Ion Exchanging Or Liquid-liquid Extracting Patents (Class 423/181)
  • Patent number: 11286170
    Abstract: A process (10) for the treatment of a lithium containing material (12), the process comprising the steps of: (i) Preparing a process solution from the lithium containing material (12); (ii) Passing the process solution from step (i) to a series of impurity removal steps, one of which is an HCl sparging step 58, thereby providing a substantially purified lithium chloride solution; and (iii) Passing the purified lithium chloride solution of step (ii) to an electrolysis step (70) thereby producing a lithium hydroxide solution. An additional step in which the lithium hydroxide solution produced in step (iii) is carbonated by passing compressed carbon dioxide (88) through the solution, thereby producing a lithium carbonate precipitate, is also disclosed.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: March 29, 2022
    Assignee: Reed Advanced Materials Pty Ltd
    Inventor: Yatendra Sharma
  • Patent number: 10975478
    Abstract: A lithium hydroxide production process integrating a lithium stripping stage with a lithium hydroxide production process performed in a two-compartment electrolysis cell.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: April 13, 2021
    Assignee: TENOVA ADVANCED TECHNOLOGIES LTD.
    Inventors: Jonathan Lipp, Nadav Dobrin
  • Patent number: 10604414
    Abstract: This invention relates generally to a system and process for recovery of select minerals and lithium from a geothermal brine. The system and process are configured for the sequential recovery of zinc, manganese, and lithium from a Salton Sea Known Geothermal Resource Area brine. The system and process includes: 1) an impurity removal circuit; then 2) a continuous counter-current ion exchange (CCIX) circuit for selectively recovering lithium chloride from the brine flow and concentrating it using a CCIX unit; and then 3) a lithium chloride conversion circuit for converting lithium chloride to lithium carbonate or lithium hydroxide product.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: March 31, 2020
    Assignee: ENERGYSOURCE MINERALS LLC
    Inventors: John L. Featherstone, Paul J. Hanson, Michael J. Garska, Charles R. Marston
  • Patent number: 9301974
    Abstract: The present invention provides methods and compositions for the treatment of ion imbalances using core-shell composites and compositions comprising such core-shell composites. In particular, the invention provides core-shell particles and compositions comprising potassium binding polymers, and core-shell particles and compositions comprising sodium binding polymers, and in each case, pharmaceutical compositions thereof. Methods of use of the polymeric and pharmaceutical compositions for therapeutic and/or prophylactic benefits are also disclosed. The compositions and methods of the invention offer improved approaches for treatment of hyperkalemia and other indications related to potassium ion homeostasis, and for treatment of hypertension and other indicates related to sodium ion homeostasis.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: April 5, 2016
    Assignee: Relypsa, Inc.
    Inventors: Michael J. Cope, Paul Mansky, Futian Liu, Han-Ting Chang, Dominique Charmot, Eric Connor, Kalpesh Biyani, Mingjun Liu, Tony Kwok-Kong Mong, Yan Chen
  • Patent number: 9126843
    Abstract: The present invention is directed to a new more environmentally friendly method for the separation of metals from concentrated solution or more specifically to separate monovalent metals from a solutions that comprise high levels of multivalent metals by using a sulfonic functionalized resin.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 8, 2015
    Assignee: Rohm and Haas Company
    Inventor: Areski Rezkallah
  • Patent number: 9058935
    Abstract: The invention relates to new compounds containing alkyl/alkenyl-cyano-borate or alkyl/alkenyl-cyano-fluoroborate anions, their preparation and their use, in particular as part of electrolyte formulations for electrochemical or optoelectronic devices.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: June 16, 2015
    Assignee: Merc Patent GmbH
    Inventors: Nikolai (Mykola) Ignatyev, Michael Schulte, Kentaro Kawata, Tomohisa Goto, Jan Sprenger, Maik Finze, Walter Frank
  • Patent number: 8968698
    Abstract: Provided herein are processes for recovering molybdenum and/or other value metals (e.g., uranium) present in aqueous solutions from a large range of concentrations: from ppm to grams per liter via a solvent extraction process by extracting the molybdenum and/or other value metal from the aqueous solution by contacting it with an organic phase solution containing a phosphinic acid, stripping the molybdenum and/or other value metal from the organic phase solution by contacting it with an aqueous phase strip solution containing an inorganic compound and having a ?1.0 M concentration of free ammonia, and recovering the molybdenum and/or other value metal by separating it from the aqueous phase strip solution. When the molybdenum and/or other value metal are present only in low concentration, the processes can include an organic phase recycle step and/or an aqueous phase strip recycle step in order to concentrate the metal prior to recover.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: March 3, 2015
    Assignee: Cytec Technology Corp.
