: September 9, 1986
    Assignee: AMAX Inc.
    Inventors: Willem P. C. Duyvesteyn, Robert F. Hogsett
  • Patent number: 4608084
    Abstract: A process is disclosed for recovering cobalt and chromium from a cobalt and chromium containing alloy. The process involves first digesting the alloy in concentrated hydrochloric acid at a sufficient temperature for a sufficient time to form a first solution containing the major portion of the cobalt, chromium, and any iron and nickel present in the alloy and a first solid and separating the first solution from the first solid. Oxalic acid is then added to the first solution in an amount sufficient to subsequently precipitate the major portion of the cobalt and any iron and nickel contained in the first solution followed by adjustment of the ph to from about 1 to about 2 with a base and maintaining the temperature below about 20.degree.
    Type: Grant
    Filed: April 1, 1985
    Date of Patent: August 26, 1986
    Assignee: GTE Products Corporation
    Inventors: Richard A. Scheithauer, Michael J. Miller, Clarence D. Vanderpool, Martin B. MacInnis
  • Patent number: 4435369
    Abstract: A hydrometallurgical process for extracting nickel from comminuted nickel-bearing minerals. The process includes the steps of contacting the comminuting nickel-bearing minerals in an extraction zone with an aqueous solution having a concentration of chloride ions, metal ions and sulfuric acid at an elevated temperature and continuing the contact to form an extraction mixture slurry, including a liquid component comprising an aqueous solution containing extracted nickel and iron from the comminuted minerals dissolved therein and a solid tailings component; and, separating the liquid and solid components of the extraction mixture slurry.
    Type: Grant
    Filed: July 29, 1982
    Date of Patent: March 6, 1984
    Inventor: Charles H. Simpson
  • Patent number: 4431613
    Abstract: A method of treating sulphidic mattes containing from 5% to 60% iron; from 15% to 40% sulphur together with soluble non-ferrous metals such as copper, cobalt, nickel and zinc and also optionally insoluble non-ferrous metals which term includes platinum group metals gold and silver by a leaching process to effect substantial separation of the non-ferrous metals from iron as well as from insoluble residue material. The matte is contacted in a finely subdivided form with sulphate in acid medium at a temperature of from 70.degree. C. to 120.degree. C. and an oxygen partial pressure of from 50kPa to 1,000kPa. The quantity of sulphate present is at least the stoichiometric amount required for dissolving the soluble non-ferrous metals present but is limited to ensure that a substantial proportion of iron which dissolves simultaneously with the soluble non-ferrous metals precipitates out as it is replaced by dissolving non-ferrous metals.
    Type: Grant
    Filed: October 12, 1982
    Date of Patent: February 14, 1984
    Assignee: National Institute for Metallurgy
    Inventor: Bernard Verbaan
  • Patent number: 4394357
    Abstract: The invention relates to the preferential precipitation of cobalt from aqueous acidic sulphate solutions of nickel and cobalt.The separation is carried out by introducing at least a stoichiometric amount of Caro's Acid containing no more than a small amount of hydrogen peroxide into the nickel/cobalt solution progressively over a period of at least an hour, while maintaining the solution of a pH from 3.1 or 3.5 up to 4.7 by addition of an alkali metal hydroxide carbonate or bicarbonate, or at 4.3 to 4.7 with the corresponding ammonium compound, and, thereafter separating the precipitate from the aqueous cobalt depleted solution.
    Type: Grant
    Filed: November 16, 1981
    Date of Patent: July 19, 1983
    Assignee: Interox Chemicals Ltd.
    Inventors: Diana M. Mounsey, David B. Mobbs
  • Patent number: 4301125
    Abstract: In a process according to the present invention pre-reduced lateritic ores containing iron and nickel are leached with an aqueous sulphuric acid leach liquor containing or into which is introduced in the presence of the ore a peroxidant selected from hydrogen peroxide and peroxymonosulphuric acid. By so doing, the liquor is obtained with a lower concentration of iron than if the peroxidant had not been employed.In preferred embodiments the leaching is carried out at from 40.degree. to 70.degree. C. for a period of 1 to 5 hours; when hydrogen peroxide is used, it is preferably introduced continuously or progressively throughout the reaction period and when peroxymonosulphuric acid is used it is preferably introduced initially. The acidity of the liquor can be reduced at the end of the reaction to pH3 to 4 to further lower the content of iron in solution.
