Volatizing An Alkali Metal Patents (Class 423/200)
  • Patent number: 11420159
    Abstract: Intensification techniques are described for enhancing biocatalytic CO2 absorption operations, and may include the use of a rotating packed bed, a rotating disc reactor, a zig-zag reactor or other reactors that utilize process intensification. Carbonic anhydrase can be deployed in the high intensity reactor free in solution, immobilized with respect to particles that flow with the liquid, and/or immobilized to internals, such as packing, that are fixed within the high intensity reactor.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: August 23, 2022
    Assignee: SAIPEM S.P.A.
    Inventors: Mausam Verma, Louis Fradette, Sylvie Fradette, Sylvain Lefebvre, Vincent Sylvestre-Laurence
  • Patent number: 8846377
    Abstract: A process for capturing CO2 includes contacting a CO2-containing gas with an absorption mixture optionally within a packed reactor is provided. The absorption mixture includes a liquid solution and micro-particles. The micro-particles include a support material and biocatalyst supported by the support material and are sized and provided in a concentration such that the absorption mixture flows through the packed reactor and that the micro-particles are carried with the liquid solution to promote dissolution and transformation of CO2 into bicarbonate and hydrogen ions. The absorption mixture and micro-particles may be provided in an absorption reactor so as to be pumpable. Furthermore, a process for desorbing CO2 gas from an ion-rich aqueous mixture includes providing biocatalytic micro-particles and feeding the mixture to a desorption reactor, to promote transformation of the bicarbonate and hydrogen ions into CO2 gas and water.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: September 30, 2014
    Assignee: CO2 Solutions Inc.
    Inventors: Sylvie Fradette, Julie Gingras, Normand Voyer, Jonathan Carley, Glenn R. Kelly, Olivera Ceperkovic
  • Patent number: 8124046
    Abstract: A method for producing an alkali metal iodide salt solution including combusting a liquid for combustion so as to combust a combustible component of the liquid for combustion; and subsequently cooling a resultant gas containing a decomposition product. The method comprises the steps of (a) providing a liquid containing (i) an alkali metal iodide salt, (ii) an inorganic-salt-forming substance capable of forming, at combustion, an inorganic salt containing an alkali metal and (iii) an organic compound; (b) adding to the liquid a precipitation solvent capable of depositing the inorganic-salt-forming substance; (c) removing from the liquid the inorganic-salt-forming substance precipitated in the step (b) so as to obtain the liquid for combustion; and (d) combusting the liquid for combustion and subsequently cooling the resultant gas containing a decomposition product.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 28, 2012
    Assignee: Nippon Chemicals Co., Ltd.
    Inventors: Yuichiro Kinoshita, Sayaka Shiomitsu, Keisuke Takahashi
  • Patent number: 7753987
    Abstract: The present invention concerns a high vacuum in-situ refining method for high-purity and superhigh-purity materials and the apparatus thereof, characterized in heating the upper part and lower part of crucible separately using double-heating-wires diffusion furnace under vacuum, thereby forming the temperature profile which is high at upper part and low at lower part of crucible, or in reverse during different stages; then heating the crucible in two steps to remove impurities with high saturation vapor pressure and low saturation vapor pressure respectively in efficiency; and obtaining high-purity materials eventually. The whole procedure is isolated from atmosphere, reducing contamination upon stuff remarkably. The present invention could provide products with high-quality and high production capacity, which are stable in performance, therefore is reliable and free from contamination.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: July 13, 2010
    Assignee: The Chinese Academy of Sciences Institute of Physics
    Inventors: Xiaolong Du, Zhaoquan Zeng, Hongtao Yuan, Handong Li, Qikun Xue, Jinfeng Jia
  • Patent number: 7211665
    Abstract: 1,3,5-(2H2,4H2,6H2) tripropanediamine N,N,N?,N?,N?,N? hexamethyl is used to scavenge sulfur compounds from hydrocarbons. A novel method of making the triazine comprises autocondensing (CH3)2NCH2CH2CH2N?CH2.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 1, 2007
    Assignee: Clearwater International, L.L.C.
    Inventor: Larry W. Gatlin
  • Patent number: 6989142
    Abstract: An abrasive precipitated calcium carbonate is provided that provides excellent cleaning properties without being excessively abrasive or damaging to gums or tooth surfaces. The abrasive, precipitated calcium carbonate has a primary particle size of about 1 ?m to about 4 ?m, and an aggregate size of about 3 ?m to about 10 ?m. Also disclosed is a method for forming calcium carbonate comprising the steps of: providing a reaction medium; introducing carbon dioxide and the calcium hydroxide slurry simultaneously into a reaction medium to form calcium carbonate while maintaining constant pH during calcium carbonate precipitation; and optionally drying the calcium carbonate slurry to form a dried calcium carbonate product. Also disclosed is a dentifrice containing the aforementioned abrasive, precipitated calcium, and one or more ingredients selected from the group consisting of humectants, thickening agents, binders, gums, stabilizing agents, antibacterial agents, fluorides, sweeteners, and surfactants.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: January 24, 2006
    Assignee: J. M. Huber Corporation
    Inventors: Sung-Tsuen Liu, Michel J. Martin, William C. Fultz, Patrick D. McGill
  • Patent number: 6602322
    Abstract: An improved method and apparatus for recovering metal values from Electric Arc Furnace dust, particularly zinc and iron values, by mixing EAF dust and carbonaceous fines to form a particulate mixture; heating the mixture at a sufficient temperature and for a sufficient time to reduce and release volatile metals and alkali metals in a flue gas; collecting the released metals, and removing the metal values from the process as product.