    Inventors: Troy Allan Bednarski, Violina Antoneta Cocalia, Matthew Dean Soderstrom, Eduardo Alberto Kamenetzky, Andrew Michael Cameron, Douglas Harris
  • Publication number: 20140322110
    Abstract: Provided are continuous methods and processes for removing Li ions from an aqueous feed solution.
    Type: Application
    Filed: November 1, 2012
    Publication date: October 30, 2014
    Applicant: ADVANCE LITHIUM PROJECTS LTD.
    Inventors: Jonathan Lipp, Baruch Grinbaum
  • Patent number: 8828338
    Abstract: A material with cationic exchanger properties is introduced into aqueous media, where the equilibriums of carbon dioxide dissolution take place. A cationic exchanger material x/nM+nEx? is used to capture hydronium cations (H3O+) according to: x/nM+nEx?(s)+xH3O+(aq)=xH3O+Ex?(s)+x/nM+n(aq) where ā€œxā€ stands for molar amount of the anionic centers of charge of the cationic exchanger material Ex? balanced by x/n molar amount of metal M, ā€œnā€ stands for the metal valence, and M is selected from the group consisting of 1A and/or 2A of the periodic table of elements. This capture of the hydronium cations, H3O+, shifts certain reaction equilibriums to the right, according to Le Chatelier's principle, producing more bicarbonate, HCO3?, and/or carbonate, CO3=, than would otherwise be obtained.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: September 9, 2014
    Assignee: Silica de Panama S.A.
    Inventors: Juan Lujano, Javier Revete, Norma Valencia, Luis Rivas, Nelson Socorro
  • Publication number: 20140186242
    Abstract: The invention provides a method of reducing the sodium content of a water containing dissolved sodium ions, particularly a water with a sodium ion content of at least 100 ppm. Examples of such waters are effluents such as acid mine drainage and river waters. The method includes the steps of: (i) removing sodium, calcium and magnesium ions from the water by contacting the water with a cation exchange resin/s to capture sodium, calcium and magnesium ions thereon, (ii) treating the cation exchange resin/s of step (i) with nitric acid to produce an eluant containing sodium ions, calcium ions, magnesium ions nitrate ions and nitric acid, (iii) adding a carbonate to the eluant to precipitate the calcium and magnesium ions as calcium and magnesium carbonates; (iv) separating the precipitated carbonates from the eluant; and (v) treating the eluant from step (iv) to obtain a sodium and/or potassium nitrate product.
    Type: Application
    Filed: September 28, 2011
    Publication date: July 3, 2014
    Applicant: TRAILBLAZER TECHNOLOGIES (PTY) LTD
    Inventors: Alastair James Forsyth, John Arthur Bewsey
  • Patent number: 8753594
    Abstract: This invention relates to a method for preparing a lithium aluminate intercalate (LAI) matrix solid and methods for the selective extraction and recovery of lithium from lithium containing solutions, including brines. The method for preparing the LAI matrix solid includes reacting aluminum hydroxide and a lithium salt for form the lithium aluminate intercalate, which can then be mixed with up to about 20% by weight of a polymer to form the LAI matrix.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 17, 2014
    Assignee: Simbol, Inc.
    Inventors: John L. Burba, III, Ray F. Stewart, Brian E. Viani, Stephen Harrison, Christine Ellen Vogdes, John Galil Salim Lahlouh
  • Publication number: 20140127095
    Abstract: Provided herein are processes for recovering molybdenum and/or other value metals (e.g., uranium) present in aqueous solutions from a large range of concentrations: from ppm to grams per liter via a solvent extraction process by extracting the molybdenum and/or other value metal from the aqueous solution by contacting it with an organic phase solution containing a phosphinic acid, stripping the molybdenum and/or other value metal from the organic phase solution by contacting it with an aqueous phase strip solution containing an inorganic compound and having a ?1.0 M concentration of free ammonia, and recovering the molybdenum and/or other value metal by separating it from the aqueous phase strip solution. When the molybdenum and/or other value metal are present only in low concentration, the processes can include an organic phase recycle step and/or an aqueous phase strip recycle step in order to concentrate the metal prior to recover.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: CYTEC TECHNOLOGY CORP.