    Type: Grant
    Filed: July 26, 1979
    Date of Patent: November 17, 1981
    Assignee: Interox Chemicals Ltd.
    Inventors: Alfred R. Burkin, Andrew J. Monhemius
  • Patent number: 4298379
    Abstract: Disclosed is a process for refining a magnesium and nickel containing ore, comprising the steps of grinding the ore; preparing a slurry of the ground ore in sulfuric acid containing less than ten percent of water; adding water to the acid-ore slurry in an amount which is effective to initiate a sulfation reaction; allowing the sulfation reaction to continue, utilizing the heat of the sulfation reaction to heat the acid-ore slurry, whereby water-soluble metal sulfates and insoluble residue are formed; leaching the sulfation product with water to extract the water-soluble metal sulfates in solution; separating the metal sulfates solution from the insoluble residue; precipitating from the solution metals other than Mg as hydroxides; separating the solution from the metal hydroxide precipitate; concentrating the solution sufficiently to precipitate CaSO.sub.4 ; separating the concentrated solution from the precipitate; recovering dehydrated MgSO.sub.
    Type: Grant
    Filed: January 31, 1980
    Date of Patent: November 3, 1981
    Assignee: The Hanna Mining Company
    Inventor: Adolfo R. Zambrano
  • Patent number: 4207201
    Abstract: The application is concerned with a process for the manufacture of an aqueous iron (III)-chloride-sulfate solution by the oxidation of iron (II) sulfate with chlorine in aqueous solution.
    Type: Grant
    Filed: March 8, 1978
    Date of Patent: June 10, 1980
    Assignee: Kronos Titan GmbH
    Inventors: Achim Hartmann, Achim Kulling, Dieter Schinkitz, Edgar Klein
  • Patent number: 4067952
    Abstract: A process for the treatment of nickel-copper concentrates comprises the steps of leaching nickel selectively with a dilute hydrochloric acid solution, separating the leach solution from the residue, roasting the residue at a temperature sufficient to form at least about the stoichiometric quantity of sulphate to convert all the nickel present in the residue to nickel sulphate, leaching the roasted residue with water and precipitating any dissolved copper from the aqueous leach solution thus obtained.
    Type: Grant
    Filed: September 2, 1975
    Date of Patent: January 10, 1978
    Assignee: Anglo-Transvaal Consolidated Investment Company Limited
    Inventors: Willem H. Pittie, Kingsley F. Doig
  • Patent number: 4008076
    Abstract: A method is provided for processing raw manganese nodules for the selective recovery of metal values of nickel, copper, cobalt and zinc contained therein by hydrometallurgical means. The raw nodules are suspended in water or dilute wash solution to form a suspension. The suspension and sulfuric acid are charged to a pressure vessel to provide a solid-liquid suspension of nodules and leach solution. The solid-liquid suspension of nodules and leach solution is heated in the pressure vessel to a temperature between about 150.degree. C and about 300.degree. C to cause the nickel, copper, cobalt and zinc to be selectively leached from the nodules into the leach solution to form a metal rich leach solution containing these metals and a residue, with the solid-liquid suspension having a sulfuric acid content of less than 35 g/l upon completion of the leaching. The metal rich leach solution containing nickel, copper, cobalt and zinc is separated from the residue.
    Type: Grant
    Filed: January 15, 1976
    Date of Patent: February 15, 1977
    Assignees: Duisburger Kupferhutte, Fried. Krupp Gesellschaft mit beschrankter Haftung
    Inventors: Helmut Junghanss, Wilhelm Roever, Dieter Neuschutz, Ulrich Scheffler