    Type: Grant
    Filed: September 1, 2001
    Date of Patent: August 5, 2003
    Assignee: Midrex Technologies, Inc.
    Inventor: James M. McClelland, Jr.
  • Patent number: 5591256
    Abstract: Sodium alumino-silicates are produced by silicate/clay reactions under hydrothermal conditions with increased solids during processing while still producing structural materials characterized by low oil absorption values, high total pore volume and increased differential pore volumes. The products are useful as coating pigments for paper and paperboard, paper fillers, paint pigments and as reinforcing pigments for rubber.
    Type: Grant
    Filed: August 10, 1994
    Date of Patent: January 7, 1997
    Assignee: J. M. Huber Corporation
    Inventors: Gary M. Freeman, Richard D. Carter, Thad T. Broome, Kurt H. Moller
  • Patent number: 5186746
    Abstract: Sodium Aluminosilicates (SAMS) are produced by silicate/clay reactions under hydrothermal conditions, the SAMS being characterized by low oil absorption values and high total pore volumes. The SAMS products are useful as coating pigments for paper, paper fillers and paint pigments.
    Type: Grant
    Filed: January 10, 1992
    Date of Patent: February 16, 1993
    Assignee: J. M. Huber Corporation
    Inventor: Gary M. Freeman
  • Patent number: 4913736
    Abstract: A process for recovering Platinum Group metals from material comprising one or more Platinum Group metals and one or more Group IA metals supported on carbon comprises heating at a temperature between 700.degree. C. and 1150.degree. C. in a stream of an inert gas or vacuum then in a stream of carbon dioxide.
    Type: Grant
    Filed: October 11, 1988
    Date of Patent: April 3, 1990
    Assignee: The British Petroleum Company p.l.c.
    Inventor: Edmund Gimzeski
  • Patent number: 4894208
    Abstract: A system for extracting sodium, particularly radioactive .sup.22 Na, from aluminum utilizes a monel exhaust system for exhausting sodium vapor emitted from a molten aluminum target, in a draft of helium gas. The aluminum target is heated until it is melted in a graphite support cup. The graphite support does not react with the sodium. Moreover, the graphite is understood to be permeable to the helium gas, its porosity being believed to provide the significant advantage that the graphite holder will not absorb much of the sodium vapor. The use of graphite avoids a disadvantageous monel-aluminum reaction whereby an alloy from which sodium cannot be distilled is formed. The resulting sodium vapor is precipitated in a monel exhaust tube which is subjected to temperature control. Sodium can be rinsed from the monel exhaust tube with water.
    Type: Grant
    Filed: July 14, 1988
    Date of Patent: January 16, 1990
    Assignee: The University of Michigan
    Inventors: Henry C. Griffin, Thomas D. Steiger
  • Patent number: 4738835
    Abstract: A method of recovering alkaline chemicals from a material containing sodium or potassium compounds. The material is gasified by an external heat source after which the gas is rapidly cooled by arranging it to contact with cooled solid particles separated from the gas.
    Type: Grant
    Filed: December 16, 1986
    Date of Patent: April 19, 1988
    Assignee: A. Ahlstrom Corporation
    Inventor: Erkki J. Kiiskila
  • Patent number: 4673431
    Abstract: A process for selective vaporization of oxides from recovered waste dust collected from a bag house. Pellets are formed from the waste dust and dried to permit charging in an oxidizing chamber wherein an oxidizing atmospheric is maintained. The chamber is heated to a temperature sufficient to vaporize lead oxide and, if present, also oxides of cadmium, potassium and sodium. The vapors are cooled and separated from furnace gas. The residual oxidized mass is cooled after removal from the oxidizing chamber and fed into a reduction chamber wherein a reducing atmosphere is maintained. The reduction chamber is heated to a temperature of between 1800 and 2000 degrees Fahrenheit to reduce zinc oxide and form zinc vapors which are cooled and separated from furnace gas. Lead oxide particles recovered from the oxidizing process are reduced to lead.
    Type: Grant
    Filed: January 8, 1986
    Date of Patent: June 16, 1987
    Assignee: Bricmont & Associates, Inc.
    Inventor: Francis H. Bricmont
  • Patent number: 4113832
    Abstract: A fully integrated process is provided for the recovery of valuable components from waste materials generated in electrolytic aluminum reduction systems. The waste materials, such as spent pot linings, channel and trench cleanings, floor sweepings and spent alumina from offgas purifying dry scrubbers, are combined, then pyrohydrolyzed at elevated temperature. Fluoridic values, such as NaF and HF can be recovered from the offgas generated by pyrohydrolysis, while alumina and Na.sub.2 O values, or if desired, sodium aluminate, is reclaimed from the solid residue of pyrohydrolysis.The fluoridic values from the pyrohydrolysis offgas can be used for the manufacture of both electrolytes for aluminum reduction cells and also for the production of anhydrous HF. The alumina from the pyrohydrolysis residue can be reclaimed by a Bayer process-type leach with a caustic solution and the recovered high purity alumina utilized, for example, as reduction cell feed and/or for scrubbing reduction cell offgases.
    Type: Grant
    Filed: November 28, 1977
    Date of Patent: September 12, 1978
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Norman Bell, John N. Andersen, Hung-Kei H. Lam