    Inventors: Troy Allan Bednarski, Violina Antoneta Cocalia, Matthew Dean Soderstrom, Eduardo Alberto Kamenetzky, Andrew Michael Cameron, Douglas HARRIS
  • Publication number: 20130323143
    Abstract: The proposed invention uses industrial byproducts such as fly ash in an ion exchange/reverse osmosis (IE/RO) patented technology to sequester carbon dioxide CO2 gas and produce 6 to 7% sodium carbonate (Na2CO3) liquor. Similar materials encompass alkaline Fly Ash (AFA) liquor, alkaline red mud (ARM), coal ash, wood ash, and similar natural byproduct materials that are rich in metallic oxides. The process uses AFA or ARM at the input of an IE/RO process where the hydroxides (OH?) get extracted and concentrated for CO2 gas sequestration. The remaining insoluble byproduct material is used in civil works such as construction and road industry. Ion exchange modules are used to remove all multivalent ionic impurities while a reverse osmosis (RO) skid concentrates the carbonated liquor up to 6 to 7% liquor (or 10% in advanced RO). The process is not an electrochemical chloro-alkali battery nor related to the ammonical Solvay process.
    Type: Application
    Filed: December 8, 2010
    Publication date: December 5, 2013
    Inventors: Mohammed Olfi, Tarek R. Farhat
  • Publication number: 20130272934
    Abstract: The proposed invention uses ion exchange technology to produce dilute caustic soda liquor from calcium hydroxide liquor Ca(OH)2 followed by the reaction of carbon dioxide CO2 with caustic soda to produce dilute sodium carbonate solution. Multiple reverse osmosis and acidic CO2 sparging can concentrate the Na2CO3 liquor to 6-7%. The 6-7% liquor is treated with waste heat to produce 50% or solid Na2CO3. The 6-7% liquor can be treated with Ca(OH)2 to produce 6-7% NaOH liquor then can be transformed to 50% or solid NaOH. The output of many industrial processes generates waste heat, brine water and CO2 and the present invention combines these components in the production of solid Na2CO3, NaOH or their high % liquors. Availability of waste heat sources can lead to higher efficiency in Na2CO3 and NaOH production. The process is not electrochemical chloro alkali technology or Solvay process.
    Type: Application
    Filed: December 9, 2009
    Publication date: October 17, 2013
    Inventors: Mohammed Olfi, Tarek R. Farhat
  • Patent number: 8298502
    Abstract: A preparation method of lithium carbonate, in recovering valuable resources of a lithium-ion battery, reducing impurities from lithium carbonate, having a pretreatment process, comprising: a first step cleaning an organic phase containing nickel and lithium prepared by a solvent extraction by use of a sulfuric acid solution containing nickel and enriching lithium in the cleaning solution; a second step extracting a residual nickel only by an organic solvent from a post-cleaning solution in which the lithium is enriched; and a third step controlling pH of the post-extraction solution containing the lithium by ammonia water or lithium hydroxide.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 30, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Toshiyuki Yamaoka, Naoki Higuchi, Makoto Narisako, Daisuke Kobayashi
  • Publication number: 20120189513
    Abstract: The invention covers the combination of utilizing the selectivity of an adsorbent to remove species from a liquid containing mixtures of ions and then subjecting the loaded resin to a chromatographic displacement utilizing the most selectively adsorbed species to displace the undesired co-adsorbing impurities. The technique can be used even when the most selectively adsorbed species is present as a minor constituent in the feed solution.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Inventor: Gordon Rossiter
  • Publication number: 20120100051
    Abstract: The present invention generally relates to processes for recovery of phosphorus values and salt impurities from aqueous waste streams. In particular, the present invention relates to processes for recovery of phosphorus values and salt impurities from aqueous waste streams generated in the manufacture of phospho-herbicides, including N-(phosphonomethyl)glycine and glufosinate.
    Type: Application
    Filed: May 13, 2010
    Publication date: April 26, 2012
    Applicant: MONSANTO TECHNOLOGY LLC
    Inventors: Chil Y. Choi, Gregory A. Hartmann, Peng Lei, Fuchen Liu, William Poncez, Peter E. Rogers, William A. Scholle, Lowell Smith, Robert B. Weisenfeld, Chen-Hsyong Yang
  • Patent number: 8158088
    Abstract: A mixed extractant solvent that includes at least one dialkyloxycalix[4]arenebenzocrown-6 compound, 4?,4?,(5?)-di-(t-butyldicyclohexano)-18-crown-6, at least one modifier, and, optionally, a diluent. The dialkyloxycalix[4]arenebenzocrown-6 compound is 1,3-alternate-25,27-di(octyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(decyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(dodecyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(2-ethylhexyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(3,7-dimethyloctyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(4-butyloctyl-1-oxy)calix[4]arenebenzocrown-6, or combinations thereof. The modifier is a primary alcohol. A method of separating cesium and strontium from an aqueous feed is also disclosed, as are dialkyloxycalix[4]arenebenzocrown-6 compounds and an alcohol modifier.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: April 17, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dean R. Peterman, David H. Meikrantz, Jack D. Law, Catherine L. Riddle, Terry A. Todd, Mitchell R. Greenhalgh, Richard D. Tillotson, Richard A. Bartsch, Bruce A. Moyer, Laetitia H. Delmau, Peter V. Bonnesen
  • Publication number: 20110268633
    Abstract: A process for producing soda ash from brine waste, the process including reacting brine waste with carbon dioxide and ammonia to produce soda ash, where in at least a portion of the ammonia is regenerated from the ammonium chloride produced during the reaction, the regeneration ideally be achieved by the use of a weak base anion exchange resin.
    Type: Application
    Filed: November 20, 2009
    Publication date: November 3, 2011
    Applicant: UNIVERSITY OF SOUTH AUSTRALIA
    Inventor: Linda Yuan Zou
  • Patent number: 7981388
    Abstract: The present invention relates to lithium secondary batteries comprising a negative electrode, a positive electrode, a separator and a lithium-based electrolyte carried in an aprotic solvent, and to the electrolyte compositions, and to methods for purifying battery active materials. The electrolyte comprises at least one solvent and a lithium salt of the formula: Li2B12FxH12-x-yZy where x+y is from 3 to 12, and x and y are independently from 0 to 12, and Z comprises at least one of Cl and Br.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: July 19, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Sergei Vladimirovich Ivanov, William Jack Casteel, Jr., Wade H. Bailey, III
  • Patent number: 7951311
    Abstract: A non-lead composition for use as a thick-film resistor paste in electronic applications. The composition comprises particles of Li2RuO3 of diameter between 0.5 and 5 microns and a lead-free frit. The particles have had the lithium at or near primarily the surface of the particle at least partially exchanged for atoms of other metals.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 31, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Paul Douglas Vernooy, Alfred T. Walker, Kenneth Warren Hang
  • Patent number: 7927566
    Abstract: The present invention relates to a treatment of high-level waste of radiochemical production containing radionuclides and macro-admixtures including sodium. The method of extraction of radionuclides by processing acidic aqueous waste solutions by extractants containing macrocyclic compounds selected from the group of crown ethers having aromatic fragments containing alkyl and/or hydroxyalkyl substituents of a linear and/or branched structure, and/or cyclohexane fragments containing alkyl and/or hydroxyalkyl substituents of a linear and/or branched structure, and/or fragments of ā€”Oā€”CHRā€”CH2Oā€”, where R is the normal or branched alkyl or hydroxyalkyl in organic solvents containing polyfluorinated telomeric alcohol 1,1,7-trihydrododecafluoroheptanol-1 having the formula H(CF2CF2)nCH2OH, where n=3, and a mixture of polyoxyethylene glycol ethers of synthetic primary higher aliphatic alcohols of a fraction C12-C14 of a general formula CnH2n+1O(C2H4O)mH, where n=12-14, m=2 is proposed.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: April 19, 2011
    Assignees: Designing-Contructing and Industrial-Inculcating Enterprise ā€œDaymos Ltd.ā€, Federal State Institute ā€œFederal Agency for Legal Protection of Military Special and Dual Use, Intellectual Activity Resultsā€ under Ministry of Justice of the Russian Federation (FSI ā€œFALPIARā€)
    Inventors: Jury Vasilievich Glagolenko, Mikhail Vasilievich Logunov, Igor Vitalievich Mamakin, Vladimir Mikhailovich Polosin, Sergey Ivanovich Rovny, Vadim Alexandrovich Starchenko, Jury Pavlovich Shishelov, Nikolay Gennadievich Yakovlev
  • Patent number: 7648687
    Abstract: Purification techniques have been developed for ceramic powder precursors, e.g., barium nitrate. These techniques can be performed using one or more of the following operations: (1) removal of impurities by precipitation or coprecipitation and separation using a nonmetallic-ion-containing strong base, e.g., tetraalkylammonium hydroxides; (2) reduction of higher oxidation-state-number oxymetal ions and subsequent precipitation as hydroxides that are separated from the solution; and (3) use of liquid-liquid exchange extraction procedures to separate certain impurities.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: January 19, 2010
    Assignee: EEStor, Inc.
    Inventors: Richard D. Weir, Carl W. Nelson
  • Patent number: 7592284
    Abstract: A high capacity adsorbent may be used for enriching oxygen concentration in an air stream. Such a high capacity adsorbent may be from about 2 to about 3 times lighter relative to the currently available technology. Furthermore, the high capacity adsorbent is readily capable of regeneration after deactivation by water vapor. Unlike current available immobilization technology in which clay binder was used to bind 13X zeolite and additional 10% organic binder was used to immobilize beads, the adsorbents of the present invention may be made using just an organic binder, thereby reducing pore spoilage caused by the clay binder. Further unlike conventional adsorbents, which may use sodium as its cation, the adsorbent of the present invention uses a lithium cation, thereby resulting in enhanced nitrogen adsorption performance.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: September 22, 2009
    Assignee: Honeywell International Inc.
    Inventors: Rehan Zaki, Russ Johnson
  • Patent number: 7524469
    Abstract: An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 (ā€œBOBCalixC6ā€), 4?,4?,(5?)-di-(t-butyldicyclo-hexano)-18-crown-6 (ā€œDtBu18C6ā€), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (ā€œCs-7SBā€) and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: April 28, 2009
    Assignee: Battelle Energy Alliance, LLC
    Inventors: David H. Meikrantz, Terry A. Todd, Catherine L. Riddle, Jack D. Law, Dean R. Peterman, Bruce J. Mincher, Christopher A. McGrath, John D. Baker
  • Patent number: 7494630
    Abstract: A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: February 24, 2009
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Terry A. Todd, Jack D. Law, R. Scott Herbst, Valeriy N. Romanovskiy, Igor V. Smirnov, Vasily A. Babain, Vyatcheslav M. Esimantovski
  • Patent number: 7291316
    Abstract: A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 (ā€œBOBCalixC6ā€), 4?,4?,(5?)-di-(t-butyldicyclo-hexano)-18-crown-6 (ā€œDtBu18C6ā€), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (ā€œCs-7SBā€) and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: November 6, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: David H. Meikrantz, Terry A. Todd, Catherine L. Riddle, Jack D. Law, Dean R. Peterman, Bruce J. Mincher, Christopher A. McGrath, John D. Baker
  • Patent number: 7122164
    Abstract: Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 17, 2006
    Assignee: Sandia Corporation
    Inventors: Tina M. Nenoff, May D. Nyman
  • Patent number: 6986878
    Abstract: A process for producing potassium sulfate from potash and sodium sulfate, which involves providing a source of sodium sulfate and passing the sodium sulfate through cationic exchanger. Eluted potassium sulfate containing sodium sulfate is reacted with potash to form further potassium sulfate.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: January 17, 2006
    Assignee: Dirdal Rand Technologies
    Inventor: Gary Derdall
  • Patent number: 6936175
    Abstract: The invention relates to zirconium phosphate of H form which is characterized by a 31P NMR spectra comprising peaks at ?4.7 ppm, ?12.8 ppm and ?17.0 ppm (all peaks being in a range of Ā±0.5 ppm). Also featured is a Na form of the material. The zirconium phosphate material is characterized by a unique surface area, pore size distribution and surface morphology, as well as by an affinity for NH4+ ions and moisture insensitivity. Also featured is hafnium phosphate characterized by moisture insensitivity. The zirconium phosphate may be amorphous and possess a framework-type structure. The inventive method of making zirconium phosphate includes the steps of heating an aqueous mixture including a zirconium compound and a phosphorous-containing reagent at a temperature of at least 120Ā° C. to form a reaction product, and treating the reaction product with acid at a temperature of at least 60Ā° C.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: August 30, 2005
    Assignee: Magnesium Elektron, Inc.
    Inventors: Anatoly I. Bortun, Clive J. Butler
  • Patent number: 6911188
    Abstract: The invention relates a process for producing an alkali metal nitrate and an alkali metal phosphate in the same process from a phosphate raw material and a nitrate raw material comprising the steps of: a) reacting the phosphate raw material with the nitrate raw material to provide an aqueous nitrophosphate feed, optionally followed by the separation of solid material, b) introducing the aqueous nitrophosphate feed into a first ion exchange step comprising an alkali metal-loaded cationic exchange resin for exchanging cations present in the feed with alkali metal ions present on the resin to obtain a stream enriched in alkali metal ions, c) subjecting the stream from step (b) to a first crystallization under such conditions that an alkali metal nitrate is crystallized and separating the crystallized alkali metal nitrate from the mother liquor, d) introducing the mother liquor from step (c) into a second ion exchange step comprising an alkali metal-loaded cationic exchange resin for exchanging cations present
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: June 28, 2005
    Assignee: Kemira Growhow Oy
    Inventor: Flemming Mathiesen
  • Patent number: 6777511
    Abstract: An industrially excellent process for producing a poly(meth)acrylate having a reduced metal content which comprises contacting a mixture of a poly(meth)acrylate and an organic solvent with an acidic aqueous solution, such as an aqueous solution obtained by dissolving a polyprotic carboxylic acid having about 2 to 12 carbon atoms in water, is provided, and, by this invention, contents of metals such as sodium, potassium, iron and the like can be remarkably reduced.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: August 17, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Koshiro Ochiai, Akira Kamabuchi
  • Patent number: 6736958
    Abstract: The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10−6M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10−6M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: May 18, 2004
    Assignee: IA INC
    Inventors: Richard Harding Smith, Glenn Brian Martin
  • Publication number: 20040081604
    Abstract: A process in which isotopes of the same element belonging to the alkaline earth metals, transition elements and heavy metals having an atomic mass of less than 209, in particular lanthanide metals, are separated in an aqueous medium by treating an aqueous medium.
    Type: Application
    Filed: October 29, 2003
    Publication date: April 29, 2004
    Inventors: Marc Lemaire, Jacques Foos, Alain Guy, Frederic Chitry, Stephane Pellet-Rostaing, Olivier Vigneau
  • Patent number: 6566561
    Abstract: The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R2-R6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: May 20, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Peter V. Bonnesen, Bruce A. Moyer, Richard A. Sachleben
  • Patent number: 6517788
    Abstract: The present invention relates to a method for the continuous separation of caesium, strontium and transuranium elements contained in sodium waste which comprises the use of NaTPB, and to a device for the implementation of this method. The method of the invention comprises, in line, the following steps: (a) filling at least one of at least two feed tanks with the waste; (b) analysis of the content of Cs+, Sr++, Na+ and transuranium elements in the waste; (c) pre-treatment, adapted in relation to analysis results, of the solution in the feed tank intended to insolubilise the strontium and transuranium elements; (e1) a first caesium separation treatment; and e1a) a second caesium separation treatment, the method being conducted in continuous manner by means of the alternate use of the feed tanks.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: February 11, 2003
    Assignee: Compagnie Generale des Matieres Nucleaires
    Inventors: Marie-FranƧoise Debreuille, Nathalie Hubert, Jean-Paul Moulin
  • Publication number: 20010033814
    Abstract: The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
    Type: Application
    Filed: April 27, 2001
    Publication date: October 25, 2001
    Inventors: Valeriy Nicholiavich Romanovskiy, Igor V. Smirnov, Vasiliy A. Babain, Terry A. Todd, Ken N. Brewer
  • Patent number: 6296679
    Abstract: In a process for hydrocarbon steam reforming, a primary reformed gas is produced from a mixed gas of hydrocarbon and steam with use of a primary reforming means including an external combustion type of reforming furnace. A secondary reforming reaction of the primary reformed gas is carried out in the presence of air and/or oxygen. A burner assembly of the reforming furnace comprises burners for heating reforming tubes of the furnace and regenerators for preheating a combustion air flow to the burners. Combustion exhaust gas of the reforming furnace heats the second regenerator for preheating the combustion air to the second burner, while the first burner is in firing operation, whereas the combustion exhaust gas heats the first regenerator for preheating the combustion air to the first burner, while the second burner is in firing operation. The flow passage for the combustion exhaust gas is so controlled as to be switched to either of first and second flow passages in a predetermined time interval.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: October 2, 2001
    Inventor: Hajime Kato
  • Patent number: 6280693
    Abstract: The present invention is a composition comprising pellets, each of said pellets consisting essentially of an integral mass of polycrystalline material of randomly disposed crystals of hydrated alumina infused with an amount of LiX to produce LiX/Al(OH)3 having up to a mol fraction of 0.33 of LiX in the so-produced LiX/Al(OH)3, wherein LiX is at least one compound selected from the group consisting of Li hydroxide, Li halide, Li nitrate, Li sulfate, and Li bicarbonate. The present invention further includes methods of preparing the composition and methods of recovery lithium values from brine using the composition.
    Type: Grant
    Filed: September 20, 1996
    Date of Patent: August 28, 2001
    Assignee: FMC Corporation
    Inventors: William C. Bauman, John L. Burba, III
  • Patent number: 6274105
    Abstract: The present invention relates to a new selective process for producing high-purity potassium nitrate or potassium phosphate. The process uses a liquid agricultural or fermentation by-product, such as molasses, vinasse or potato thick juice as its potassium source and comprises the following unit operations: clarification, ion exchange, neutralization, concentration and crystallization. Importantly, the present invention also concerns a process for producing an ingredient for animal feed, said ingredient having a reduced potassium content.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: August 14, 2001
    Assignees: Avebe B.A., Kemira Agro Oy
    Inventors: Marcus Vorage, Per Eichner
  • Patent number: 6270737
    Abstract: Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC6H4(OCH2CH2)nOH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: August 7, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Boris N. Zaitsev, Vyacheslav M. Esimantovskiy, Leonard N. Lazarev, Evgeniy G. Dzekun, Valeriy N. Romanovskiy, Terry A. Todd, Ken N. Brewer, Ronald S. Herbst, Jack D. Law
  • Patent number: 6241893
    Abstract: An amorphous potassium aluminosilicate filtration media which may be mixed with activated carbon filters water to remove oxygen, chlorines, hardness, alkalinity, ammonia, hydrogen, hydrogen sulfide, sodium sulfite and other contaminants. The particular sodium aluminosilicate is a porous amorphous material formed under ultraviolet light or sunlight to produce pore sizes of 60 Å to 250 Å at ambient temperatures (20° C.-35° C.) and low relative humidity (5%-20%). The media is initially formed as a microporous primarily amorphous gel containing Na2O, Al2O3, SiO2 and H2O. The sodium therein is displaced by potassium, whereby the filter removes impurities from water without introducing sodium. The potassium aluminosilicate may be a second stage filter to a first stage filter composed of a strong base anion media charged with potassium carbonate and/or bicarbonate.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: June 5, 2001
    Inventor: Ehud Levy
  • Patent number: 6207129
    Abstract: The invention is a process which provides a high purity lithiated manganese oxide (Li1+xMn2−yO4) from chemically made MnO2. The lithiated manganese oxide has an especially effective utility for use as a cathodic material in rechargeable batteries. The process of the invention includes blending a lithium compound with a chemically made manganese dioxide to form a manganese dioxide/lithium compound blend. The lithium compound in the blend is at least about one mole of lithium for every mole of manganese dioxide. The manganese dioxide and lithium compound in the blend undergo an ion exchange reaction to provide an ion replaced product where lithium ions have replaced sodium and potassium ions in the MnO2 to form an ion replaced product. Thereafter, the ion replaced product is heated or calcined to provide the lithiated manganese oxide.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: March 27, 2001
    Assignee: Carus Corporation
    Inventors: Akshaya Kumar Padhi, Chithambarathanu Pillai
  • Patent number: 6174503
    Abstract: A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: January 16, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Bruce A. Moyer, Richard A. Sachleben, Peter V. Bonnesen, Derek J. Presley
  • Patent number: 6156282
    Abstract: The invention relates to new calixarenes of formula: ##STR1## in which R.sup.1 represents a crown ether chain that includes at least two aryl or cycloalkyl rings,R.sup.2 is a hydroxyl or alkoxy group, or the two R.sup.2 groups together form a crown ether chain such as R.sup.1, and R.sup.3 represents a hydrogen atom or an alkyl group. The calixarenes are used to selectively extract caesium from aqueous solutions that notably have high concentrations of sodium.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: December 5, 2000
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Fran.cedilla.ois Dozol, Veronique Lamare, Christophe Bressot, Rocco Ungaro, Alessandro Casnati, Jacques Vicens, Zouhair Asfari
  • Patent number: 6110377
    Abstract: The invention concerns a process that uses an ion exchanger resin to recover the sodium contained in industrial alkaline waste and, in particular, in the "red mud" and sodium effluents coming from the manufacture of aluminum hydrate according to the Bayer process. It includes putting the alkaline resins (1), usually "red mud" in the form of an aqueous suspension in contact with an RH.sup.+ type cationic resin, preferably, a carboxylic resin to attach the sodium selectively and quantitatively to the resin (5) and then to extract it quantitatively in the form of NaOH (8) by displacement using a lime suspension (6), preferably, lime milk. The resin (9), after attaching the calcium, is then regenerated for reuse at the beginning of the process (2) by elution of the calcium as CaCl.sub.2 (12) with a diluted hydrochloric acid solution (10).
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: August 29, 2000
    Assignee: Aluminum Pechiney
    Inventor: Jean-Michel Lamerant
  • Patent number: 6022992
    Abstract: A cation exchange membrane mediated acid-salt metathetic process. An aqueous salt solution is placed into a first compartment on one side of the membrane together with an organic amine extractant of limited water miscibility, and an aqueous acid solution is placed into a second compartment on the other side of the membrane. Product acid forms in the first compartment and collects in the organic amine extractant from where it is recovered. The process is particularly suitable for the recovery of a carboxylic acid from its salt.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: February 8, 2000
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventor: Aharon Eyal
  • Patent number: 5980717
    Abstract: A substantial and increasing problem with the pulping chemical recovery system, is the presence of chloride and potassium in the spent liquor entering the recovery boiler. Chloride and potassium increase the stickiness of carryover deposits and dust particles to the recovery boiler tubes, which accelerate fouling and plugging in the upper part of the recovery boiler. The present invention relates to a process by which the content of potassium ions in a recovery system for pulping chemicals can be reduced. The process comprises bringing spent liquor to a recovery boiler, burning said spent liquor, collecting precipitator dust formed, forming a solution by dissolving the precipitator dust in a liquid, where the solution of precipitator dust is subjected to a treatment with an inorganic ion exchange material in order to remove at least a part of the potassium therein.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: November 9, 1999
    Assignee: Eka Chemical AB
    Inventors: Roland Pudas, Magnus Linsten, Roy Hammer-Olsen, Bjorn Svedin, Ingrid Velander
  • Patent number: 5942084
    Abstract: A process using an amphoteric ion-exchange resin, also known as a "snake-cage polyelectrolyte" resin separates kraft white liquor into sulphide-rich and caustic-rich components. The sulphide-rich component can be used in the initial stage of pulping, pretreatment of wood chips prior to pulping, or it can be used to make polysulphide-rich liquor. The caustic-rich component can be used in the final delignification phase, in place of sodium hydroxide or white liquor in oxygen delignification, pH adjustment and flue gas scrubbing. The same system can be used to separate green and polysulphide liquors into sulphide-rich and sulphide-poor components, and to remove sulphide from other mill caustic streams contaminated with sulphide.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: August 24, 1999
    Assignees: Pulp and Paper Research Institute of Canada, Eco-Tec Limited
    Inventors: Rokhsareh Thompson, Michael Paleologou, Richard McKinnon Berry, Craig J. Brown, Michael Sheedy
  • Patent number: 5922171
    Abstract: Sodium chloride is removed from pulping chemicals used in a Kraft pulping process by the use of a snake-cage polyelectrolyte ion exchange resin, coupled with removal of sulfide prior to treatment, or treatment of chemicals which are already low in sulfide. In one aspect of the invention, dust is collected from exhaust gases produced in the black liquor recovery cycle and is dissolved in water to produce a solution containing sodium chloride and sodium sulfate. The solution is filtered to yield a solid product and a filtrate solution. The filtrate solution is fed to an ion exchange unit which removes chloride and produces a purified sodium sulfate product. The sodium chloride is removed from the ion exchange resin by water elution, and useful recovered chemicals are recycled to the recovery cycle of the Kraft process.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: July 13, 1999
    Assignees: Eco-tec Limited, Pulp and Paper Research Institute of Canada
    Inventors: Michael Paleologou, Rokhsareh Thompson, Richard McKinnon Berry, Michael A. Sheedy, Craig J. Brown